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ABSTRACT 32 

Ambient fine particulate matter (PM2.5) mitigation relies strongly on anthropogenic 33 

emission control measures, the actual effectiveness of which is challenging to pinpoint 34 

owing to the complex synergies between anthropogenic emissions and meteorology. 35 

Here, observational constraints on model simulations allow us to derive not only 36 

reliable PM2.5 evolution but also accurate meteorological fields. In this study, we isolate 37 

meteorological factors to achieve reliable estimates of surface PM2.5 responses to both 38 

long-term and emergency emission control measures from 2016 to 2019 over the 39 

Yangtze River Delta (YRD), China. The results show that long-term emission control 40 

strategies play a crucial role in curbing PM2.5 levels (> 14 μg/m3, 19%), especially in 41 

the megacities and other areas with abundant anthropogenic emissions. The G20 42 

summit hosted in Hangzhou in 2016 provides a unique and ideal opportunity involving 43 

the most stringent, even unsustainable, emergency emission control measures. For the 44 

winter time periods from 2016 to 2019, the most substantial declines in PM2.5 45 

concentrations (~ 35 μg/m3, ~ 59%) are thus achieved in Hangzhou and its surrounding 46 

areas. The following hotspots also emerge in megacities, especially in Shanghai (32 47 

μg/m3, 51%), Nanjing (27 μg/m3, 55%), and Hefei (24 μg/m3, 44%). Compared to the 48 

long-term policies from 2016 to 2019, the emergency emission control measures 49 

implemented during the G20 Summit achieve more significant decreases in PM2.5 50 

concentrations (17 μg/m3 and 41%) over most of the whole domain, especially in 51 

Hangzhou (24 μg/m3, 48%) and Shanghai (21 μg/m3, 45%). By extrapolation, we derive 52 

insight into the magnitude and spatial distributions of PM2.5 mitigation potentials across 53 

the YRD, revealing significantly additional rooms for curbing PM2.5 levels.  54 

1 INTRODUCTION 55 

Anthropogenic induced fine particulate matter (particulate matter with an aerodynamic 56 

diameter smaller than 2.5 μm, hereinafter denoted as PM2.5) is a principal object of air 57 

pollution control in China (Huang et al., 2014; Zhang et al., 2015). Moreover, the 58 

government has made major strides in curbing anthropogenic emissions (e.g., SO2, NOx, 59 

and CO) via both long-term and emergency measures during the past decade (Yan et 60 

al., 2018; Yang et al., 2019; Zhang et al., 2012). However, owing to the complex 61 

synergy of chemistry and meteorology (Seinfeld and Pandis, 2016), the extent to which 62 

these measures have abated PM2.5 pollution, as well as the attainable mitigation 63 
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potential, remains unclear(An et al., 2019). The challenge involves reliably representing 64 

substantial and rapid changes in anthropogenic emissions resulting from both long-term 65 

and emergency control measures (Chan and Yao, 2008).  66 

Since 2013, the China National Environmental Monitoring Center (CNEMC) has 67 

established 1415 ground-based PM2.5 measurement sites across 367 key cities (Zhang 68 

and Cao, 2015). In contrast to satellite observations with sparse spatiotemporal 69 

coverages (Ma et al., 2014, 2015; Xue et al., 2019), these ground sites can provide 70 

hourly PM2.5 concentrations at high spatial resolution in urban areas. Data assimilation 71 

(DA) methods that have been widely used in meteorology can be extended to integrate 72 

those continuous observational constraints with chemical transport models (CTMs) 73 

(Bocquet et al., 2015; Chai et al., 2017; Gao et al., 2017; Jung et al., 2019; Ma et al., 74 

2019). It has been demonstrated that the capability of several representative DA 75 

methods, such as the optimal interpolation (OI) (Chai et al., 2017), 3D/4D variational 76 

methods (Li et al., 2016), and the ensemble Kalman filter algorithm (Chen et al., 2019a), 77 

can bridge the estimation gaps between observed and simulated results. Thus, 78 

observational constraints can be taken full advantage of to identify the effects of 79 

anthropogenic emission controls.  80 

From the perspective of policymaking, 2016 was a special year for air pollution control 81 

in China. Since 2013, the Chinese government instituted extensive policies, such as the 82 

Air Pollution Prevention and Control Action Plan. These strategies were initiated and 83 

implemented through generally shutting down or relocating high emission traditional 84 

industrial enterprises (Sheehan et al., 2014; Shi et al., 2016; Xie et al., 2015). Starting 85 

from January 1, 2016, the relevant law, as well as the “Blue Sky Battle Plan”, came into 86 

full effect and profoundly shifted how China prioritized air quality management(Feng 87 

and Liao, 2016; Li et al., 2019c). Hence, we address the impact of long-term emission 88 

control strategies on PM2.5 mitigation from 2016 onward. 89 

The G20 summit hosted in Hangzhou in 2016 (hereinafter termed the G20 summit) 90 

provides a unique and ideal opportunity to further explore the attainable PM2.5 91 

mitigation potential across the Yangtze River Delta (YRD) (Li et al., 2017b; Ma et al., 92 

