An investigation on hygroscopic properties of black carbon (BC) from different carbon sources: Roles of organic and inorganic components

Minli Wang,a Yiqun Chen,a Heyun Fu,a Xiaolei Qu,a Bengang Li,b Shu Tao,b and Dongqiang Zhu,a,b,*

a State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
b School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China

*Corresponding author. Tel.: +86 010-62766405. E-mail: zhud@pku.edu.cn (D. Zhu)
Abstract

The hygroscopic behavior of black carbon (BC) has a significant impact on global and regional climate change. However, the mechanism and factors controlling the hygroscopicity of BC from different carbon sources are not well understood. Here, we systematically measured the equilibrium and kinetics of water uptake by 15 different BC (10 herb-derived BC, 2 wood-derived BC, and 3 soot) using gravimetric water vapor sorption method combined with in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). In the gravimetric analysis, the sorption/desorption equilibrium isotherms were measured under continuous-stepwise water vapor pressure conditions, while the kinetics was measured at a variety of humidity levels obtained by different saturated aqueous salt solutions. The equilibrium water uptake of the BC pool at high relative humidity (> 80%) positively correlated to the dissolved mineral content (0.01–13.0wt%) \((R^2 = 0.86, P = 0.0001) \) as well as the content of the thermogravimetrically analyzed organic carbon \((OC_{TGA}, 4.48–15.25\text{wt\%}) \) \((R^2 = 0.52, P = 0.002) \) and the alkali-extracted organic carbon \((OC_{AE}, 0.14–8.39\text{wt\%}) \) \((R^2 = 0.80, P = 0.0001) \). In contrast, no positive correlation was obtained with the content of total organic carbon or elemental carbon. Among the major soluble ionic constituents, chloride and ammonium were each correlated with the equilibrium water uptake at high relative humidity. Compared with the herbal BC and soot, the woody BC had much lower equilibrium water uptake, especially at high relative humidity, likely due to the very low dissolved material content and OC content. The DRIFTS analysis provided generally consistent results at low relative humidity. The kinetics of water uptake (measured by pseudo-second order rate constant) correlated to the content of \(OC_{TGA} \) and \(OC_{AE} \) as well as the content of chloride and ammonium at low relative humidity (33%), but to the porosity of bulk BC at high relative humidity (94%).
was the first study to show that BC of different types and sources has greatly varying hygroscopic properties.

1. Introduction

Black carbon (BC) refers to a collective term of recalcitrant carbonaceous materials generated from incomplete combustion of biomass and fossil fuels (Bond et al., 2013). BC is ubiquitous in the atmosphere and is a major component of atmospheric carbonaceous aerosols (Schwarz et al., 2008). Due to the strong ability to absorb visible light (Yuan et al., 2015), BC causes positive radiative forcing effects on climate and is considered an important factor driving global warming (Matthews et al., 2009). Once immersed into cloud droplets, BC can also facilitate water evaporation and cloud dispersion via enhanced absorption of solar radiation, and thus produce indirect radiative forcing effects (Powelson et al., 2014). Additionally, the large specific surface area of BC creates a potential for heterogeneous reactions with trace gases (such as volatile halocarbons) in the atmosphere (Qiu et al., 2012), therefore heavily impacting atmospheric chemistry and air quality. Hygroscopicity is a key determinant of physical, chemical, and optical properties of BC by changing particle size, phase state, and quality and morphological development, which in turn affect aerosol radiation effect, formation of cloud and ice nuclei, and heterogeneous chemical reactions (Bond et al., 2013; Liu et al., 2018). Furthermore, the hygroscopicity of BC is an important factor contributing to the risk of human respiratory infections, cardiovascular diseases, and other infectious diseases (Haddrell et al., 2015).

BC is composed of a complex matrix of inorganic and organic components. The inorganic components consist of a variety of amorphous or crystalline salts (sulfates, chlorides, etc.) as well as semi-crystalline minerals (such as silica) (Stanislav et al.,
2013). Despite the relatively low content in BC, the inorganic components play a significant role in water uptake of BC, depending on their types, contents, and mixing ratios (Lewis et al., 2009). As the factors and processes governing the hygroscopic deliquescence of inorganic salts are very complicated (Reid et al., 2005; Zhang et al., 2012), it is of a great challenge to assess the contribution of a specific salt to the overall hygroscopicity of BC, and thus, its role is still controversial. Previous studies suggested that KCl was responsible for the high hygroscopicity of BC produced by fresh biomass burning (Posfai et al., 2003), while the presence of K$_2$SO$_4$ or KNO$_3$ caused the low hygroscopicity of BC produced by aged biomass burning (Li et al., 2003).

