Response to Anonymous Referee #1.

We thank the reviewer for providing suggestions to improve the manuscript. Our responses to their comments are shown in blue. Added text is shown in italics.

In this work, measurements of OH and OH reactivity (OHR) from twoAtom field deployments were used to evaluate the oxidation capacity over the remote oceans and its representation in the GEOS-Chemmodel. Good model-measurement agreement was obtained for OH and its precursors with over estimation of NOy to be attributed to insufficient or missing loss processes. The measured OHR below 3 km is greater than the sum OHR calculated from the measured OH reactants and the OHR in GEOS-Chem. The underestimate of acetaldehyde and peroxyacetic acid in GEOS-Chem and the reconcile of model-measurement agreement call for further work on the OH loss and production processes over land. In general, the paper is well written and within the scope of ACP. Evaluation of a transport chemical model against observations in a global scale are important and rare. I would recommend accepting it for publication after the authors address the following special comments in their revision.

Special Comments
P.2, L.1, maybe change “Organic aerosol is …” to “The production of organic aerosols is …” or something like that. Done.

P.2, L.21-22: I would suggest adding “In the remote atmosphere” before “OH is primarily produced by the photolysis of ozone (O3) in the presence of water vapor.” as in polluted environments other OH sources like the photolysis of HONO could be dominant at certain times of day.

We agree with the reviewer that other sources of OH can dominate in polluted environment, however this is not precluded by our statement that “OH is primarily produced by the photolysis of O3” which is an accurate reflection of global OH production. To address the reviewer’s comment, we have revised the text on P8, L4 to read “In the remote troposphere, OH...” to address this comment.

In Section 2.1: a brief discussion of the GEOS-Chem model uncertainties in simulating OHR and OH as well other important species like acetaldehyde and PAA and should be included. Coupled with the measurement uncertainties in Table 2, the combined measurement-model uncertainties can help to understand if the discrepancies in the model-measurement comparisons (Figures 3-8 & 10-14) are significant or not.

The reviewer raises an interesting point. Quantifying how the uncertainty associated with the myriad processes (i.e. emissions, transport, removal, chemistry for each species...) integrated within a CTM propagates to simulated concentrations (or reactivity) would be a study (or career!) unto itself. We note that the uncertainties on many of these underlying processes are not well characterized themselves (e.g. how uncertain is the wet removal of nitric acid?). Thus, while we agree that in general, model uncertainty quantification could provide insight into model-observation comparisons, it is not straightforward to estimate these uncertainties. Furthermore, and perhaps more importantly, here we intend to use the model as a tool to evaluate systematic biases that could be the cause of the global mean OH bias across models, as well as the remote nitric acid and acetaldehyde bias across models. Therefore, we do not believe that an assessment of specific model uncertainties is necessary. We clarify this point in the introduction, P3, line 28. “We simulate the first two deployments (ATom-1: July-August 2016, ATom-2: January-February 2017) using the GEOS-Chem chemical transport model (CTM) as our tool to explore potential sources of systematic errors that could explain the community-wide model overestimate in global mean OH and underestimate of the methane lifetime.”

4. P.5, L.13 and Figure 1(a): define the altitude range of the surface layer.
We added the following to P4, L8 to address this point: “The midpoint of the first model layer is 58 m.”

5. P.5, L.14-15: How are three quarters and 40% calculated? Are they numerical ratios or somehow weighted? In my opinion, spatially integrated and perhaps air mass weighted cOHR values (over oceans versus over land and below 3 km versus above 3 km) should be considered in terms of global oxidation capacity.
Thank you for this suggestion. We now calculate cOHR_mod below 3 km as an air-mass weighted quantity (P6, L5). “Approximately 80 % of air-mass weighted cOHR_mod resides below 3 km (Fig. 1b).”
6. P.5, L.24: Noticed both Fig. and Figure are used. Not sure which one is required by ACP to use, but please be consistent.
 Figure is only used when beginning a sentence. Fig. is used otherwise.

7. P.6, L.11: “accuracy of 1.35” is given for OH measurement: what are the units for 1.35? In Table 2, “factor of 1.35” is given for OH and HO2 detection limit and precision but no accuracy is given. Please clarify it.
 Changed factor of 1.35 to “74% to 135%” on P6, L29 and in Table 2.

8. P.6, L.14: the minimal bias of <1% seems too good to be true considering the spatiotemporal variabilities in both model and measurements (see e.g., Figures 3 and S1) as well as uncertainties and discrepancies (e.g., Fig. 6-7) in the measurement and model.
 We agree that this was confusing. We have removed “minimal bias <1%” and added the following statement on P7, L21: “As discussed above, model OH is overestimated in the lowest two kilometers during this period but this bias is minimized in the column average.”

9. P.6, L.15-16: please include standard deviations for these concentrations.
 These are median values, and thus standard deviations are not appropriate metrics. We have clarified this in the text on P7, L3: “We calculate the median air-mass weighted column average OH (OH\text{col}) from Fig. 3 “ and L9 “Median model OH\text{col} is within...

10. Fig. 3-7: not sure if it’s going to be too messy, but it is also important to see the percentiles in the model predictions. Maybe use whiskers to show the percentiles with different altitude bins for the measurement and model so that the whiskers will not be overlapped?
 Thank you for the suggestion. We have added the 25th – 75th percentiles to the model as well for Fig. 3-7.

11. P.7 L.2: change VOC to VOCs
 Changed.

12. P.7, L.15-16 and Fig. 5: the units for i(O3) should be 10^-5 s^-1. Also please point out this is for the photolysis reaction of O3 + hv → _O(1D) + O2 (sometimes it’s called jO(1D), not the other one: O3 + hv → _O(3P) + O2. I pointed this out in the initial review before the ACPD publication, but it seemed the message didn’t get through to the authors.
 Changed jO3 to “jO(1\text{D})” in the text and the figure and fixed the units.

13. P.7, L.17-26: there is a discrepancy as large as 30 ppb at high altitudes for winter in ATom-1 and for winter and summer in Atom-2. A discrepancy of 20-30 ppb doesn’t seem “unbiased” to me. Any explanation of this overestimate at high altitudes should be briefly discussed here. This also makes me believe the above <1% bias likely to be coincident or the right answers for the wrong reasons.
 There is a nice analysis on the contribution of O1D + H2O to PHO3 from Brune et al., 2020. We revised this sentence to read P8, L28: “Upper tropospheric ozone is overestimated in all cases but Northern Hemisphere summer, but this would not have a large influence on primary OH production (or the methane lifetime) at these altitudes (Brune et al., 2020).”