2019; Shu et al., 2019; Yang et al., 2019). Prior to and during this period, the Chinese 93 

government enforced historically strictest, even unsustainable, emergency emission 94 

control measures, including significant control, even cessation, of factory operations, 95 

restrictions on vehicles in the region, thus achieving unprecedented PM2.5 abatement at 96 

specific locations (e.g., Hangzhou) (Ji et al., 2018; Li et al., 2017b; Yang et al., 2019). 97 
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The role of these emergency emission control measures, that is, the relatively localized 98 

PM2.5 mitigation potential, should thus be identified, and further extended to the entire 99 

YRD. 100 

To quantify the effectiveness of the emission control strategies, we constrained a state-101 

of-the-art CTM by a reliable DA method with extensive chemical and meteorological 102 

observations. This comprehensive technical design provides a crucial advance in 103 

isolating the influences of emission changes and meteorological perturbations over the 104 

YRD from 2016 to 2019, thus deriving unprecedented estimates of PM2.5 responses to 105 

both long-term and emergency emission control measures, and establishing the first 106 

map of the PM2.5 mitigation potential across the YRD. 107 

2 MATERIALS AND METHODS 108 

2.1 The two-way coupled WRF-CMAQ model 109 

The two-way coupled Weather Research and Forecasting (WRF) and Community 110 

Multiscale Air Quality (CMAQ) model (the WRF-CMAQ model), as the key core of 111 

the DA system, was applied to investigate the ambient PM2.5 feedbacks under different 112 

constraining circumstances (Byun and Schere, 2006; Wong et al., 2012; Yu et al., 2014). 113 

We utilized the CB05 and AERO6 modules for gas-phase chemistry and aerosol 114 

evolution (Carlton et al., 2010; Yarwood et al., 2005), respectively. Both secondary 115 

inorganic and organic aerosol (i.e., SIA and SOA) were thus explicitly treated with the 116 

AERO6 scheme in the WRF-CMAQ model. Together with the ISORROPIA II 117 

thermodynamic equilibrium module (Fountoukis and Nenes, 2007), SIA in the Aitken 118 

and accumulation modes (Binkowski and Roselle, 2003) was assumed to be in 119 

thermodynamic equilibrium with the gas phase, while that in the coarse mode was 120 

treated dynamically. SOA was formed via gas-, aqueous-, and aerosol-phase oxidation 121 

processes, such as in-cloud oxidation of glyoxal and methylglyoxal, absorptive 122 

partitioning of condensable oxidation of monoterpenes, long alkanes, low-yield 123 

aromatic products (based on m-xylene data), and high-yield aromatics, and NOx-124 

dependent yields from aromatic compounds31. The subsequent reaction products can be 125 

divided into two groups: non-volatile semi-volatile(Carlton et al., 2010). Such 126 

treatments have been widely used and comprehensively validated. Longwave and 127 

shortwave radiation were both treated using the RRTMG radiation scheme (Clough et 128 

al., 2005). Related land surface energy balance and planetary boundary layer 129 

https://doi.org/10.5194/acp-2020-510
Preprint. Discussion started: 22 July 2020
c© Author(s) 2020. CC BY 4.0 License.



5 

 

simulations were included in the Pleim-Xiu land surface scheme (Xiu and Pleim, 2001) 130 

and the asymmetric convective model (Pleim, 2007b, 2007a), respectively. The two-131 

moment Morrison cloud microphysics scheme(Morrison and Gettelman, 2008) and the 132 

Kain-Fritsch cumulus cloud scheme (Kain, 2004) were employed for simulating 133 

aerosol-cloud interactions and precipitation. Default settings in the model were used to 134 

prescribe chemical initial and boundary conditions. A spin-up period of seven days was 135 

carried out in advance to eliminate artefacts associated with initial conditions. 136 

Meteorological initial and boundary conditions were obtained from the ECMWF 137 

reanalysis dataset with the spatial resolution of 1º × 1º and temporal resolution of 6 138 

hours (http://www.ecmwf.int/products/data). Biogenic and dust emissions were 139 

calculated on-line using the Biogenic Emission Inventory System version 3.14 140 

(BEISv3.14) (Carlton and Baker, 2011) and a windblown dust scheme embedded in 141 

CMAQ (Choi and Fernando, 2008), respectively. 142 

The horizontal domain of the model covered mainland China by a 395 × 345 grid with 143 

a 12 km horizontal resolution following a Lambert Conformal Conic projection (Figure 144 

1). In terms of the vertical configuration, 29 sigma-pressure layers ranged from the 145 

surface to the upper level pressure of 100 hPa, 20 layers of which are located below 146 

around 3 km to derive finer meteorological and chemical characteristics within the 147 

planetary boundary layer. 148 

As a state-of-the-art CTM, the WRF-CMAQ model has been widely used to simulate 149 

spatiotemporal PM2.5 distributions at regional scales. However, model biases remain, 150 

mainly due to imperfect representations of chemical and meteorological processes. 151 