The organic components in BC consist of graphitized elemental carbon (EC) and non-condensed, amorphous organic carbon (OC) (Lian and Xing, 2017). The contribution of EC to the overall hygroscopicity of BC is considered low due to the very high hydrophobicity (Seisel et al., 2005). The role of OC in the hygroscopic growth of BC is intricate and debatable. The positive effect of OC is mainly attributed to water absorption by the oxygen-containing functional groups (Fletcher et al., 2007; Suda et al., 2014). The negative effect of OC is suggested to stem from the impeded mass transfer process of water molecules by formation of coatings on hygroscopic minerals or inhomogeneous morphology inside the particle (Sjogren et al., 2007; Stemmler et al., 2008). In addition to the total content, the molecular weight, water solubility, surface tension, and type and content of functional groups of OC were all found to influence the overall hygroscopicity of BC. Moreover, the effect of OC on BC hygroscopicity is further complicated by the formation of organic minerals (presumably through strong covalent bonds) (Archanjo et al., 2014; Reid et al., 2005; Zuend et al., 2011).
The carbon sources for BC particles released into the atmosphere are expected to be highly diversified and cover a wide range of plant biomass, coals, and refined oil products, although their quota can hardly be accurately assessed (Andreae and Gelencser, 2006). The chemical compositional and structural properties of BC depend significantly on carbon sources and combustion conditions (Xiao et al., 2018). For instance, crop residue-derived biochar often has higher mineral content than wood-derived charcoal, while biochar formed at higher pyrolysis temperatures generally have higher aromaticity, specific surface area, and pore volume but lower polarity than biochar formed at lower temperatures (Wei et al., 2019). Previous studies on hygroscopicity of BC have mainly focused on wood-derived BC (Carrico et al., 2010; Day et al., 2006), whereas BC from other carbon sources has been largely overlooked. It remains unclear whether BC from different carbon sources would differ significantly in hygroscopicity.

Herein we systematically investigated the equilibrium and kinetics of water uptake by 15 different BC samples derived from wood, herb, coal, and diesel at varying relative humidity (RH) levels by gravimetric sorption and in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The chemical, compositional, and structural properties of the tested BC pool were thoroughly characterized to unveil the key factors controlling the hygroscopic properties.

2. Experimental methods

2.1. Preparation of BC

A total of 15 BC samples were tested, including 10 herb-derived BC, 2 wood-derived BC, and 3 soot. The herbal BC from amaranth, peanuts, pea, grass, rice, wheat, corn, millet, sorghum, and bamboo, and woody BC from red pine and poplar, respectively were prepared by pyrolysis. Briefly, the dried and dehydrated biomass was pulverized...
into a fine powder using a high-speed pulverizer (FW 100, Tianjin Taisite Instrument, China), and pyrolyzed in a muffle furnace under an oxygen-limited conditions. The oven temperature was programmed to increase from 20 to 400 °C in 2 h and maintained at 400 °C for 3 h. The Household soot was freshly collected on the inner wall of the stove chamber produced by burning of coal and wood for winter cooking and heating (Linkou County, Heilongjiang Province, China). The Weifu diesel soot produced by burning diesel (# 5, China) at 1000 °C was collected by a diesel particulate filter from the exhaust stream at a carbon deposition temperature of 250 °C. The diesel engine soot was taken from the freshly discharged exhaust particles on the tailpipe of a diesel truck (# 0, 3.7 L, CY4100, Dongfeng, China). The obtained BC and soot samples were further ground to pass a 100-mesh sieve (0.15 mm) and stored sealed in a brown glass bottle at 4 °C.

2.2. Characterization of BC

Elemental analysis (EA) was performed using a Vario micro cube elemental analyzer (Elementar, Hanau, Germany). Surface elemental compositions were measured by X-ray photoelectron spectroscopy (XPS) (PHI 5000 VersaProbe, ULVAC-PHI, Japan). Mineral compositions were measured by X-ray fluorescence (XRF) (ARL-9800, ARL Corporation, Switzerland). Fourier-transform infrared (FTIR) spectra were recorded on a Bruker Tensor 27 Karlsruhe spectrometer (Germany) using KBr pellets in the range of 400 to 4000 cm\(^{-1}\). X-ray diffraction (XRD) spectra were recorded on an AXS D8 Advance spectrometer (Germany) using Cu Kα radiation at a 20 angle ranging from 5 to 70°. Raman spectra were collected on a Horiba Jobin Yvon LabRam HR-800 spectrometer equipped with a 514 nm laser (France). \(N_2\) adsorption isotherms to the 15 BC were obtained on a Micrometrics ASAP 2020 (Micromeritics Instrument Co., Norcross, GA, USA) apparatus at -196 °C (77 K).
Three different methods, thermogravimetric analysis (TGA), alkali extraction, and water extraction, were explored to quantify the content of OC in BC (referred to as \(\text{OC}_{\text{TGA}}, \text{OC}_{\text{AE}}, \) and \(\text{OC}_{\text{WE}} \), respectively). The content of \(\text{OC}_{\text{TGA}} \) was measured as the weight loss during the heating of BC from 30 to 300 °C at a ramp of 10 °C per minute in a nitrogen flow (Han et al., 2013) using a TGA 8000 analyzer (PerkinElmer, USA). To measure the content of \(\text{OC}_{\text{AE}} \), the BC sample was mixed with 0.1 M NaOH at a solid-to-solution ratio of 1: 10 (w/w) and magnetically stirred for 12 h, followed by filtration through a 0.45-μm filter membrane (Pall, USA) (Song et al., 2002). The procedure was repeated until the filtered supernatant was colorless. The filtrate was collected and the total organic carbon (TOC) content was measured by a TOC analyzer (TOC-5000A, Shimadzu, Japan). For three selected BC (Grass BC, Wheat BC and Household soot), the filtrate was precipitated by acidification (pH 1.0 with 6 M HCl), which was separated by centrifugation and dialyzed in deionized (DI) water by dialysis bag (500 Da, Union Carbide, USA) until no chloride ion was detected by AgNO₃, and then freeze-dried. The elemental compositions of the three prepared \(\text{OC}_{\text{AE}} \) were measured by EA. To measure the content of \(\text{OC}_{\text{WE}} \) and dissolved minerals, the BC suspended in DI water (BC-to-water ratio of 1: 10, w/w) was sonicated in a water bath for several minutes, and the mixture was filtered through a 0.45-μm membrane. This procedure was repeated for 6 times. The filtrate was collected and subjected to TOC analysis to obtain the content of \(\text{OC}_{\text{WE}} \). The concentrations of ionic constituents (Cl⁻, NO₃⁻, PO₄³⁻, SO₄²⁻, F⁻, COO⁻, C₂O₄²⁻, Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺) in the filtrate were measured using a Dionex ICS-1100 ion chromatography (Thermo Scientific, USA). The cations were eluted using 20 mM methanesulfonic acid on a Dionex IonPac CS12A column (4 × 250 mm), while the anions were eluted using an eluent of 4.5 mM Na₂CO₃ and 0.81
mM NaHCO₃ on a Dionex IonPac AS14A column (4 × 250 mm). The filtrate was further freeze-dried and baked at 600 °C for 6 h to remove organic components. The remaining ash was weighed to determine the content of dissolved minerals in BC. A portion of the ash was extracted three times using DI water at a solid-to-solution ratio of 1:10 (w/w) under sonication, and the salinity of the extract was measured by a ST3100C conductivity meter (OHAUS, USA). All reagents and chemicals used were of analytical reagent grade.