14. P.9, L.28-29: note in Table 2 an accuracy of 0.8 s^-1 and a detection limit/precision of 0.3 s^-1, which are comparable to the overall differences here. The authors should mention this to remind readers the uncertainty in the measure.
 Thames et al. 2020 (just published in ACP) provide statistical tests of the missing reactivity discussed in this work. We add the following description of their findings on P11, L26. “Thames et al. (2020) showed that median missing reactivity (between OHR and an observationally-constrained box model) below 4 km during the ATom-1, ATom-2, and ATom-3 deployments was between 0.2 and 0.8 s^-1. They provided statistical evidence that while near the level of the instrument accuracy, missing OHR in the marine boundary layer was statistically significant.”
15. P.9 bottom and P.10 top: both r and r2 are used for correlation. Please be consistent. In my opinion, r2 should be used. A scatter plot of the missing OH reactivity against acetaldehyde should be included in the SI to support the strongest relationship. Only r^2 is now used, and a scatter plot of the missing OH reactivity against acetaldehyde is now Figure S3.

16. P.10, L.4: ...oxygenated VOCs (OVOCs)
Replaced.

17. P.10, L.11: VOCs. There are many cases where “VOC” should be really “VOCs” and “aerosol” should be really ‘aerosols”’. Please check this out through the manuscript.
Now using “VOCs” and “aerosols”.

18. P.10: Fig. S3 and 9: any explanation why there is a belt of enhancement over the ocean in the mid-latitude of southern hemisphere?
This is due to setting a minimum seawater concentration for acetaldehyde. This was perhaps not clear because this adjustment is described later in the manuscript. We add the following clarification to P12, line 22, “Figure 10 shows the annual mean impact of all ocean emissions described in Tables 3 and 4 (including an adjustment to the acetaldehyde seawater concentration described below in 5.1) on cOH_{mod}…”
And to P12, line 25, “The largest increases occur in regions of higher biogenic activity along coastlines and in the Southern Ocean due to the adjustment to acetaldehyde emissions discussed in Section 5.1…”

Fixed.

20. Table 2: in the reference for CH4, remove AMT
Fixed.

21. Note 1 of Table 2: H2 was measured but was set to 0.5 ppm. How does this value compare to the observations? If the difference is large, maybe use the measured value (e.g., mean) to constrain the model. From Figures 10 & 11, H2 contributed about 5-8% of observed and modeled OHR, which is not very small.
We added the following sentence to the model description on Page 5, L14: “The model concentration of H2 is fixed at 500 ppt, consistent with observed H2 from ATom-1 and ATom-2 (520 ppt).”

22. In Supplemental Information: both ethane and propane are underestimated in GEOS-Chem (Figures S6 and S7). Is this because of unaccounted emission sources like fracking?
We added the following citation to P16, L2: “The model underestimates average ethane and propane below 10 km by 100 % and 40 %, respectively during ATom-2 (Figs. S8 and S9) which could be due to underestimated natural geologic and fossil fuel emissions (Dalsøren et al., 2018).

Response to Anonymous Referee #2.
We thank the reviewer for providing suggestions to improve the manuscript. Our responses to their comments are shown in blue. Added text is shown in italics.

The Introduction does not acknowledge the Thames et al. (ACP, 2019) manuscript, cited later on Pg. 11, which has a likelihood of being published prior to the finalization of this submission. That paper also discusses the ATom OHR measurements, albeit with a focus on the MBL instead of global oxidation capacity. Since the Thames et al. paper will be so closely related to this one by Travis et al., a discussion of its findings and how Travis et al. will complement Thames et al. is warranted here.
We agree with the reviewer – Thames et al. was very recently published in final peer reviewed form on ACP, and we now comment further on this paper in our own manuscript. Page 3, L14 - We add a citation for Thames et al, 2020 to the Introduction. We add additional discussion of Thames et al, 2020 in the following places:

P3, L19: “Thames et al. (2020) found evidence of missing OHR between measurements an observationally-constrained box model during the first three ATom deployments.”

P11, L16: “During ATom, Thames et al. (2020) measured OHR over the Atlantic and Pacific oceans in all four seasons and determined that missing OHR correlated with oxygenated VOCs suggesting the presence of unknown ocean emissions.”

P11, L16: “Thames et al. (2020) showed that median missing reactivity (between OHR and an observationally-constrained box model) below 4 km during the ATom-1, ATom-2, and ATom-3 deployments was between 0.2 and 0.8 s⁻¹ and provided statistical evidence that while near the level of the instrument accuracy, missing OHR in the marine boundary layer is statistically significant.”

Pg. 2 L. 29: The authors acknowledge “the persistent CO underestimate in models” yet do not go on to evaluate this large sink of OH. A figure analogous to Fig. 3, showing CO comparisons between model and observations should be included and discussed. Does the reasonably accurate OH field within this GEOS-Chem simulation translate to similarly well-simulated fields of CO over the oceans? Or does longer-lived CO have the imprint of biased continental OH, to which the authors refer?

We evaluate model CO in Fig. 11 and Fig. 12. We add the following statement to P13, L29: “There is no systematic underestimate in CO as might be expected from the general model underestimate of CO described by Shindell et al. (2006) with the exception of a 10 % underestimate during Northern Hemisphere winter when the lifetime of CO is longer and biases in continental sources could have a larger impact.”

Pg. 4 L. 3: Could you specify whether the methane concentration boundary condition varies with latitude and/or longitude? And, since they derive from monthly observations, is it correct to assume that the boundary condition changes from month to month?

We revised the description on P4, L16 to read “Surface methane concentrations are prescribed monthly using spatially interpolated observations from the NOAA GMD flask network.”

Pg. 4 L. 30: Please describe how exactly the tropospheric mean OH is being calculated. As Lawrence et al., 2001 explain, there are multiple ways to weight this calculation, and, for the purposes of facilitating comparisons of these values between studies, an explicit definition of this metric should be included in each paper that discusses it.

Thank you for this suggestion, we have added a link to the GEOS-Chem calculation of tropospheric mean OH on P5, L16 “(see http://wiki.seas.harvard.edu/geos-chem/index.php/Mean_OH_concentration for the detailed calculation).”

Figures 3-8, 12-14: Please consider trying to visualize not only the 25th/75th percentiles for the observed median profiles, but also for the modeled profiles. How well the spread of each of these quantities agrees can be instructive as well.