Inaccurate anthropogenic emissions will exacerbate these biases. Therefore, external 152 

constraints on simulated results enforced by the DA method will be taken into account 153 

in order to optimize spatiotemporal PM2.5 distributions (Bocquet et al., 2015). 154 

2.2 Prior anthropogenic emissions 155 

The prior anthropogenic emissions were obtained from the Multi-resolution Emission 156 

Inventory for China version 1.2 (MEIC)(Li et al., 2017a), which contained primary 157 

species (e.g., primary PM2.5, SO2, NOx, CO, and NH4) from five anthropogenic sectors 158 

(i.e., agriculture, power plant, industry, residential, and transportation). This inventory 159 

was initially designed with the spatial resolution of 0.25° × 0.25° and thus needed to be 160 

reallocated to match the domain configuration (i.e., 12km × 12km) in the study.   161 

Recent findings show that MEIC generally provides reasonable estimates of total 162 
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anthropogenic emissions for several typical regions in China, such as the Beijing-163 

Tianjin-Hebei region, the YRD, and the Pearl River Delta region (Li et al., 2017a). 164 

Nevertheless, large uncertainties in spatial proxies (e.g., population density and road 165 

networks) still exist within these specific regions (Geng et al., 2017). More, MEIC was 166 

originally constructed for the 2016 base year. Hence, owing to the impact of the long-167 

term emission control measures, MEIC was considered to be inappropriate for this 168 

study period (i.e., 2019). Comparatively, emergency control measures could give rise 169 

to much more significant emission controls in the short term, thereby leading to further 170 

uncertainties.  171 

2.3 Observational network 172 

To track real-time air quality in China, the National Environmental Monitoring Center 173 

(CNEMC, http://www.cnemc.cn/) has established 1415 sites across 367 cities since 174 

2013 (Figure 1). Among these, 244 monitoring sites were densely distributed in 6660 175 

grids across the YRD providing hourly PM2.5 measurements, resulting in potential 176 

excellent roles in constraining simulated PM2.5 (Bocquet et al., 2015). In this study, we 177 

applied observed PM2.5 concentrations to constrain and evaluate the model performance. 178 

It is worth noting that the constraining capability of those observations varies depending 179 

on specific configurations (e.g., the nature of the utilized DA method, the assimilation 180 

frequency, and the representative errors of observations) (Bocquet et al., 2015; Chai et 181 

al., 2017; Ma et al., 2019; Rutherford, 1972). Therefore, we employed all available 182 

hourly observations along with the specific DA method to maximize the model 183 

performance in simulating the spatiotemporal patterns of PM2.5. In turn, the 184 

corresponding results need to be further assessed against available observations. 185 

2.4 Optimal interpolation 186 

Optimal interpolation (OI) was chosen to assimilate hourly observations into the WRF-187 

CMAQ model, aiming to generate the accurate state of spatiotemporal PM2.5 188 

distributions. Compared to the solely model-dependent results, this constraining 189 

method relies on observations and thus makes it possible to minimize model 190 

uncertainties in optimizing the spatiotemporal PM2.5 changes resulting from emission 191 

controls (Chai et al., 2017; Jung et al., 2019). The analysed states from the OI method 192 

were calculated based on the following interpolation equation: 193 

𝐗a = 𝐗b + 𝐁𝐇T(𝐇𝐁𝐇T +𝐎)−1(𝐘 − 𝐇𝐗b)                                                             (1)                                                                                                                     194 
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where 𝐗𝑎  and 𝐗𝑏  denote the constrained and background (simulated) values, 195 

respectively. B and O are background and observation error-covariance matrices, 196 

respectively, for which we assumed no correlation in this study. H refers to a linearized 197 

observational operator, and Y represents the observation vector. The OI method is 198 

described in detail in Adhikary et al. ( 2008). 199 

Once available measurements were assimilated, the states of the simulated variables 200 

were adjusted from their background values to corresponding analysis states using the 201 

scaling ratio X𝑎/X𝑏  obtained following equation (1). As the measurements were 202 

conducted at the surface, this ratio at each grid cell was used to scale all aerosol 203 

components below the boundary layer top. Such simplification compensated for the 204 

lack of information to constrain speciated aerosol components or their vertical 205 

distributions. 206 

It is crucial to identify the background error covariance matrix B, since it determines 207 

the corrections to be applied to the background fields in order to better match the data. 208 

First, we applied the Hollingsworth-Lönnberg method within the YRD to establish the 209 

correlation coefficients (averaged over 10 km bins) with the separation distances (Chai 210 

et al., 2017; Hollingsworth and Lönnberg, 1986). Figure 2 shows that the separation 211 

distance of ∼180 km could be treated as the threshold pinpointing the key value of the 212 

correlation coefficients (e−1). In this study, observations beyond the background-error 213 

correlation length scale would have no effect on X𝑎. Following Chai et al. (Chai et al., 214 

2017), the standard deviation of the background errors was assigned as 60% of the 215 

background values, while the observational errors were assumed to be ± 20% of the 216 

measurement values. Despite the stationary background error correlation coefficients, 217 

the dynamic standard deviations of the background errors would still lead the 218 

background error covariance to be inhomogeneous. 219 

2.4 Experiment design 220 

Anthropogenic emission controls and meteorological perturbations are both critical 221 

factors that dominate interannual and daily variations in ambient PM2.5 (Zhang et al., 222 