2.3. Measurement of BC hygroscopicity

The hygroscopicity of BC at varying RH was measured by gravimetric method combined with in-situ DRIFTS. The water vapor sorption/desorption isotherms to BC under a range of continuous-stepwise water vapor pressures were acquired on a 3H-2000 PW Multi-stations Gravimetric Method Steam Adsorption Instrument (Beijing, China) at 25 °C using an approach similar to that in previous studies (Gu et al., 2017). The instrument consists of two main parts: a balance chamber to determine the sample mass to an accuracy ±1 μg and a humidity chamber to regulate the water vapor pressure to the desired value as monitored online by a pressure sensor. Prior to testing, the BC sample (about 10 mg) was dried at 70 °C under vacuum for 12 h to remove pre-adsorbed gases. The amount of water sorbed to BC was monitored as the mass difference before and after sorption. The amount of water sorbed to the sample tube was negligible (< 0.05% of the amount of water sorbed to BC). The water vapor pressures ranging from 10 to 94% RH were applied to the sorption isotherm branch in a stepwise increasing sequence and to the desorption isotherm branch in a stepwise decreasing sequence.

The kinetics of water sorption to BC was measured on a 100 mm closed quartz chamber (Jiangsu Province, China) using a gravimetric method similar to that in
previous studies (Yuan et al., 2014). Approximately 100 mg of BC sample was dried at 70 °C under vacuum for 12 h, weighed in a 10-mL beaker, and placed in a chamber under controlled humidity conditions based on different saturated aqueous salt solutions according to ASTM E104-02 (2007). The saturated solutions of CH₃COOK, MgCl₂, K₂CO₃, LiNO₃, NaCl, KCl, and KNO₃ provided RH of 23%, 33%, 43%, 47%, 75%, 84%, 94%, respectively at 25 °C. The sample was continuously weighed and recorded over a period of time (48 h for low humidity and 96 h for high humidity) to monitor the amount of sorbed water. The RH was monitored in real time using a Honeywell HIH4000 hygrometer (USA) with measurement variance was less than 5%. Sorption equilibrium was reached in the late stage of the experiment as evidenced by the stabilized constant value of sample mass. In addition to kinetic data, sorption isotherms were also collected for the seven selected RH levels using the measured mass under equilibrium conditions.

BC samples equilibrated at different RH levels were characterized by in situ DRIFTS using a Bruker Tensor 27 spectrometer equipped with a high-sensitivity mercury-cadmium-telluride (MCT) detector working under liquid N₂ conditions and a chamber fitted with ZnSe windows (Harrick Scientific, USA). About 10 mg of BC pre-dried at 70 °C under vacuum for 12 h was transferred to the chamber which was connected to a gas feeding system. The chamber was sealed and purged with high-purity N₂ at a flow rate of 100 mL per minute for at least 3 h to remove pre-adsorbed gases on BC and to minimize the interference of environmental CO₂. The humidity in the chamber was regulated by mixing high-purity N₂ and saturated water vapor at 25 °C with varying ratios and monitored in real time by a hygrometer (Vaisala Humitter, Australia). The sample was equilibrated with the gas mixture in the chamber for at least 30 minutes to reach sorption equilibrium based on pre-determined
kinetics. The spectra were acquired by co-adding and averaging a plurality of 500 scans with a resolution of 4 cm\(^{-1}\) (Song and Boily, 2013). The amount of water sorbed to BC was monitored by the integrated intensity of the O-H stretching region from 2750 to 3660 cm\(^{-1}\) (Ghorai et al., 2011).