All figures now include the 25th/75th percentiles for the model as well.

On organization: I found, reading through the paper, that the topics of various results/discussion sections (Sections 3-6) jumped around quite a bit. For instance:

-Some discussion of the literature on acetaldehyde is initiated in Section 5 (mention of Read et al., 2012 on Pg. 10, L4), mentioned again farther down on the page (Pg. 10, L 29), and continued throughout Section 6. I would suggest consolidating the discussion of the acetaldehyde literature in one place, and perhaps making Section 6 a subsection of Section 5.
We appreciate the reviewer’s suggestion to clarify the text. We have changed Section 6 to Section 5.1. We moved all discussion of acetaldehyde in the literature to the first paragraph of Section 5.1.

-Similarly, the discussion of NOy as a proxy for OH secondary source NOx is understandable, given the issues with measured NO2, but the discussion necessarily turns to HNO3 evaluation, all under Section 4: Constraints on the remote source of OH. Generally, HNO3 is viewed as a sink for OH, so this further contributes to the feeling of “jumping around” between topics. Additional subsections and improvements in framing the discussion should help to give a more logical structure to these sections. We added a subsection for the discussion of HNO3 evaluation: “4.1 Causes of the remote model bias in HNO3”

Technical Corrections

Pg. 2 L. 1: The sentence starting “Comparisons” is a run-on; either include a comma between “aerosol but” or separate into two sentences
We separated into two sentences.

Pg. 2 L. 5: Run-on sentence; place comma between “sources and” or split to two
Sentences
Split into two sentences.

Pg. 2 L. 20: Run-on sentence; place comma between “atmosphere and” or split.
Placed a comma.

Pg. 4 L. 1: Place comma after “Sherwen et al.”
Placed a comma.

Pg. 4 L. 25: MCM v3.3.1 has an additional reference, regarding the update from v3.2: Jenkin et al., 2015
Added.

Pg. 4 L. 29: Figures should generally be numbered in the order that they appear in the text, even Supplemental figures. Fig. S8 should be moved to S1. Same with Tables (S4 and S5 appear before S1), and Fig. S9 (appears before S5).
The supplement has been re-ordered to follow the order in the text.

Pg. 5 L. 13: Could the authors please state the number of species that are listed in Table S1?
We added the following to P6, L4 “ninety simulated constituents...”

Pg. 6 L. 6: “attitude” should be “altitude”
Changed.

Pg. 6 L. 11: Should there be units for the accuracy value provided here (molec cm–3)?
Clarified value as 74% to 135%, 2σ confidence level.

Pg. 6 L. 17: Please specify if Fig. S1 shows in situ OH concentrations of column averaged. If it is column averaged, please use the OHcol notation in the text at this location and in the figure.
Changed “OH” to “OH concentrations”.

Pg. 6 L. 22: Instead of “successful” and “success” here, simulation should be described as having “good agreement” or similar wording.
We removed this sentence and rephrased our statement on P6, L30. “This result from a global CTM is consistent with good agreement between OH measurements and a box model during NASA’s Pacific Exploratory Mission-Tropics (PEM-Tropic B) campaign in the clean remote Pacific (Tan et al., 2001) and a similar analysis by Brune et al. (2020) for ATom 1 through 4.”
Pg. 7 L. 10 & 15: Replace “successfully”
Replaced “successfully” with “reproduces”

Pg. 7 L. 30: Run-on sentence; place comma between “2018) and”
Added this comma.

Pg. 8 L. 10: Anderson et al. 2014 also indicated a bias in the anthropogenic NOx inventory; please cite that paper here as well.
Added this citation.

Pg. 8 L. 18: “higher larger ozone” seems redundant
We have removed this text and incorporated the simulation of Wang et al., 2019 into our simulation.

Pg. 8 L. 21: “free tropospheric” should be “free tropospheric bias”?
Changed “free tropospheric” to “free tropospheric bias”.

Pg. 9 L. 21: “We compare OHR: : :” I would suggest explicitly stating here that “OHR” refers to directly measured OHR, to avoid confusion.
We changed “We compare OHR” to “We compare directly measured OHR”.

Pg. 11 L. 4: Thames et al. (2019) does not appear in the reference list.
Thames et al. (2020) has been added to the reference list.

Pg. 11 L. 17: “: : :when the lifetime of CO is long.” I would consider this circular reasoning; the reason the lifetime of CO is long in the wintertime is because OH concentrations are low.
We have revised the text to read on P13, L28: “CO and methane make up half or greater of both cOHRobs and cOHRmod”.

Pg. 11 L. 24: “OF” should be “of”
Fixed.

Pg. 11 L. 30: Nicely et al. (2016) also recognized the importance of acetaldehyde in explaining model vs. measurement-constrained OH differences, could be cited here.
We added this citation.

Pg. 12 L. 23: It would be helpful to state, quantitatively, how large the model bias in PAA is.
We changed the sentence on P15, L17 to read “Figure 14 shows the average model underestimate of below 3 km of 70 to 90 % (60 to 250 ppt).”

Pg. 13 L. 9: It is unclear what the percentage values provided in parentheses refer to– are they percent increases in acetaldehyde from corrections to model ethane/propane, or are they percent yields of acetaldehyde per molecule of ethane/propane oxidized?
Changed “currently…” to “model yields are..”

Table 2: Please number the superscripts in the order they appear in the table.
The subscripts have been re-ordered.

Figure 5: Units for jO3 should be 10–5 s–1 instead of 105. Would also be helpful to specify whether this is j(O3 \rightarrow O1D + O2) or j(O3 \rightarrow O3P + O2).
Fixed the units and changed jO3 to jO1D.
Fig. 11: I appreciate the difficulty of finding unique color choices for a figure like this, but I find the two shades of green, representing MHP and HCHO, practically indistinguishable on my computer screen (so the problem is likely worse in hard copy). Please adjust one of the two.