2019). Our major objective is to isolate the impacts of emission-oriented long-term and 223 

emergency measures and further explore the attainable PM2.5 mitigation potential. We 224 

designed three sets of experiments, which focused on three time periods, January 2016, 225 
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January 2019, and the G20 period (from August 26, 2016 to September 7, 2016), 226 

respectively (Table 1).  227 

For all experiments, the prior anthropogenic emissions were kept consistent (i.e., 228 

MEIC), while the ECMWF reanalysis datasets accounted for the hourly observational 229 

constraints on spatiotemporal meteorological evolutions. These configurations both 230 

unify the chemical inputs for the WRF-CMAQ model and derive reliable 231 

meteorological fields. Hence, the extent to which we introduce observational 232 

constraints on simulated PM2.5 variations using the OI method is the key to isolate the 233 

impacts of anthropogenic emission controls.  234 

Specifically, the differences in the constrained PM2.5 concentrations between DA_2016 235 

and DA_2019 reflected the net effects of anthropogenic emission controls and 236 

meteorological perturbations between 2016 and 2019. By separating the impacts of the 237 

latter, that is, the discrepancies in simulated PM2.5 concentrations between NO_2016 238 

and NO_2019, we can isolate the effects of anthropogenic emission controls 239 

attributable to long-term strategies (Chen et al., 2019a).  240 

The G20 summit provided a unique opportunity to realize the PM2.5 mitigation potential 241 

in specific regions(Li et al., 2019a, 2017b; Ma et al., 2019; Shu et al., 2019; Yang et al., 242 

2019). This is due to the fact that the Chinese government implemented the most 243 

historically stringent, even unsustainable, strategies to curb anthropogenic emissions 244 

during that period in Hangzhou and surrounding areas. To quantify the projected PM2.5 245 

abatement, we adopted the abovementioned method to constrain the unique PM2.5 246 

variations in the DA_G20 experiment and further compared the corresponding results 247 

with those of the sole model-dependent analysis (i.e., NO_G20). However, the 248 

subsequent discrepancies were related not only to the effects of emergency 249 

anthropogenic emission strategies but also to the inherent biases mainly due to the prior 250 

emission inventory(Zhang et al., 2019). In theory, such biases would generally remain 251 

unchanged in the short term when no emergency emission controls occurred. Their 252 

consequent impacts could thus be stable under similar meteorological conditions. 253 

Therefore, to avoid additional uncertainties, the adjacent periods of the G20 summit 254 

(i.e., pre- and post- periods, from August 11 to August 23, 2016 and from September 255 

18 to September 30, 2016, respectively) are the optimal alternative to eliminate the 256 

impacts of those inherent biases. Figure S1 demonstrates the significantly similar 257 

meteorological fields among these three periods. As a result, the corresponding 258 

experiments (i.e., DA_CON_G20 and NO_CON_G20) (Table 1) were conducted. By 259 
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subtracting such differences, we could isolate the PM2.5 responses to the solely 260 

emergency anthropogenic emission strategies and finally achieve the PM2.5 mitigation 261 

potential for specific locations. Such localized PM2.5 mitigation potential should be 262 

further expanded to the entire YRD based on the impacts of both long-term and 263 

emergency strategies.  264 

There is an essential prerequisite to above analysis. As the evaluation protocols, we 265 

need to verify that the DA experiments (i.e., DA_2016, DA_2019, DA_G20, and 266 

DA_CON_G20) can reproduce the spatiotemporal variations in the PM2.5 and major 267 

meteorological fields (i.e., temperature, relative humidity, wind speed and air pressure) 268 

(Chai et al., 2017). Although SIA and SOA are key components of the ambient PM2.5, 269 

extensive measurements at the regional scale of these components are generally lacking. 270 

It is thus difficult to generate appropriate constraints on SIA and SOA (Chai et al., 2017; 271 

Gao et al., 2017). Note that different anthropogenic emissions might lead to inconsistent 272 

estimation of meteorological effects on ambient PM2.5 (Chen et al., 2019a, 2019b; Ma 273 

et al., 2019). To eliminate this doubt, we conducted sensitivity tests by reducing MEIC 274 

with three reasonable ratios (i.e., -5%, -25%, and -40%) over the YRD based on 275 

NO_2016 and NO_2019.  276 

3 RESULTS 277 

3.1 Data assimilation performance 278 

Figure 3 shows spatial comparisons of hourly averaged concentrations of constrained 279 

and simulated PM2.5 (i.e., the ones from the cases with and without DA, respectively) 280 

with ground-level observations across the YRD for January 2016, January 2019, and 281 

the G20 summit. In the NO_2016, NO_2019, and NO_G20 experiments, the simulated 282 

PM2.5 concentrations generally overestimated observed values by 16 ~ 57 μg/m3, 283 

especially those in Hangzhou and surrounding areas during the G20 summit (> 21 284 