3. Results and discussion

3.1. Characteristics of BC

Bulk elemental compositions by EA and surface elemental compositions by XPS are summarized in Table S1. The bulk elemental compositions of all BC samples were dominated by C and O, together accounting for 54\%-96\% of the total. However, the bulk C, O compositions differed significantly among the 15 BC, ranging from 32 to 76\% for C and from 16 to 69\% for O. With the exception of the woody BC, the differences were apparent within each category of the herbal BC and the soot. The surface elemental compositions were also dominated by C and O, but the compositional differences among the 15 BC were much smaller than the bulk elemental compositions. Besides C and O, EA detected low amounts of N (< 3.7\%) and S (< 1.8\%), and XPS detected low amounts of N (< 4.3\%), Si (< 5.6\%), and S (< 0.6\%). The contents of oxygen-containing groups in the 15 BC were qualitatively compared by the FTIR spectra (Figure S1). All the tested BC except Weifu diesel soot showed characteristic peaks of esters (1700 cm\(^{-1}\)), ketones (1613, 1100 cm\(^{-1}\)), and phenols (1270 cm\(^{-1}\)) (Keiluweit et al., 2010), generally with larger peak intensities observed for herbal-derived BC and household soot.
Table 1. Chemical, compositional, and pore properties of different BC.

<table>
<thead>
<tr>
<th>Samples</th>
<th>OC_{TGA} (wt%)</th>
<th>OC_{AE} (wt%)</th>
<th>OC_{WE} (wt%)</th>
<th>Dissolved minerals</th>
<th>Total Porosity (m^3 g^{-1})</th>
<th>SSA (m^2 g^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amaranth BC</td>
<td>6.24</td>
<td>2.6</td>
<td>1.75</td>
<td>25.84</td>
<td>0.004</td>
<td>0.314</td>
</tr>
<tr>
<td>Grass BC</td>
<td>7.24</td>
<td>2.37</td>
<td>1.01</td>
<td>51.56</td>
<td>0.008</td>
<td>5.587</td>
</tr>
<tr>
<td>Peanuts BC</td>
<td>7.45</td>
<td>1.78</td>
<td>0.8</td>
<td>41.86</td>
<td>0.002</td>
<td>0.192</td>
</tr>
<tr>
<td>Pea BC</td>
<td>9.59</td>
<td>1.98</td>
<td>0.09</td>
<td>54.48</td>
<td>0.005</td>
<td>4.679</td>
</tr>
<tr>
<td>Rice BC</td>
<td>6.81</td>
<td>0.6</td>
<td>0.11</td>
<td>48.06</td>
<td>0.023</td>
<td>31.88</td>
</tr>
<tr>
<td>Wheat BC</td>
<td>8.25</td>
<td>1.82</td>
<td>0.37</td>
<td>42.65</td>
<td>0.01</td>
<td>7.382</td>
</tr>
<tr>
<td>Millet BC</td>
<td>9.41</td>
<td>1.97</td>
<td>0.93</td>
<td>32.25</td>
<td>0.023</td>
<td>8.319</td>
</tr>
<tr>
<td>Corn BC</td>
<td>6.55</td>
<td>0.14</td>
<td>0.32</td>
<td>46.47</td>
<td>0.028</td>
<td>28.6</td>
</tr>
<tr>
<td>Sorghum BC</td>
<td>9.09</td>
<td>1.12</td>
<td>0.62</td>
<td>55.26</td>
<td>0.001</td>
<td>0.192</td>
</tr>
<tr>
<td>Bamboo BC</td>
<td>6.84</td>
<td>0.23</td>
<td>0.12</td>
<td>61.7</td>
<td>0.029</td>
<td>51.94</td>
</tr>
<tr>
<td>Red pine BC</td>
<td>7.4</td>
<td>0.2</td>
<td>0.05</td>
<td>62.59</td>
<td>0.032</td>
<td>64.24</td>
</tr>
<tr>
<td>Poplar BC</td>
<td>7.58</td>
<td>0.19</td>
<td>0.09</td>
<td>64.22</td>
<td>0.071</td>
<td>107.6</td>
</tr>
<tr>
<td>Diesel engine soot</td>
<td>9.57</td>
<td>1.4</td>
<td>0.78</td>
<td>27.37</td>
<td>0.021</td>
<td>6.119</td>
</tr>
<tr>
<td>Weifu diesel soot</td>
<td>4.48</td>
<td>0.57</td>
<td>0.13</td>
<td>71.98</td>
<td>0.484</td>
<td>194.6</td>
</tr>
<tr>
<td>Household soot</td>
<td>15.25</td>
<td>8.39</td>
<td>2.24</td>
<td>21.83</td>
<td>0.012</td>
<td>7.79</td>
</tr>
</tbody>
</table>

*Content of organic carbon determined by TGA. bContent of alkali-extracted organic carbon determined by TOC analysis. cContent of water-extracted organic carbon determined by TOC analysis. dDetermined by subtracting OC_{TGA} content from total organic carbon content by EA. eTotal pore volume determined by N_2 adsorption at 0.97 atmosphere pressure. fSpecific surface area determined by the BET method.