The color of HCHO has been adjusted to a darker green.
Constraining remote oxidation capacity with ATom observations

¹Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
²Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
³Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
⁴Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
⁵Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
⁶Department of Chemistry, University of California Irvine, Irvine, CA, USA
⁷Department of Meteorology, Pennsylvania State University, University Park, PA, USA
⁸University of Minnesota, Department of Soil, Water and Climate, St. Paul, Minnesota, USA
⁹Dept. of Earth & Environmental Sciences of Lamont-Doherty Earth Observatory and Columbia University, Palisades, NY
¹⁰Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
¹¹Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
¹²NASA Langley Research Center, Hampton, Virginia, USA
¹³Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
¹⁴Wolffson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, York, UK
¹⁵National Centre for Atmospheric Science (NCAS), University of York, York, UK
¹⁶Cooperative Institute for Research in Environmental Science, University of Colorado, USA
¹⁷Nicholas School of the Environment, Duke University, Durham, NC, USA
¹⁸Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
¹⁹Atmospheric Sciences Research Center, University of Albany, Albany, New York, USA
²⁰Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
²¹School of Energy and Environment, City University of Hong Kong, Hong Kong, China
²²Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA

*Now at NASA Langley Research Center, Hampton, Virginia, USA

Correspondence to: K. R. Travis (katherine.travis@nasa.gov) and C. L. Heald (heald@mit.edu)

Abstract. The global oxidation capacity, defined as the tropospheric mean concentration of the hydroxyl radical (OH), controls the lifetime of reactive trace gases in the atmosphere such as methane and carbon monoxide (CO). Models tend to underestimate the methane lifetime and CO concentrations throughout the troposphere, which is consistent with excessive OH. Approximately half of the oxidation of methane and non-methane volatile organic compounds (VOCs) is thought to occur over the oceans where oxidant chemistry has received little validation due to a lack of observational constraints. We use observations from the first two deployments of the NASA ATom aircraft campaign during July-August 2016 and January-February 2017 to evaluate the oxidation capacity over the remote oceans and its representation in the GEOS-Chem chemical transport model. The model successfully simulates the magnitude and vertical profile of remote OH within the measurement...
uncertainties. Comparisons against the drivers of OH production (water vapor, ozone, and NO \textsubscript{y} concentrations, ozone photolysis frequencies) also show minimal bias with the exception of wintertime NO\textsubscript{y}, for which a severe model overestimate of NO\textsubscript{y} during this period may indicate insufficient wet scavenging and/or missing loss on seasalt aerosols. But large uncertainties in these processes remain that require further study to improve simulated partitioning and removal in the troposphere. But preliminary tests suggest that their overall impact could be a partial resolution of the model bias in tropospheric OH. During the ATom-1 deployment, OH reactivity (OHR) below 3 km is significantly enhanced, and this is not captured by the sum of its measured components (cOHR\textsubscript{obs}) or by the model (cOHR\textsubscript{mod}). This enhancement could suggest missing reactive VOCs but cannot be explained by new comprehensive estimates of simulation of both biotic and abiotic ocean sources of VOC sources. Additional sources of VOC reactivity in this region are would be difficult to reconcile with the full suite of ATom measurement constraints. The model generally reproduces the magnitude and seasonality of cOHR\textsubscript{obs} but underestimates the contribution of oxygenated VOCs, mainly acetaldehyde, which is severely underestimated throughout the troposphere despite its calculated lifetime of less than a day. Missing model acetaldehyde in previous studies was attributed to measurement uncertainties that have been largely resolved. Observations of peroxyacetic acid (PAA) provide new support for remote levels of acetaldehyde. The underestimate in both modeled acetaldehyde and PAA is present throughout the year in both hemispheres and peaks during Northern Hemisphere summer. The addition of ocean VOC sources in the model increases annual surface cOHR\textsubscript{mod} by 3-14% and improves model-measurement agreement for acetaldehyde particularly in winter but cannot resolve the model summertime bias. Doing so would require a 100 Tg yr-1 source of a long-lived unknown precursor throughout the year with significant additional emissions in the Northern Hemisphere summer. Improving the model bias for remote acetaldehyde and PAA is unlikely to fully resolve previously reported model global biases in OH and methane lifetime suggesting that future work should examine the sources and sinks of OH over land.

1 Introduction

The hydroxyl radical (OH) is the main oxidant responsible for removing trace gases from the atmosphere and its concentration defines the tropospheric oxidation capacity. OH is primarily produced by the photolysis of ozone in the presence of water vapor. The lifetimes of key atmospheric trace gases are governed by how quickly they are removed by reaction with OH. Oxidation of volatile organic compounds (VOCs) by OH is a key process for formation of both tropospheric ozone and fine particulate matter which are detrimental to human health and vegetation, and impact climate. The oxidation of VOCs, in addition to carbon monoxide (CO), and methane provides the main sink of OH in the troposphere. Oxidation of methane
and VOCs accounts for over-over half of the global CO production of CO results from the oxidation of methane and other VOCs by OH (Duncan et al., 2007; Safieddine et al., 2017) resulting in a tight coupling of these compounds.

Models tend to generally overestimate global mean tropospheric OH and its the ratio of in the Northern to Southern Hemisphere mean OH (Naik et al., 2013; Patra et al., 2014). These biases may be linked to the persistent CO underestimate in models (Shindell et al., 2006) as prescribing OH from observations improves the simulated CO simulation (Müller et al., 2018). However, recent efforts to constraining models with observations of ozone and water vapor cannot completely resolve excessive model resolve biases in model OH (Strode et al., 2015) which is Estimates of OH across models vary due to impacted by additional complex factors, including such as differing chemical mechanisms and methods for calculating the ozone photolysis frequency (Nicely et al., 2017) which are more difficult to isolate. Improving Constraining the performance of model chemical mechanisms has largely focused over-on regions of strong biogenic and anthropogenic activity (Emmerson and Evans, 2009; Yu et al., 2010; e.g. Marvin et al., 2017) but over at least half of the oxidation of methane occurs over the ocean where models have received little evaluation due to a lack of observational constraints.

The introduction of airborne measurements of OH reactivity (OHR) provides a method to evaluate the total sink of OH across a range of altitudes and a variety of locations and chemical environments (Mao et al., 2009; Thames et al., 2019, 2020). Previous work compared surface observations of OHR at a single site to the sum of individually calculated OHR components from measurements (Di Carlo, 2004; Yoshino et al., 2006; Sinha et al., 2008, 2010; Mao et al., 2010; Dolgorouky et al., 2012; Hansen et al., 2014; Nakashima et al., 2014; Nölscher et al., 2012, 2016; Ramasamy et al., 2016; Zannoni et al., 2016, 2017) or from simple models (Ren et al., 2006; Lee et al., 2009; Lou et al., 2010; Mogensen et al., 2011; Mao et al., 2012; Edwards et al., 2013; Kaiser et al., 2016; Whalley et al., 2016). Thames et al. (2020) found evidence of missing OHR between measurements and an observationally-constrained box model during the first three ATom deployments. Chen et al. (2019) compared calculated OHR from a global model to OHR determined from a suite of VOCs but did not have measurements of OHR itself. Ferracci et al. (2018) explored the found that impact of missing OHR estimated from surface observations could result in a small increase in the modeled global OH levels methane lifetime. Safieddine et al. (2017) and Lelieveld et al. (2016) presented the first global model simulations of OHR but with minimal only and qualitative comparison to observations observational evaluation. No study has quantitatively compared simulated and observed remote OHR in a global model in an effort to constrain the OH sink.