μg/m3). Such prevailing overestimates were mainly a result of the prior anthropogenic 285 

emission inventory (i.e., MEIC), as a bottom-up product, which notably cannot capture 286 

interannual emission changes since the base year 2012, as well as the large emission 287 

controls resulting from the emergency controls during the G20 summit. By comparison, 288 

the constrained results significantly approach observations. Specifically, in the 289 

DA_2016, DA_2019, and DA_G20 cases, the biases of the assimilated PM2.5 were all 290 

constrained in an extremely narrow range (i.e., 10 μg/m3, 12 μg/m3, and 13 μg/m3, 291 
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respectively), suggesting that the DA method can reproduce the spatiotemporal 292 

distributions of surface PM2.5 at the regional scale.  293 

To achieve more targeted evaluations, it is necessary to further assess the ability of the 294 

DA method in reproducing the city-level PM2.5 responses. With the analysis of time 295 

series over the same periods, Figure 4 illustrates the comparisons between hourly 296 

observed, simulated, and constrained PM2.5 concentrations over the whole domain and 297 

four representative cities (i.e., Shanghai, Hangzhou, Nanjing, and Hefei). Similar to the 298 

spatial comparisons, the constrained PM2.5 generally reproduces the temporal variations 299 

in observations, while the model-dependent simulated results are prone to 300 

overestimating those observations, in particular, the peaks by 85 ~ 257 μg/m3.  301 

As expected, basic evaluation indicators (i.e., the NMB and R values) (Yu et al., 2006) 302 

of assimilated PM2.5 exhibited significantly better behaviour than those without 303 

constraints (Figure S2). Taking the simulated and assimilated results for Hangzhou 304 

during January 2016 as an example, the corresponding R values improved from 0.63 to 305 

0.98, while the NMB values were reduced from 17% to 3%. Similar improvements, but 306 

with varying extent, were found in other paired experiments. In addition, it should be 307 

emphasized that the differences between hourly constrained and simulated PM2.5 308 

concentrations for the year 2016 were almost lower than those for the year 2019, 309 

indicating the critical role of interannual continuous efforts on curbing anthropogenic 310 

emissions across the YRD.  311 

Owing to the fact that the distinct PM2.5 levels might also play a potential role in the 312 

DA performance, we thus separated the entire range of the observed PM2.5 313 

concentrations into four intervals (i.e., < 35 μg/m3, 35 ~ 75 μg/m3, 75 ~ 115 μg/m3, and > 314 

115 μg/m3), exactly corresponding to the continuously increasing PM2.5 levels. Figure 315 

S3 demonstrates that, relative to the sole model-dependent configurations, this 316 

constraining method could substantially strengthen the model performance, especially 317 

for the relatively elevated concentration intervals. Overall, the ranges of the NMB 318 

values and associated standard deviations decreased from -24 ~ 86% to -9 ~ 25% and 319 

34 ~ 174 μg/m3 to 12 ~ 52 μg/m3, respectively. Theoretically, more frequent DA should 320 

lead to more robust simulations. Hourly observational constraints on the PM2.5 321 

concentrations were thus adopted to tackle this issue. This is the reason why the 322 

corresponding NMB values in the constraining cases roughly maintain stability, 323 

fluctuating over a narrow range (i.e., ± 20%) in the study periods (Figure S4). In 324 
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addition, given that the assimilated ERA reanalysis dataset has much wider spatial 325 

coverage than ground-based measurements, we also reproduced the spatiotemporal 326 

variations in the meteorological factors (e.g., temperature, relative humidity, wind 327 

speed, and air pressure) (Figures S5 ~ S8). Through the comprehensive evaluation 328 

statistics as summarized in Tables S1-S5, it has been demonstrated that the DA method 329 

can enable one to derive not only reliable PM2.5 evolution but also accurate 330 

meteorological fields. 331 

3.2 Ambient PM2.5 responses to the long-term strategies 332 

The Chinese government has been implementing stringent emission control strategies 333 

since 2016, especially in the YRD (Feng and Liao, 2016; Li et al., 2019c). To quantify 334 

subsequent PM2.5 responses is thus the prerequisite to our final objective, that is, to 335 

explore the associated PM2.5 mitigation potential.  336 

Interannual changes in spatiotemporal PM2.5 distributions depended strongly on both 337 

anthropogenic emission controls and meteorological variations from 2016 to 2019. 338 

Their combined effects were reflected by the differences between the constrained 339 

results from DA_2016 and DA_2019. As shown in Figure 5a, such net impacts led to 340 

prevailing PM2.5 abatement in the domain, especially in megacities, such as Shanghai 341 

(13 μg/m3, 21%), Hangzhou (13 μg/m3, 17%), Nanjing (6 μg/m3, 8%), and Hefei (2 342 

μg/m3, 2%). In addition, noticeable PM2.5 controls also occurred in the western and 343 

northern YRD, where abundant anthropogenic emissions are concentrated (Figure S9). 344 

