Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
  • CiteScore value: 6.13 CiteScore
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 31 Mar 2020

Submitted as: research article | 31 Mar 2020

Review status
This preprint is currently under review for the journal ACP.

An Inversion of NOx and NMVOC Emissions using Satellite Observations during the KORUS-AQ Campaign and Implications for Surface Ozone over East Asia

Amir H. Souri1, Caroline R. Nowlan1, Gonzalo González Abad1, Lei Zhu1,2, Donald R. Blake3, Alan Fried4, Andrew J. Weinheimer5, Jung-Hun Woo6, Qiang Zhang7, Christopher E. Chan Miller1, Xiong Liu1, and Kelly Chance1 Amir H. Souri et al.
  • 1Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
  • 2School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
  • 3Department of Chemistry, University of California, Irvine, Irvine, CA, USA
  • 4Institute of Arctic & Alpine Research, University of Colorado, Boulder, CO, USA
  • 5National Center for Atmospheric Research, Boulder, CO, USA
  • 6Department of Advanced Technology Fusion, Konkuk University, Seoul, South Korea
  • 7Department of Earth System Science, Tsinghua University, Beijing, China

Abstract. The absence of up-to-date emissions has been a major impediment to accurately simulate aspects of atmospheric chemistry, and to precisely quantify the impact of changes of emissions on air pollution. Hence, a non-linear joint analytical inversion (Gauss–Newton method) of both volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions is made by exploiting the Smithsonian Astrophysical Observatory (SAO) Ozone Mapping and Profile Suite Nadir Mapper (OMPS-NM) formaldehyde (HCHO) and the National Aeronautics and Space Administration (NASA) Ozone Monitoring Instrument (OMI) tropospheric nitrogen dioxide (NO2) retrievals during the Korea-United States Air Quality (KORUS-AQ) campaign over East Asia in May–June 2016. Effects of the chemical feedback of NOx and VOCs on both NO2 and HCHO are implicitly included through iteratively optimizing the inversion. Emissions estimates are greatly improved (averaging kernels > 0.8) over medium- to high-emitting areas such as cities and dense vegetation. The amount of total NOx emissions is mainly dictated by values reported in the MIX-Asia 2010 inventory. After the inversion we conclude a decline in the emissions (before, after, change) for China (87.94 ± 44.09 Gg/day, 68.00 ± 15.94 Gg/day, −23 %), North China Plain (NCP) (27.96 ± 13.49 Gg/day, 19.05 ± 2.50 Gg/day, −32 %), Pearl River Delta (PRD) (4.23 ± 1.78 Gg/day, 2.70 ± 0.32 Gg/day, −36 %), Yangtze River Delta (YRD) (9.84 ± 4.68 Gg/day, 5.77 ± 0.51 Gg/day, −41 %), Taiwan (1.26 ± 0.57 Gg/day, 0.97 ± 0.33 Gg/day, −23 %), and Malaysia (2.89 ± 2.77 Gg/day, 2.25 ± 1.34 Gg/day, −22 %), all of which have effectively implemented various stringent regulations. In contrast, South Korea (2.71 ± 1.34 Gg/day, 2.95 ± 0.58 Gg/day, +9 %) and Japan (3.53 ± 1.71 Gg/day, 3.96 ± 1.04 Gg/day, +12 %) experience an increase in NOx emissions potentially due to risen number of diesel vehicles and new thermal power plants. We revisit the well-documented positive bias of the model in terms of biogenic VOC emissions in the tropics. The inversion, however, suggests a larger growth of VOC (mainly anthropogenic) over NCP (25 %) than previously reported (6 %) relative to 2010. The spatial variation in both magnitude and sign of NOx and VOC emissions results in non-linear responses of ozone production/loss. Due to simultaneous decrease/increase of NOx/VOC over NCP and YRD, we observe an ~ 53 % reduction in the ratio of the chemical loss of NOx (LNOx) to the chemical loss of ROx (RO2 + HO2) transitioning toward NOx-sensitive regimes, which in turn, reduces/increases the afternoon chemical loss/production of ozone through NO2 + OH (−0.42 ppbv hr−1)/HO2 (and RO2) + NO (+0.31 ppbv hr−1). Conversely, a combined decrease in NOx and VOC emissions in Taiwan, Malaysia, and the southern China suppresses the formation of ozone. Ultimately, model simulations indicate enhancements of maximum daily 8-hour average (MDA8) surface ozone over China (0.62 ppbv), NCP (4.56 ppbv), and YRD (5.25 ppbv) due to the non-linear ozone chemistry, suggesting that emissions standards should be extended to regulate VOCs to be able to curb ozone production rates. Taiwan, Malaysia, and PRD stand out as the regions undergoing lower MDA8 ozone levels resulting from the NOx reductions occurring predominantly in NOx-sensitive regimes.

Amir H. Souri et al.

Interactive discussion

Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Amir H. Souri et al.

Amir H. Souri et al.


Total article views: 377 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
281 94 2 377 21 4 3
  • HTML: 281
  • PDF: 94
  • XML: 2
  • Total: 377
  • Supplement: 21
  • BibTeX: 4
  • EndNote: 3
Views and downloads (calculated since 31 Mar 2020)
Cumulative views and downloads (calculated since 31 Mar 2020)

Viewed (geographical distribution)

Total article views: 293 (including HTML, PDF, and XML) Thereof 289 with geography defined and 4 with unknown origin.
Country # Views %
  • 1



No saved metrics found.


No discussed metrics found.
Latest update: 27 May 2020
Publications Copernicus
Short summary
For the first time, we provide a joint optimal estimate of NOx and NMVOC emissions during the KORUS-AQ campaign by simultaneously incorporating both SAO's new product of HCHO columns from OMPS and OMI tropospheric NO2 columns into a regional model. Results demonstrate a promising improvement in the performance of the model in terms of HCHO and NO2 columns, which in turn, enable us to quantify the effect of the emission changes on different pathways of ozone formation/loss.
For the first time, we provide a joint optimal estimate of NOx and NMVOC emissions during the...