The ATom campaign (Wofsy et al., 2018) provides an unprecedented opportunity to evaluate test models OH in the remote atmosphere with a detailed suite of chemical observations. We simulate the first two deployments (ATom-1: July-August 2016, ATom-2: January-February 2017) using the GEOS-Chem chemical transport model (CTM) to simulate the first two deployments (ATom-1: July-August 2016, ATom-2: January-February 2017) with the goal of reducing our tool to explore potential sources of systematic errors that could explain the community-wide model overestimate in global mean the uncertainty in simulating remote tropospheric OH and underestimate of the methane lifetime. We specifically focus on include
model *validation-evaluation* with measurements of OHR, a relatively new constraint available for assessing *total* atmospheric oxidation capacity. To our knowledge, this is the first quantitative use of this measurement to evaluate a CTM.

2 Description of Model and Observations

2.1 The GEOS-Chem model

We use the GEOS-Chem global 3-D CTM in v12.3.0 (doi:10.5281/zenodo.2620535) driven by assimilated meteorological data from the Goddard Earth Observing System Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017). The native MERRA-2 model has a horizontal resolution of 0.5° × 0.625° and 72 vertical levels which we degrade to 2° × 2.5° and 47 vertical levels for use in GEOS-Chem. The midpoint of the first model layer is 58 m. We use timesteps of 20 min for chemistry and 10 min for chemistry and/or transport, respectively, as recommended by Philip et al. (2016). GEOS-Chem includes detailed treatment of HOx-NOx-VOC-halogen-aerosol chemistry with recent improvements for isoprene (Chan Miller et al., 2017; Fisher et al., 2016; Marais et al., 2016; Travis et al., 2016), peroxyacetyl nitrate (PAN) (Fischer et al., 2014) and halogen chemistry (Sherwen et al., 2016). The production of organic-organic aerosols is parameterized–calculated using fixed yields from isoprene, monoterpenes, biomass burning, and anthropogenic fuel combustion (Pai et al., 2019). Aerosol uptake of HO2 is parameterized with a reactive uptake coefficient (γ) of 0.2 (Jacob, 2000) to produce H2O (Mao et al., 2013). Aerosol thermodynamic equilibrium is calculated by ISORROPia II version 2.0 (Pye et al., 2009). Surface Methane–methane concentrations are prescribed monthly and calculated using prescribed spatially interpolated concentrations derived from monthly observations from the NOAA GMD flask network. We simulate the 2016-2017 period with an 18-month spin-up initialization period.

Global fire emissions for 2016 and 2017, at 3-hourly resolution (Mu et al., 2011), for 2016 and 2017 are from the Global Fire Emissions Database (GFED4s; van der Werf et al., 2017). The GFED4s burned area (Giglio et al., 2013) includes a parameterization of small fires (Randerson et al., 2012). Biogenic VOC emissions of VOCs are from MEGANv2.1 (Guenther et al., 2012; Hu et al., 2015). Global anthropogenic emissions are from the Community Emissions Data System (CEDS) inventory (Hoesly et al., 2018), overwritten by ethanol from the POET inventory (Olivier et al., 2003; Granier et al., 2005), ethane from Tzompa-Sosa et al. (2017), and regional inventories for the United States (NEI11v1, Travis et al., 2016), Canada (CAC, https://www.canada.ca/en/services/environment/pollution-waste-management/national-pollutant-release-inventory.html), Mexico (BRAVO, Kuhns et al., 2003), Europe (EMEP, http://www.emep.int/index.html), Asia (MIX, Li et al., 2017), and Africa (DICE, Marais and Wiedinmyer, 2016). Lightning emissions are constrained with satellite data according to Murray et al. (2012) with a revised global flash rate of 280 mol NO flash⁻¹ (Marais et al., 2018) for a source strength of 6.0 Tg N yr⁻¹. Air-sea exchange is calculated for We emit acetaldehyde (Millet et al., 2010), acetone (Fischer et al., 2012), and dimethyl sulfide (Breider et al., 2017) from air-sea exchange of VOCs produced from biogenic activity in the oceans. All
emissions are processed using the Harvard Emissions Component (HEMCO, Keller et al., 2014). Table 1 provides the 2016 emission budget for CO and NOx.

We expand the standard simulation (which includes only background prescribed methanol concentrations) to include methanol emissions and chemistry, as well as and emissions and chemistry of unsaturated C2 compounds. Air-sea exchange of methanol is specified using the methodology of Millet et al. (2008) with a constant seawater concentration of 142 nM. Terrestrial biogenic methanol emissions are from MEGANv2.1 and anthropogenic and biomass burning emissions are from the inventories described above. We likewise include biomass burning and anthropogenic emissions of ethyne (C2H2) and ethene (C2H4) along with terrestrial biogenic emissions of C2H4 as above. Oxidation of C2H2 by OH proceeds according to the Master Chemical Mechanism (MCM) v3.3.1 (Jenkin et al., 1997; Saunders et al., 2002; Jenkin et al., 2015), via: http://mcm.leeds.ac.uk/MCM. Simplified C2H4 chemistry is included based on Lamarque et al. (2012) with an updated OH rate constant from the MCM v3.3.1. Table S4-S1 shows the reactions and species included for unsaturated C2 compounds. The standard model does not consider the OH reactivity of a subset of organic acids (RCOOH) from the oxidation of VOCs oxidation. We implement oxidation of RCOOH and evaluate the impact of excluding this species, which is minor, in Table S5-S2 and Fig. S8S1. The model concentration of H2 is fixed at 500 ppt, consistent with observed H2 from ATom-1 and ATom-2 (520 ppt).