Detailed differences are shown in Table S6. 345 

Figure 5b highlights that the sole meteorological interferences played an extensively 346 

positive role in increasing the regional PM2.5 concentrations for most areas of the 347 

domain (~ 12 μg/m3, 15%). This also indirectly implied the importance of assimilating 348 

meteorology. Previous studies generally neglected the possibility that the large 349 

uncertainties in the prior anthropogenic emissions might transfer to the estimates of 350 

meteorological influences in turn (Chen et al., 2019b, 2019a). In this study, we have 351 

eliminated this speculation. As shown in Figure S10, even with the largest adjustment 352 

(i.e., -40%), such interferences could be well controlled within the 5% scope, let alone 353 

other tests (i.e., < 3%). Moreover, these findings are consistent with previous analyses 354 

(Cheng et al., 2019; Zhang et al., 2019), which generally reveal that, under the same 355 

meteorological condition, reasonable changes in the bottom-up emissions during a few 356 

years would not remarkably alter the meteorological effects on regional ambient PM2.5 357 
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(< 5%). As a result, some past studies even directly ignored such sensitivity tests 358 

without any discussion (Chen et al., 2019a). Therefore, by subtracting those 359 

meteorological influences from the combined outcomes, we can finally derive the 360 

contributions of anthropogenic emission controls to the PM2.5 mitigation at the regional 361 

scale. Figure 5c illustrates that long-term emission control strategies from 2016 to 2019 362 

produced substantial (> 14 μg/m3, 19%) decreases in regional PM2.5 concentrations, 363 

which are similar to those combined effects in terms of the spatial distributions.  364 

For the entire domain, as well as the four representative cities, the synergy between 365 

anthropogenic emission controls and meteorological interferences on the PM2.5 366 

concentrations were calculated at the city level (Figure 6). We found that their net 367 

effects resulted in uniformly positive mitigations as follows: -2 μg/m3 (-3%), -13 μg/m3 368 

(-21%), -12 μg/m3 (-17%), -6 μg/m3 (-8%), and -2 μg/m3 (-3%) for the whole domain, 369 

Shanghai, Hangzhou, Nanjing, and Hefei, respectively, while the concurrent 370 

meteorology offset such effects to different extents (5 ~ 18 μg/m3, 16 ~ 24%).  371 

The above findings confirmed that the PM2.5 mitigation was dominated by 372 

anthropogenic emission controls, rather than meteorological variations. Furthermore, 373 

the corresponding spatiotemporal patterns were highly correlated to those of the prior 374 

anthropogenic emissions (Figure S9). This indicates that the long-term strategies are 375 

generally emission-oriented.  376 

3.3 Ambient PM2.5 mitigation potential 377 

The G20 summit offered a unique and ideal opportunity to clarify the effects of the 378 

most stringent emission control measures across the YRD from 2016 to 2019, which 379 

could be regarded as the localized PM2.5 mitigation potential. Figure 7a shows the 380 

spatial differences between the constrained and simulated PM2.5 concentrations, which 381 

were extracted from DA_G20 and NO_G20, for the period of the G20 summit. Inherent 382 

biases remained, primarily attributable to the priori anthropogenic emissions. Their 383 

subsequent impacts were then quantified by comparing the discrepancies between the 384 

results from two additional experiments (i.e., DA_CON_G20 and NO_CON_G20) 385 

(Figure 7b). More, such impacts were associated with relatively low standard deviations 386 

(< 5%), thus presenting a stably spatiotemporal state (Figure S11). This means that such 387 

estimations were also suitable for the G20 summit. Therefore, by subtracting them, the 388 

re-corrected differences would reflect the actual effects of the most stringent emission 389 

control measures for the G20 summit (Figure 7c). Such hotspots with extremely 390 
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negative values reveal the dramatic PM2.5 mitigations for these specific locations. The 391 

corresponding largest decreases in PM2.5 concentrations (35 μg/m3, 59%) occurred in 392 

Hangzhou and its surrounding areas, as expected. Following Hangzhou, other hotspots 393 

with relatively prominent declines also emerged in megacities, especially in Shanghai 394 

(32 μg/m3, 51%), Nanjing (27 μg/m3, 55%) and Hefei (24 μg/m3, 44%). This behaviour 395 

could be explained by two inferences that: (i) local emission controls in Hangzhou were 396 

projected to be conducted with the maximum execution efficiency compared to those 397 

in surrounding regions; (ii) most of the emergency measurements generally targeted the 398 

vehicle and industry emissions that are clustered around the urban rather than rural areas.  399 

Compared to the long-term policies from 2016 to 2019, the emergency emission control 400 

measures implemented during the G20 Summit achieved more significant decreases in 401 

PM2.5 concentrations (17 μg/m3 and 41%) over most of the whole domain, especially in 402 

Hangzhou (24 μg/m3, 48%) and Shanghai (21 μg/m3, 45%) (Figure 8). Detailed 403 

differences are summarized in Table S6. 404 

To gain the regional PM2.5 mitigation potential, (i) we first pinpointed the main urban 405 

areas of Hangzhou that covered 25 grid cells (Figure S12), in which the most substantial 406 

