Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Preprints
https://doi.org/10.5194/acp-2020-39
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2020-39
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 25 Feb 2020

Submitted as: research article | 25 Feb 2020

Review status
A revised version of this preprint is currently under review for the journal ACP.

Defining aerosol layer height for UVAI interpretation using aerosol vertical distributions characterized by MERRA-2

Jiyunting Sun1,2, J. Pepijn Veefkind1,2, Peter van Velthoven3, L. Gijsbert Tilstra1, Julien Chimot4, Swadhin Nanda1,2, and Pieternel F. Levelt1,2 Jiyunting Sun et al.
  • 1Department of Satellite Observations, Royal Netherlands Meteorological Institute, De Bilt, 3731 GA, the Netherlands
  • 2Department of Geoscience and Remote Sensing (GRS), Civil Engineering and Geosciences, Delft University of Technology, Delft, 2628 CD, the Netherlands
  • 3Department of Weather & Climate Models, Royal Netherlands Meteorological Institute, De Bilt, 3731 GA, the Netherlands
  • 4European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), Darmstadt, 64295, Germany

Abstract. Aerosol vertical distributions are important for aerosol radiative forcing assessments and atmospheric remote sensing research. From our perspective, the aerosol layer height (ALH) is one of the major concerns in quantifying aerosol absorption from the ultra-violet aerosol index (UVAI). The UVAI has a global daily record since 1978, whereas a corresponding ALH data set is still limited. In this paper, we attempted to construct such an ALH data set from aerosol extinction profiles provided by the MERRA-2 aerosol reanalysis, meanwhile we evaluated them, together with several satellite ALH products in terms of the UVAI sensitivity to ALH. In the first part of this paper, we derived ALHs from the MERRA-2 aerosol profiles by four definitions. Through the sensitivity studies, we found that the definition of top boundary aerosol layer height (Haert) is more robust to the changes in extinction profile properties than others. The spatial and temporal variation of Haert are also well associated with the major aerosol sources and the atmospheric dynamics. In the second part, we further evaluated the UVAI altitude dependence on the MERRA-2 ALH as well as several satellite ALH. Among all the satellite ALH products in this paper, the correlation between the TROPOMI oxygen (O2) A-band ALH and UVAI, and that between the GOME-2 absorbing aerosol layer height (AAH) and UVAI are in agreement with our a-priori knowledge that the altitude dependence of UVAI increases with aerosol loadings. The correlation between the MERRA-2 Haert and UVAI also matches well with what we found from observational data sets. This implies the top boundary of the aerosol layer derived from MERRA-2 can be an alternative in case there is no observational ALH data available for quantitively aerosol absorption from UVAI and other UVAI-related applications.

Jiyunting Sun et al.

Interactive discussion

Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Jiyunting Sun et al.

Jiyunting Sun et al.

Viewed

Total article views: 334 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
232 95 7 334 6 6
  • HTML: 232
  • PDF: 95
  • XML: 7
  • Total: 334
  • BibTeX: 6
  • EndNote: 6
Views and downloads (calculated since 25 Feb 2020)
Cumulative views and downloads (calculated since 25 Feb 2020)

Viewed (geographical distribution)

Total article views: 200 (including HTML, PDF, and XML) Thereof 196 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 05 Jul 2020
Publications Copernicus
Download
Short summary
ALH is one of the major concerns in quantifying aerosol absorption from the ultra-violet aerosol index (UVAI). The UVAI has a global daily record since 1978, whereas a corresponding ALH data set is limited. In this paper, we attempt to construct a global long-term ALH data set derived from the MERRA-2 aerosol fields that can be favorable in interpreting aerosol absorption from UVAI. We also give comments on several satellite ALH products in terms of the UVAI altitude dependence.
ALH is one of the major concerns in quantifying aerosol absorption from the ultra-violet aerosol...
Citation