The GEOS-Chem global mean simulated tropospheric OH ([OH]GM) is calculated as an air-mass weighted quantity below the tropopause (see http://wiki.seas.harvard.edu/geos-chem/index.php/Mean_OH_concentration_for_the_calculation_methodology). The [OH]GM for 2016 is 11.9×10^5 molecules cm$^{-3}$ and the corresponding methane lifetime (τ_{CH_4}) is 9.0 years. This result is comparable to the multi-model [OH]GM mean OH of 11.1×10^5 molecules cm$^{-3}$ and τ_{CH_4} of 9.7 years from Naik et al. (2013). The best observationally-derived estimate of τ_{CH_4} is 11.2 ± 1.3 years (Prather et al., 2012), suggesting a model bias here of 20%. We calculate the ratio of total 2016 airmass-weighted OH in the Northern (>0°N) to Southern Hemisphere (<0°S). The ratio calculated in this manner of 1.14 is typical of atmospheric mean OH in the Northern to Southern Hemisphere is 1.12, which exceeds observationally-derived ratios of 0.85 to 0.97 (Montzka et al., 2000; Patra et al., 2014) but is improved and is at the low end of previous model estimates ranging from 1.13- to 1.42 (Naik et al., 2013).

2.2 Calculated OH reactivity

The atmosphere contains thousands of reactive organic compounds (Goldstein and Galbally, 2007). Transforming the concentrations of these compounds (as well as those for inorganics that react with OH) to calculated OH reactivity (cOHR) ranks them in order of their importance as OH sinks. The cOHR from a model (cOHRmod) can then be compared to cOHR from a suite of measurements (cOHRobs), where cOHR is defined by Eq. (1). Recent work from Chen et al. (2019) used
this framework to compare the reactivity of a suite of VOCs from a model to observations and found that biogenic species dominate emitted VOC reactivity over North America.

\[
cOHRI(s^{-1}) = k_{OH,CH_4}[CH_4] + k_{OH,CO}[CO] + k_{OH,NO_x}[NO_x] + \sum k_{OH,VOC}[VOC] + \cdots.
\]

(1)

Figure 1a shows the simulated annual surface cOHRI mod for the year 2016 based on the ninety simulated constituents listed in Table S4S3. Approximately 80 % of air-mass weighted Three quarters of cOHRI mod resides below 3 km (Fig. 1b). The average annual surface cOHRI mod is 1.8 s\(^{-1}\) with approximately 40 % present over the ocean (average of 1.0 s\(^{-1}\)). Higher cOHRI mod occurs in coastal outflow regions and the lowest cOHRI mod is present over the Southern Ocean. The maximum cOHRI mod (48 s\(^{-1}\)) appears over northern China due to high concentrations of SO\(_2\), NO\(_x\), and CO. In the tropics, elevated cOHRI mod is mainly due to isoprene, other biogenic species, and CO.

2.3 ATom observations

The NASA ATom field campaign (Wofsy et al., 2018) sampled the remote troposphere with the DC-8 aircraft over the Atlantic and Pacific Oceans from approximately 200 m to 12 km altitude over the Atlantic and Pacific Oceans in four seasons from 2016 to 2018 with the goals of improving the representation of trace gases and short-lived greenhouse-gases in models of atmospheric chemistry and climate. We use data here from the first two deployments (ATom-1 and ATom-2) which sampled winter and summer conditions in each hemisphere. We consider only observations over the ocean (72 % of measurements). Flight tracks for ATom-1 with land-crossings removed are shown in Fig. 2; ATom-2 flight tracks are nearly identical. We sample The model is sampled along the flight tracks and both the model and observations are averaged to the model grid and timestep for all following comparisons. The aircraft carried an extensive chemical payload including observations of water vapor, methane, CO, OH, NO\(_x\), VOCs, photolysis frequencies, and OHR. Table 2 describes the observations used in this work.

3 Comparison of simulated and measured OH

We compare observed and simulated OH concentrations to evaluate whether differences are consistent with the bias in \(\tau_{CH_4}\) discussed in Section 2.1. Figure 3 shows modeled OH sampled along the flight tracks and compared to observed OH (Table 2) for ATom-1 (boreal summer 2016) and ATom-2 (boreal winter 2017) in each hemisphere from the lowest sampled altitude (~200 m) to 10 km. There is no evidence of a systematic overestimate in modeled OH throughout the troposphere. Figure S2 shows similarly good agreement across the observed frequency distributions of OH concentration. A model OH overestimate is apparent in the lowest two kilometers in the Northern Hemisphere summer, which could indicate excessive OH production or an underestimated sink from emissions of ocean VOC emissions. Global models tend to overestimate OH against constraints from methyl chloroform observations (Shindell et al., 2006; Naik et al., 2013; Nicely et al., 2017) but we find here that tropospheric OH is successfully simulated within observational uncertainty (accuracy of 74% to 1.35%, 2\(\sigma\) confidence level). This result from a global CTM is consistent with good agreement between OH measurements and a box
model during NASA’s Pacific Exploratory Mission - Tropics (PEM-Tropic B) campaign in the clean remote Pacific (Tan et al., 2001) and a similar analysis by Brune et al. (2020) for ATom 1 through 4.

We calculate the air-mass weighted column average OH (OH_{col}) from the median OH concentrations in Fig. 3 and the total tropospheric air mass over the oceans, a metric of the performance of total-tropospheric model oxidation. The model OH_{col} concentration is within approximately 20% of observations during both deployments, with minimal bias (<1%) during Northern Hemisphere summer when OH is at a maximum. During ATom-1, Modeled–modeled OH_{col} in the Northern (Southern) Hemisphere is 44.5±40 44.4±39 (11.4±30)×10^6 molecules cm^{-3} compared against the observations of 44.4±39 (1.06±1.1)×10^6 molecules cm^{-3} during ATom-1. Similarly, during ATom-2, OH_{col} is 0.99±1 0.99±1 (22.6±75)×10^6 molecules cm^{-3} in the model and compared against observations of 0.89±8 (22.46±8)×10^6 molecules cm^{-3} during ATom-2 in the observations. Model OH_{col} is within 30% of observations during both deployments, with the smallest bias in the total column during Northern Hemisphere summer when OH is at a maximum. As discussed above, model OH is overestimated in the lowest two kilometers during this period but this bias is minimized in the column average. Figure S1 shows the observed frequency distributions of OH which are well captured by the model. The observed air-mass-weighted ratio of Northern to Southern hemispheric OH, calculated in the same manner as described in Section 2, is over the ocean of 42.1±8 during ATom-1 and 0.36±5 during ATom-2 indicates a strong seasonality that the model successfully captures (ratios of 3.4 and 0.34) largely reproduces (ratio of 2.3 and 0.4). This ratio is less than the ratio of OH_{col} because there is approximately 30% less air mass over the ocean in the Northern Hemisphere ocean than over the Southern Hemisphere. This seasonality, and which is masked by calculations performed on an annual mean basis (as given in Section 2.1). The seasonality in this ratio reported by Wolfe et al. (2019) for satellite-derived OH during ATom-1 and ATom-2 is more modest because they calculate a daily average OH that extends to the tropopause while here we use largely daytime aircraft observations below 10 km, because they account for seasonal differences in remote tropospheric air mass between each hemisphere. The successful simulation shown here is consistent with previous success in representing remote OH measurements with simple models during NASA’s Pacific Exploratory Mission - Tropics (PEM-Tropics) B campaign in the clean remote Pacific (Tan et al., 2001).