PM2.5 abatement, i.e., the localized PM2.5 mitigation potential (> 22 μg/m3 and > 59%) 407 

were identified. (ii) As the above hypothesis, the spatial distributions of the regional 408 

PM2.5 mitigation potential across the YRD were then assumed to follow those of the 409 

long-term strategy effects. (iii) Thus, by extrapolation in equal proportion following 410 

such patterns and the localized PM2.5 mitigation potential, we established the 411 

unprecedented map of the PM2.5 mitigation potential across the YRD (Figure 9a). It 412 

should be noted that, as long as three premises, including typical weather backgrounds, 413 

stable supply-side structures, and analogous emission control measures, remain 414 

unchanged, Figure 9a is a reliably quantitative reference to characterize the attainable 415 

PM2.5 abatement for the YRD in future. 416 

4 DISCUSSION 417 

The actual effectiveness of anthropogenic emission control measures, especially those 418 

directed at PM2.5 mitigation, has long been excluded from evaluation of air pollution 419 

policies in China, in part due to the complex synergy between anthropogenic emissions 420 

and meteorology. Here, we provide a novel approach to explore the PM2.5 responses to 421 

anthropogenic emission control measures and their mitigation potential from 2016 to 422 

2019 across the YRD, China. With the data assimilation method, these estimates are 423 
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projected to be highly reliable due to the sufficient observational constraints. The results 424 

demonstrate that long-term anthropogenic emission control strategies from 2016 to 425 

2019 have led to extensive impacts on PM2.5 abatement across the YRD, especially in 426 

the megacities, Shanghai, Hangzhou, Nanjing, and Hefei. In the context of the G20 427 

summit, the emergency strategies could achieve significant PM2.5 abatement (> 50%) 428 

at specific locations, (i.e., urban Hangzhou), representing the localized mitigation 429 

potential. By extrapolation based on the above results, we have established the first map 430 

of the PM2.5 mitigation potential for the YRD.  431 

Numerous analyses have focused on Hangzhou during the G20 summit to detect 432 

impacts of emergency emission controls(Li et al., 2019b, 2017b; Yu et al., 2018). 433 

However, previous analyses generally found more effective predictions (> 50%) at the 434 

city level. This discrepancy might be related to the fact that such results were generally 435 

based on sole model-dependent predictions, which are normally driven by uncertain 436 

bottom-up estimates of prior anthropogenic emissions. In addition, this study addresses 437 

the YRD after 2016. Besides, similar opportunities also occurred at other 438 

spatiotemporal scales, such as the “APEC Blue” in 2014 and “Parade Blue” in 2015 439 

over the Beijing-Tianjin-Hebei region (BTH) (Liu et al., 2016; Sun et al., 2016; Zhang 440 

et al., 2016). More aggressive achievements (> 55%) were generally attributed to 441 

emergency anthropogenic emission control measures(Sun et al., 2016). This might be 442 

related to the fact that, compared to the YRD, the BTH is associated with more 443 

rudimentary and abundant primary emissions(Zhang et al., 2019). The impacts of 444 

natural sources (e.g., biogenic emissions, wild fires, and natural dust) are not considered 445 

in this study. This is mainly because of two reasons. First, it has been widely 446 

demonstrated that biogenic emission changes are dominated by meteorological 447 

variations over a period of a few years(Wang et al., 2019). Moreover, the former is 448 

generally of minor significance for interannual PM2.5 variations(Mu and Liao, 2014; 449 

Tai et al., 2012). Second, satellite products, including MOD14 and 450 

AIRIBQAP_NRT.005 (https://worldview.earthdata.nasa.gov/), show that there was no 451 

noticeable wild fires and natural dust storms during this study period, thus allowing us 452 

to ignore the corresponding interferes. 453 

This study takes the advantage of observational constraints to gain the regional PM2.5 454 

mitigation potential. It could be further optimized by more extensive observations. 455 

Besides, extending the PM2.5 mitigation potential in urban Hangzhou during the study 456 

period to the entire YRD in other time periods may introduce some uncertainties. As 457 
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abovementioned, impacts of the extreme emergency emission controls are spatially 458 

inconsistent across the YRD. To explore regional PM2.5 mitigation potential, it is thus 459 

unavoidable to extrapolate from local to regional scale. The consequent uncertainty 460 

mainly relates to the hypothesis that the spatial patterns of the PM2.5 mitigation potential 461 

across the YRD should follow those of the impacts of the long-term emission control 462 

strategies. In addition, there are distinct DA methods (Bocquet et al., 2015). It is thus 463 

believed that replacing the OI with another DA algorithm would lead to slightly 464 

different results. Looking forward, continued advances in observational techniques, 465 

better understanding of chemical and meteorological processes, and their improved 466 

representations in CTMs are all factors that are critical to optimizing the estimates of 467 

the PM2.5 mitigation potential. 468 
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 691 

Figure 1. (a) The model domain. Red dots denote the ground-level PM2.5 692 

measurements, which, within the fan-shaped quadrilateral, are used to constrain 693 

the model predictions. (b) Black lines outline the boundaries of the Yangtze River 694 

Delta (YRD), as well as four major cities considered (i.e., SH: Shanghai; HZ: 695 

Hangzhou; NJ: Nanjing; HF: Hefei). 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 

 705 

https://doi.org/10.5194/acp-2020-510
Preprint. Discussion started: 22 July 2020
c© Author(s) 2020. CC BY 4.0 License.