Table 1 summarizes the contents of OC (OC_{TGA}, OC_{AE}, and OC_{WE}) of the 15 BC by TGA, alkali extraction, and water extraction, respectively. For a given BC, the contents of the three types of OC differed pronouncedly, with an increasing order of OC_{WE} < OC_{AE} < OC_{TGA}. The OC content also differed within the tested BC pool, ranging from 0.05 to 2.24wt% for OC_{WE}, from 0.14 to 8.39wt% for OC_{AE}, and from 4.48 to 15.25wt% for OC_{TGA}. Compared with the EC (graphitized carbon), the three types of OC are non-condensed, amorphous, and more rich in oxygen-containing functional groups. This was evidenced by the fact that the OC_{AE} from the three selected BC (Grass BC, Wheat BC and Household soot) had markedly higher bulk
compositions of O (results presented in Table S2). The content of EC in BC was roughly assessed by subtracting the OC\textsubscript{TGA} content from the total organic carbon content measured by EA (results presented in Table 1). The calculated EC content negatively correlated with the OC\textsubscript{AE} content ($R^2 = 0.43$, $P = 0.0079$) for the examined BC pool. This was reasonable as EC was comprised of mature, thermodynamically stable graphitized carbons, while OC was comprised of the less mature and less aromatic constituents remaining after pyrolysis. Except for Weifu diesel soot, the two woody BC had the highest EC, but the lowest OC\textsubscript{AE} and OC\textsubscript{WE} among the 15 BC.

The relative abundance of EC in BC was also assessed by Raman spectroscopy (Figure S2). The spectra of all the tested BC were dominated by a D band at 1340 cm$^{-1}$ and a G band at 1580 cm$^{-1}$, which were ascribed to carbon network defects and the E_{2g} mode of the graphitized carbon, respectively (Pimenta et al., 2007). Thus, the ratio of these two bands (I_D/I_G) was inversely proportional to the in-plane crystallite size of graphitized carbons of BC (Cancado et al., 2006). The I_D/I_G ratio of the woody BC (0.51–0.59) was less than those of the herbal BC (0.88–1.09) and the soot (0.77–1.12) (Table S3), suggesting larger sizes of graphitized carbons in the woody BC. This was consistent with the results of OC compositions.

The contents of dissolved minerals of the 15 BC are listed in Table 1, and their salinities in water extracts are listed in Table S4. The two woody BC had the lowest contents of dissolved minerals and salinities, while these contents in herbal BC and soot were higher and varied greatly. The mineral compositions characterized by XRF are listed in Table S5. Si-, K-rich minerals were the two major inorganic constituents in the herbal BC and woody BC. Moreover, these two types of BC generally contained trace amounts of S-, Cl-, Ca-, P-, Mg-, Na-, Fe-, and Al-minerals, with lower contents observed for the woody BC. The three soot had very different mineral
compositions. Household soot was dominated by S-, Ca-, Si, and Cl-minerals, Diesel engine soot was dominated by S-, Ca-, and Fe-minerals, while Weifu diesel soot contained negligible mineral compositions. As reflected by the observed characteristic peaks and associated peak intensities in the XRD spectra (Figure S3), the herbal BC and Household soot contained more mineral species with higher contents than other BC, whereas the two woody BC and Weifu diesel soot contained the least species and contents of minerals. Potassium salts, amorphous silica, and sulfates were the major minerals in the herbal BC. Soot had the largest content of sulfates among the tested BC. According to the ion chromatograph analysis (results presented in Figure S4 and Table S6), the major water-extracted cationic species from the tested BC were NH₄⁺, K⁺, and Ca²⁺, and the major anionic species were SO₄²⁻, Cl⁻, and C₂O₄²⁻. The herbal BC had high contents of K⁺, C₂O₄²⁻, and Cl⁻, while the soot had high content of SO₄²⁻.

The Brunauer–Emmett–Teller (BET) specific surface area and total porosity measured by N₂ adsorption are also summarized in Table 1. A huge disparity of specific surface area was shown among the 15 BC and among the BC within each category, ranging from 6 to 200 m² g⁻¹ for the soot, from 60 to 110 m² g⁻¹ for the woody BC, and from 0.1 to 52 m² g⁻¹ for the herbal BC. The herbal BC and woody BC were dominated by micropores (pore size < 2 nm), which accounted for more than 50% of the total pore volume. Alternatively, mesopores (50 nm > pore size > 2 nm) were the main pore structure of the soot, accounting for more than 61% of the total pore volume.

3.2. Hygroscopic properties of BC

Equilibrium water uptake. Figure 1 displays sorption and desorption isotherms of water vapor with BC plotted as equilibrium water uptake (mg g⁻¹) by unit mass of BC under continuous-stepwise water vapor pressure conditions. Figure S5 displays the
equilibrium sorption isotherms at selected humidity levels obtained by using saturated aqueous salt solutions. Under similar humidity conditions (80% and 84%), the water uptake by the 15 BC was very close between these two humidity regulation methods (Figure S6), reflecting their technical validity. The woody BC showed very different sorption isotherm patterns from the herbal BC and soot. First, the water sorbing ability of the woody BC was much lower. The maximum water uptake observed at the highest RH (94%) was approximately 65 mg g⁻¹ by the woody BC, but was more than 400 mg g⁻¹ for the strongest sorbing herbal BC and soot. Second, much larger water-uptake disparities were observed within the herbal BC group and the soot group than within the woody BC group. Additionally, over the examined RH range (10–94%), the water uptake by the woody BC increased slowly and linearly with the RH; however, for the herbal BC and soot, the water uptake increased more rapidly with the RH, especially under high humidity conditions (RH > 70%).
Figure 1. Sorption and desorption isotherms of water vapor plotted as water uptake (mg g\(^{-1}\)) vs. relative humidity (RH, %) at equilibrium for different BC. (a) Subgroup 1 of herbal BC. (b) Subgroup 2 of herbal BC. (c) Woody BC. (d) Soot.