While the model is in good agreement with OH measurements during ATom but the uncertainty in the observations is similar to a recent estimate of the GEOS-Chem model uncertainty for OH of 25 to 40% (Christian et al., 2018). In addition, the lifetime of OH is short (seconds) and thus atmospheric concentrations are highly variable. Thus, as a result, the comparison in Fig. 3 is direct model comparison to measured OH is insufficient to demonstrate model skill in capturing the broader remote oxidation capacity. Good agreement between the model and observations could also result from compensating errors in the
OH source and sink. We support the model comparison in Fig. 3 with an evaluation of the key factors governing OH production and loss measured by ATom and investigate potential missing sources of VOCs from the ocean during summertime.

4 Constraints on the remote source of OH

Tropospheric OH is primarily produced from the photolysis of ozone in the presence of water vapor (Monks, 2005) and is enhanced over the ocean by nitrogen oxides (NOx) from lightning and transport from continental sources. Methane, CO, and VOCs provide the main OH sinks (Murray et al., 2014). We compare the model to ATom-1 and ATom-2 observations of the drivers of the tropospheric OH source (water vapor, ozone, ozone photolysis frequency, NOx) to determine possible broader sources of model bias.

Figure 4 compares observations of water vapor mixing ratios to the NASA MERRA-2 reanalysis product used to drive the model—GEOS-Chem. MERRA-2 was generally successful at reproducing observations of tropospheric water vapor (Gelaro et al., 2017) and we find similar good model-measurement agreement here for ATom-1 and ATom-2 with no apparent biases. Figure 5 compares median ozone photolysis frequencies to evaluate the model treatment of the incoming actinic flux and the resulting ozone photolysis frequency \((f(O^1D))\) in Figure 5 compares median ozone photolysis frequencies to evaluate the model treatment of the incoming actinic flux based on MERRA-2 cloud fractions and optical depths. Hall et al. (2018) showed that GEOS-Chem actinic fluxes in both cloudy and clear skies were well simulated during the ATom-1 deployment. The simulations shown in Figure 5 also show the minimal model bias in \(f(O^1D)\) and successfully represent the observed seasonality with average summertime values below 3 km \((~3.4 \times 10^{-5} \text{ s}^{-1})\) approximately 2.54 times higher than in winter \((~0.74 \times 10^{-5} \text{ s}^{-1})\).

The GEOS-Chem ozone simulation has been extensively tested against ozonesondes, aircraft, and satellite observations and shows no systematic overestimates—unbiased (Hu et al., 2017) with the exception of continental surface concentrations (Fiore et al., 2009; Travis et al., 2016). Figure 6 shows that the highest (54-63 ppb) and lowest (14 ppb) tropospheric ozone observed during ATom-1 and ATom-2 occur during summer in the mid to upper troposphere and marine boundary layer, respectively. Ozone is less variable in wintertime with values between 30-50 ppb. The model generally reproduces the magnitude and shape of the tropospheric ozone profiles as well as the seasonality observed during both deployments. There is no evidence of the systematic Northern Hemisphere ozone bias previously seen in global model evaluations (Young et al., 2013) that was suggested as a cause of excessive OH (Naik et al., 2013). This may be reflected in the improved model interhemispheric OH ratio (Section 2.1) seen here over previous studies. Upper tropospheric ozone is
overestimated in wintertime but Northern Hemisphere summer, but this would not have a large influence on primary OH production (or the methane lifetime) at these altitudes (Brune et al., 2020).

OH is enhanced in the presence of NO$_x$ (≡NO\rightarrow-NO$_2$). We use NO$_y$ here (Fig. 7(a)) as our constraint as observed NO$_2$ was generally near the detection limit in both deployments. We also show NO (Fig. 7(b)) given its key role in secondary OH production. The model represents reproduces the maximum in Maximum NO$_y$ occurs in the Northern Hemisphere upper troposphere in summertime due to lightning (Marais et al., 2018) and the model captures this enhancement. Observations show little variability between summer and winter NO$_y$ in the lower troposphere. Southern Hemisphere NO$_y$ is underestimated in the lowest few kilometers in both seasons which could be due to missing ocean production of methyl nitrate (Fisher et al., 2018). The largest model discrepancy is an overestimate of approximately 50-70 % in the Northern Hemisphere wintertime. Observations of NO reflect the structure of NO$_x$, with the exception of in Northern Hemisphere winter. Figure S2 shows that the model NO$_y$ overestimate in this period is driven by a high bias for nitric acid (HNO$_3$).

4.1 Causes of the remote model bias in NO$_y$

Figure 8 shows that the model NO$_y$ overestimate in this period winter is primarily caused by nitric acid (HNO$_3$). Excessive remote HNO$_3$ is a long-standing model deficiency (Bey et al., 2001; Staudt et al., 2003; Brunner et al., 2003, 2005). The model bias identified here is unlikely to result from overestimated continental emissions due to the short lifetime of NO$_y$ against deposition (~3 days in the Northern Hemisphere winter). Models suggest that less than 40 % of emitted NO$_x$ in the U.S. is exported downwind (Dentener et al., 2006; Zhang et al., 2012). However the standard model configuration here does not address the large possible bias in the U.S. anthropogenic NO$_x$ inventory of ~40 % (Anderson et al., 2014; Travis et al., 2016) or the downward trend in NO$_x$ emissions from Asia of ~30 % since 2011 (Krotkov et al., 2016). As expected, Scaling scaling Asia and U.S. NO$_x$ emissions by these percentages improves the model bias in winter by only 15 % below 3 km (Fig. 8S2). Recent improvements to the simulation of continental wintertime HNO$_3$ (Jaeglé et al., 2018) would similarly be expected to have a marginal effect in our study region.