23 

 

 706 

 707 

Figure 2. Correlation coefficients (averaged over 10 km) as a function of the 708 

separation distances between two surface-level monitoring stations using the 709 

Hollingsworth-Lönnberg method. 710 
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 712 

Figure 3. Spatial comparisons of hourly-averaged concentrations of simulated and 713 

constrained PM2.5 with surface observations across the YRD for January 2016 (top 714 

panel), January 2019 (middle panel), and the G20 summit (bottom panel): (a) 715 

NO_2016; (b) DA_2016; (c) NO_2019; (d) DA_2019; (e) NO_G20; (f) DA_G20. 716 

Circles denote ground measurement sites. 717 
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 718 

 719 

Figure 4. Time series of the comparisons between hourly observed, simulated, and 720 

constrained PM2.5 concentrations for January 2016 (left column), January 2019 721 

(middle column), and the G20 summit (right column) over (a – c) the whole domain 722 

as well as in four representative cities, which are as follows: (d - f) Shanghai, (g - 723 

i) Hangzhou, (j - l) Nanjing, and (m - o) Hefei. The black circles, black lines, and 724 

red lines denote the hourly observed, simulated, and constrained PM2.5 725 

concentrations, respectively.  726 
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 728 

Figure 5. The impacts of anthropogenic emission controls and meteorological 729 

variations on spatial PM2.5 concentrations in January from 2016 to 2019. (a, d) 730 

Their net impacts. (b, e) meteorological impacts. (c, f) the impacts of 731 

anthropogenic emission controls. The top and bottom panels refer to the changes 732 

in absolute values and relative percentages, respectively. 733 
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 735 

Figure 6. The impacts of anthropogenic emission controls and meteorological 736 

variations on PM2.5 concentrations in January from 2016 to 2019 over the whole 737 

domain as well as in four representative cities (i.e., Shanghai, Hangzhou, Nanjing, 738 

and Hefei). The top and bottom panels refer to the changes in absolute values and 739 

relative percentages, respectively. 740 
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 742 

Figure 7. The impacts of anthropogenic emission controls and inherent biases on 743 

spatial PM2.5 concentrations during the G20 summit. (a, d) Their net impacts. (b, 744 

e) the impacts of inherent biases. (c, f) the impacts of anthropogenic emission 745 

controls. The top and bottom panels refer to the changes in absolute values and 746 

relative percentages, respectively. Inherent biases are mainly due to the prior 747 

anthropogenic emissions.  748 
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 750 

Figure 8. The impacts of anthropogenic emission controls and inherent biases on 751 

PM2.5 concentrations during the G20 summit over the whole domain as well as in 752 

four representative cities (i.e., Shanghai, Hangzhou, Nanjing, and Hefei). The top 753 

and bottom panels refer to the changes in absolute values and relative percentages, 754 

respectively. Inherent biases are mainly due to the prior anthropogenic emissions.  755 
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 756 

 757 

Figure 9. (a) Spatial distributions of the PM2.5 mitigation potential across the YRD 758 

and (b) their differences with the impacts of long-term emission control strategies 759 

from 2016 to 2019 (Fig. 5f). Both spatial patterns of long-term emission control 760 

strategy impacts (Fig. 5f) and the localized PM2.5 mitigation potential in the main 761 

urban areas of Hangzhou (Fig. S10), with the proportion calculator, result in Fig. 762 

9a. 763 

 764 

 765 

 766 

 767 

 768 

 769 

https://doi.org/10.5194/acp-2020-510
Preprint. Discussion started: 22 July 2020
c© Author(s) 2020. CC BY 4.0 License.



31 

 

 

 

 

Table 1. The experiments to isolate the effects of anthropogenic emission controls 770 

due to the long-term and emergency emission control strategies. 771 

 772 

Experiments Time Periods 
Constrained 

Meteorology 

Constrained 

Observations 
Comparisons and Purposes 

DA_2016 January 2016 Yes Yes The net effects of major 

driving factors (i.e., 

anthropogenic emission 

controls and meteorological 

variations) from 2016 to 

2019. 

DA_2019 January 2019 Yes Yes 

NO_2016 January 2016 Yes No The effects of meteorological 

variations from 2016 to 2019. NO_2019 January 2019 Yes No 

DA_G20 

August 26 to 

September 7, 

2016 

Yes Yes The net effects of major 

driving factors (i.e., 

anthropogenic emission 

controls and the uncertainties 

in the priori anthropogenic 

emissions) during the G20 

summit. 

NO_G20 Yes No 

DA_CON_

G20 

August 11 to 

August 23 and  

September 18 

to September 

30, 2016 

Yes Yes 
The effects of the 

uncertainties in the priori 

anthropogenic emissions. 
NO_CON_

G20 
Yes No 

 773 
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