To better understand the underlying mechanisms and factors controlling the hygroscopic properties of BC, linear relationships were built between the equilibrium water uptake and a wide variety of compositional and pore property parameters of the whole BC pool. Figure 2 displays regression relationships with contents of OC\(_{\text{TGA}}\), OC\(_{\text{AE}}\), EC, dissolved minerals, major ionic species (NH\(_4^+\), Cl\(^-\), SO\(_4^{2-}\), and C\(_2\)O\(_4^{2-}\)), and total porosity, respectively at 94% RH. The regression relationships at 23% RH were presented in Figure S7. The regression accuracy (\(R^2\) and \(P\)) values at the 7 different RH levels ranging from 23% to 94% are summarized in Table S7. Good positive correlations existed between the water uptake and the contents of OC\(_{\text{TGA}}\), OC\(_{\text{AE}}\), and dissolved minerals under high humidity conditions (Figure 2a-d). The highest regression accuracy values obtained were \(R^2 = 0.82\), \(P < 0.0001\) for OC\(_{\text{TGA}}\) at 84% RH, \(R^2 = 0.80\), \(P = 0.001\) for OC\(_{\text{AE}}\) at 94% RH, and \(R^2 = 0.86\), \(P = 0.0001\) for dissolved minerals at 94% RH. However, the correlations with these BC constituents became much weaker under low humidity conditions (\(R^2 = 0.10\)–0.32, \(P = 0.247\)–0.028 at RH = 23%). It can be concluded that the hygroscopicity of herbal BC and soot under high humidity conditions was mainly controlled by the contents of OC and dissolved minerals. On the other hand, the low water sorbing ability of the woody BC was due to the very low contents of these constituents. The OC constituents in BC contained large amounts of oxygen-containing groups and thus had very high hygroscopicity (Xiao et al., 2013). The very strong water retention ability of dissolved minerals in BC was understandable due to the strong hydration of mineral surfaces and ionic constituents. No correlation was observed between the water uptake of BC
and the total organic carbon content within the whole examined RH range. Notably, a negative correlation was observed with the EC content (Figure 2c), especially under high humidity conditions \((R^2 = 0.54, P = 0.0019\) at 94% RH). Compared with the OC in BC, the EC was comprised mainly of hydrophobic fuse aromatic hydrocarbons and had much lower amounts of oxygen-containing groups, resulting in the very low water sorbing ability.

Figure 2. Relationships between equilibrium water uptake (mg g\(^{-1}\)) vs. compositional and pore property parameters for the BC pool at 94% relative humidity. (a) TGA-measured organic carbon (OC\(_{TGA}\)). (b) Alkali-extracted organic carbon (OC\(_{AE}\)). (c) Elemental carbon (EC). (d) Dissolved minerals. (e) Ammonium (NH\(_4^+\)). (f) Chloride (Cl\(^-\)). (g) Oxalate (C\(_2\)O\(_4^{2-}\)). (h) Sulfate (SO\(_4^{2-}\)). (i) Total porosity.

At 94% RH, relatively good positive correlations were observed with NH\(_4^+\) and Cl\(^-\) \((R^2 = 0.50–0.70, P = 0.0001–0.0034)\), but not with SO\(_4^{2-}\) \((R^2 = 0.24, P = 0.06)\) or
C$_2$O$_4^{2-}$ ($R^2 = 0.23, P = 0.1587$) (Figure 2e-h). No correlation ($R^2 = 0.08, P = 0.3$) was observed with the total porosity of BC at 94% RH (Figure 2i). Consistently, previous studies reported that chloride salts in biomass burning aerosols had high hygroscopicity (Jing et al., 2017; Posfai et al., 2003). The poor correlation observed for SO$_4^{2-}$ was ascribed to the low hygroscopicity of CaSO$_4$ and K$_2$SO$_4$, as evidenced by their very high deliquescent relative humidity (96–97%) (Freney et al., 2007; Preturlan et al., 2019). It is noteworthy that the content of SO$_4^{2-}$ positively correlated with the contents of Ca$_2^+$ ($R^2 = 0.74, P < 0.0001$) and K$^+$ ($R^2 = 0.69, P = 0.0008$) for the tested BC. On the other hand, the poor correlation observed for C$_2$O$_4^{2-}$ was likely due to the formation of less water-soluble salts (e.g., K$_2$C$_2$O$_4$) that might depress the hygroscopicity (Buchholz and Mentel, 2008).

The positive correlations observed with NH$_4^+$ and Cl$^-$ at 94% RH disappeared at 23% RH. Alternatively, a relative good negative correlation ($R^2 = 0.42, P = 0.0095$) with the total porosity was shown at 23% RH (Figure S7i). Similarly, a weak negative correlation ($R^2 = 0.21, P = 0.083$) was shown with the EC content at 23% RH. On the contrary, a weak positive correlation ($R^2 = 0.32, P = 0.028$) was observed between the water uptake and the OC$_{TGA}$ content. It was reasonable to hypothesize that the rigid micro- and mesoporous structures in BC were mainly formed by graphitized carbons (EC) rather than by amorphous organic carbons (OC). Thus, the abovementioned correlations indicated that the OC constituents played a key role in the overall water uptake by BC under low humidity conditions.

As can be seen from the desorption isotherms in Figure 1, the herbal BC and soot showed certain hysteresis effect (irreversible sorption), whereas the woody BC showed no hysteresis effect. Irreversible sorption would lower the release of sorbed water molecules from BC particles in the atmosphere when the RH changes from a
The observed hysteresis effect of herbal BC and soot likely stemmed from their relatively high contents of OC and/or dissolved minerals (such as wheat BC and Household soot). Sorbing water molecules could cause strong and irreversible hydration of organic acids (Petters et al., 2017) and dissolution or phase change of minerals (Adapa et al., 2018), consequently leading to hysteresis effect due to non-identical structures of BC between the sorption and desorption branches even at the same RH. The negligible hysteresis effect observed on the two woody BC could be attributed to their very low contents of OC and dissolved minerals.

The equilibrium water uptake by BC was further investigated by DRIFTS. The spectra of representative BC (Grass BC, Red pine BC, and Household soot) at varying RH are presented in Figure 3a-c. Figure 3d compares the water uptake at 23% RH monitored by the integrated intensity of the O-H stretching region from 2750 to 3660 cm$^{-1}$ (Ghorai et al., 2011), along with the water uptake measured by the multi-station gravimetric method for 8 selected BC. The identified bands of sorbed water molecules included a combination mode of symmetric stretch around 3423 cm$^{-1}$ and asymmetric stretch stretch around 3253 cm$^{-1}$ (Gustafsson et al., 2005). The broad feature peak centered at 2100 cm$^{-1}$ was assigned to a combined band of bending, libration, and hindered translation modes of water, while the peak centered at 1640 cm$^{-1}$ was attributed to the bending mode of water (Ma et al., 2010). The intensities of these peaks/bands increased with increasing RH. As assessed by the integrated intensity of the O-H stretching region (see insets in Figure 3a-c), the water uptake by Grass BC and Household soot increased gradually with RH from 12 to 80%; however, the water uptake by Red pine BC rapidly reached saturation at about 28% RH, and kept constant when the RH was further increased. With the exception of Weifu diesel soot, the disparity pattern of water uptake by the 8 selected BC at 23% RH monitored
by DRIFTS was similar to that monitored by the multi-station gravimetric method (Figure 3d). However, the disparities were very large between these two methods at 80% RH (Figure S8). This was probably because the saturated effect encountered in detection of sorbed water molecules by FTIR (Gustafsson et al., 2005) became worse under high humidity conditions. Moreover, the DRIFTS signals of sorbed water molecules might be influenced by the distribution of sorption sites (e.g., minerals vs. OC and exterior vs. interior), and the caused effects might lead to larger deviations under high humidity conditions.

Figure 3. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) characterization of equilibrium water uptake by BC. (a-c) Spectra for three representative BC (Grass BC, Red pine BC, and Household BC) equilibrated at varying relative humidity (RH) levels. (d) Comparison of equilibrium water uptake measured as integrated area of O-H stretching region (2750–3660 cm⁻¹) between 8
selected BC at 23% relative humidity. Insets in subfigures (a-c) present water uptake measured as integrated area of O-H stretching region against RH.

Kinetic water uptake. Figure 4 displays the water vapor sorption kinetics to the 15 BC at 94% RH obtained by saturated aqueous salt solutions. The sorption kinetics at 33% RH was presented in Figure S9. The two woody BC exhibited similar kinetics curves; however, the herbal BC and soot showed very different kinetic patterns within each group. For quantitative comparison of apparent sorption kinetics among different BC, the data were fitted to the pseudo-first order and pseudo-second order models,

\[
\frac{dq_t}{dt} = k_1 (q_e - q_t) \quad \text{and} \quad \frac{dq_t}{dt} = k_2 (q_e - q_t)^2,
\]

respectively, where \(q_t\) was the sorbed concentration at time \(t\), \(q_e\) was the equilibrium sorbed concentration, and \(k_1\) and \(k_2\) were the pseudo-first and pseudo-second rate constants, respectively. The fitting parameters \((q_e, k_1, k_2)\) for the three selected RH levels (33, 47, and 94%) are summarized in Table S8-S9. The pseudo-second order model \((R^2 > 0.97)\) fits the data better than the pseudo-first order model \((R^2 = 0.80–0.99)\). The calculated \(k_2\) differed greatly among the BC within the herbal BC group and the soot group, but was very close between the two woody BC. For a given BC, the \(k_2\) at a lower RH level was significantly larger than that at a higher RH level. Similar results were reported in previous studies on sorption kinetics of water vapor to activated carbon (Ohba and Kaneko, 2011; Ribeiro et al., 2008). Under low humidity conditions, sorption of water vapor mainly occurs at the active, high-energy binding sites, and the sorption kinetics is fast; alternatively, under high humidity conditions, sorption is governed by the slow pore-filling/condensation process of water molecules within the pores of activated carbon via formation of water clusters around the water molecules already sorbed at the active sites (Nguyen and Bhatia, 2011; Rosas et al., 2008). Due to the small molecular size \((0.0958 \times 0.151 \text{ nm, ChemDraw 3D})\), water molecules could well
penetrate into the micropores of BC and form water clusters via intermolecular hydrogen bonding. The sorbing ability order of the different types of BC varied depending on the examined RH. At 33% RH, the k_2 roughly followed a decreasing order of soot ($0.5–5.25 \times 10^{-5} \text{ g mg}^{-1}\text{s}^{-1}$) > woody BC ($1.57–1.90 \times 10^{-5} \text{ g mg}^{-1}\text{s}^{-1}$) > herbal BC ($0.34–2.07 \times 10^{-5} \text{ g mg}^{-1}\text{s}^{-1}$); however, no clear trend was shown for high humidity conditions (e.g., RH = 94%), mainly resulting from the larger variances within the herbal BC group and soot group.

Figure 4. Sorption kinetics of water vapor plotted as water uptake (mg g$^{-1}$) vs. time (h) at 94% relative humidity. (a) Subgroup 1 of herbal BC. (b) Subgroup 2 of herbal BC. (c) Woody BC. (d) Soot.

Like for the equilibrium water uptake, the relationships were built between the k_2 and the contents of $\text{OC}_{\text{TGA}}, \text{OC}_{\text{AE}}, \text{EC}$, dissolved minerals, major ionic species (NH_4^+, Cl^-, $\text{C}_2\text{O}_4^{2-}$ and SO_4^{2-}), and total porosity, respectively at 94% RH (Figure 5). The
regression relationships at 33% RH were presented in Figure S10. The regression accuracy (R^2 and P) values at 33%, 47%, and 94% RH are summarized in Table S10. At 94% RH, among the examined parameters only totally porosity was positively correlated with the k_2 ($R^2 = 0.82$, $P < 0.0001$). This correlation disappeared under low and medium humidity conditions. The strong positive correlation between k_2 and total porosity at high RH can be well explained by the pore-filling/condensation mechanism. A similar mechanism has been previously proposed to account for the positive correlation observed between the water vapor sorption kinetics and the porosity of activated carbon under high humidity conditions (Nakamura et al., 2010; Velasco et al., 2016). At 33% RH, relatively good positive correlations were observed with the contents of OC$_{\text{TGA}}$ ($R^2 = 0.47$, $P = 0.0046$), OC$_{\text{AE}}$ ($R^2 = 0.44$, $P = 0.007$), NH$_4^+$ ($R^2 = 0.77$, $P < 0.0001$), and Cl$^-$ ($R^2 = 0.60$, $P = 0.0007$), but not with SO$_4^{2-}$ ($R^2 = 0.11$, $P = 0.2286$) or dissolved minerals ($R^2 = 0.08$, $P = 0.31$). The positive correlations with these constituents were not shown under medium and high humidity conditions. Thus, the constituents of OC and NH$_4^+$- and Cl$^-$-salts likely provided the primary high affinity, active sites for sorption of water vapor under low humidity conditions.
The hygroscopic properties of 15 different BC (herbal, woody, and soot) were systematically investigated using gravimetric method and DRIFTS. The mechanisms and factors controlling the equilibrium and kinetic water uptake differed among the types of BC and depended heavily on the humidity conditions. Linear correlation analyses indicated that the equilibrium water uptake by the tested BC pool positively correlated to the contents of OC (OC$_{TGA}$ and OC$_{AE}$), dissolved minerals, and NH$_4^+$- and Cl$^-$-salts under high humidity conditions, and weakly to the contents of OC only.
under low humidity conditions. By contrast, negative correlations were observed between the equilibrium water uptake and the EC content. The low water uptake by the woody BC could be attributed to the very low contents of OC and dissolved minerals. Thus, the equilibrium water uptake by BC was mainly controlled by the hygroscopic constituents of OC and dissolved minerals/salts. The kinetic water uptake by the BC could be well described by the pseudo-second order kinetic model. The calculated rate constant (k_2) positively correlated to the contents OC_{TGA}, OC_{AE}, and NH_4^+- and Cl^--salts under low humidity conditions, and to the total porosity only under high humidity conditions. The fast water uptake kinetics under low humidity conditions was attributed to the binding to high affinity, active sites (OC and salts), whereas the slow water uptake kinetics under high humidity conditions was attributed to pore-filling/condensation of water molecules within the micro- and mesopores of BC. This study highlights that the hygroscopic properties of BC rely on compositional and structural properties of BC as well as humidity conditions.

Author contributions. DZ provided the original idea and prepared the paper with contributions from all co-authors. MW and YC designed and conducted the research, HF, XQ were involved in the development of the analysis methods. BL, ST reviewed the written document.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgments. This work was supported by the National Natural Science Foundation of China (Grants 21777002, 21920102002, and 41991331).

Appendix A.

Detailed characterization results of the different BC can be found in Table S1-S5. Table S6 lists accuracy (R^2 and P) values for regression on equilibrium water uptake against different variables. Table S7-S8 presents pseudo-first/second order kinetic
model fitting parameters. Table S9 lists accuracy (R^2 and P) values for regression on k_2 against different variables. Figure S1-S4 displays spectroscopic characterization of different BC. Figure S5 displays sorption isotherms at selected humidity obtained by using saturated aqueous salt solutions. Figure S6 compares equilibrium water uptake measured by the two different gravimetric methods. Figure S7 displays relationships between equilibrium water uptake and different variables at 23% RH. Figure S8 compares equilibrium water uptake measured by DRIFTS and gravimetric method at high RH. Figure S9 displays sorption kinetics of water uptake at 33% RH. Figure S10 displays relationships between k_2 and different variables at 33% RH.
References