Kasibhatla et al. (2018) showed that acid displacement of chloride (Cl$^-$) by HNO$_3$ on seasalt aerosol-ss (SSA) could resolve model overestimates of gas-phase HNO$_3$ in the marine boundary layer using the GEOS-Chem model. A more comprehensive simulation of this process was developed by Wang et al. (2019). Figure 8S2 shows sensitivity tests with the mechanism from Wang X. et al. (2019) incorporated into our simulation of this mechanism overin the Northern Hemisphere—in winter using the mechanism from Wang X. et al. (2019). Their model configuration exhibits a higher larger ozone and smaller NO$_y$ bias when compared to our simulation of the wintertime ATom-2 measurements shown in Figs. 6 and 7; we focus here on relative changes associated with the acid displacement of chloride. RemoteModel HNO$_3$ decreases by approximately 50 approximately 100 ppt below 4-3 km which, combined with reduced emissions, would significantly improve the wintertime NO$_y$ bias in this region but although the free tropospheric bias remains. The displacement of Cl$^-$ described above generates
Photolysis of particulate nitrate on coarse-mode SSA (NITs). Photolysis of nitrate resulting from the acid displacement of Cl⁻ by HNO₃ described above has been proposed as a source of NOₓ to the marine boundary layer (Ye et al., 2016; Romer et al., 2018) which could counteract the reductions from acid displacement of Cl⁻ by HNO₃. Kasibhatla et al. (2018) implemented photolysis of NITs produced from this mechanism to generate NO and HONO in the marine boundary layer. We include NITs photolysis add this process to the simulation of Wang X. et al. (2019) at a photolysis frequency of 50 times that of HNO₃ (Kasibhatla et al., 2018). As shown in Fig. 8S2 shows that this mechanism is consistent with observations of NO and ozone below 1-3 km and does not further bias HNO₃ but results in increased free tropospheric NOₓ bias due to PAN formation and exacerbates the overestimate in upper tropospheric ozone during this season.

The difficulty in resolving the bias in wintertime model NOₓ appears to be may be due to an overestimate of the overall NOₓ lifetime as demonstrated by our sensitivities discussed above. Luo et al. (2019) proposed a new treatment of model wet scavenging using MERRA–spatially and temporally varying cloud condensation water content and an empirical description of tracer HNO₃ wet removal. This scheme, as a mechanism to drastically reduce persistent model biases in model surface nitric acid and nitrate at the surface in the over the United States (Zhang et al., 2012; Heald et al., 2012). Preliminary tests (Fig. S2) show As shown in Fig. 8, that the revised wet scavenging according to Luo et al. (2019) scheme could fully resolve the remote bias in HNO₃ throughout the troposphere. However, this parameterization has only received limited testing over the surface of the continental U.S. and more testing–evaluation is needed before it can be adopted widely in models.

The effect of increased scavenging could have complex effects on global OH due to reduced oxidant loss from heterogeneous chemistry. We find that scaling NOₓ, implementing chlorine chemistry, and revised wet scavenging during both deployments (with the exception of Northern Hemisphere winter) have negative impacts on the modeled OH along the flight tracks of -1 %, -7 %, and -4 %, respectively. The addition of NITs photolysis to the chlorine chemistry simulation increases OH by 10% over the base model. In Northern Hemisphere winter only, revised wet scavenging increases OH by 16 % possibly due to the effect of reduced heterogeneous chemistry. Overall, the annual mean impact of revised wet scavenging from our preliminary sensitivity tests is a -3 % reduction in global mean airmass-weighted OH and a +2 % increase in the model methane lifetime. Another area of intensive current research. For example, recent improvements to N₂O₅ hydrolysis in cloud water (Holmes et al., 2019) would further increase tropospheric levels of HNO₃ over the current simulation shown here, complicating the results from Luo et al. (2019). Future work should further assess both the validity of the MERRA-2 cloud water product and the robustness of the scavenging mechanism from Luo et al. (2019), combined with improvements to cloud heterogeneous chemistry (Holmes et al., 2019), in the context of all components of NOₓ and particulate nitrate throughout the troposphere. These preliminary sensitivities suggest that resolving bias before any conclusions can be reached about the impact of resolving the model wintertime Northern Hemisphere NOₓ bias in the Northern Hemisphere could partially resolve overestimates of on–global mean OH on an annual basis if the photolysis frequency of NITs is smaller than 50 times the rate.
of HNO₃ photolysis. Recent work from the NASA KORUS-AQ field campaign found that a rate of 1 to 30 might be more consistent with observational constraints (Romer et al., 2018).

Overall, the main drivers of remote tropospheric OH production are well-simulated in our base-case simulation are in good agreement against the with observations from the first two ATom deployments with the exception of an NOₓ overestimate in the Northern Hemisphere wintertime. Acid displacement of Cl⁻ by HNO₃ on SSA (Kasibhatla et al., 2018; Wang X. et al., 2019) may somewhat improve remote HNO₃ below 3 km, but if the resulting nitrate NITs -undergoes photolysis at a rate of 50 times that of HNO₃ (Kasibhatla et al., 2018) the impact on remote NOₓ may be negligiblelessened due to the formation of PAN. However, both mechanisms require significant further study as tropospheric halogen sources and chemistry and the rate and products of the photolysis of photolysis frequency of NITs are highly uncertain. A new parameterization of model wet scavenging (Luo et al., 2019) would greatly improve modeled remote HNO₃ and NOₓ but also requires substantial further testing against observations of both cloud water and chemical tracers, in combination with recent work on in-cloud hydrolysis of N₂O₅ (Holmes et al., 2019) requires further testing and evaluation of its broader impacts on atmospheric chemistry.

5 Constraints on the remote sink of OH

The primary sinks of tropospheric OH are CO, methane, and VOCs; OHR measurements represent the sum effect of these species. Previous aircraft measurements of OHR provided evidence of missing reactivity in the remote atmosphere linked to unknown highly reactive VOCs (Mao et al., 2009). During ATom, Thames et al. (2020) measured OHR over the Atlantic and Pacific oceans and determined that missing OHR also correlated with oxygenated VOCs, suggesting the presence of unknown ocean emissions. We compare directly measured OHR during the ATom-1 and ATom-2 deployments to calculated OHR (cOHRₗₜₜ) according to Eq. 1 from the full ATom measurement suite and from the model (cOHRₗₜₜ) sampled along the flight path. Table 2 describes the observations used to calculate cOHR.

Figure 8-9 shows the comparison of OHR and cOHR from the model and observations. The observed cOHR is typically less than observed OHR. Along the flight tracks, cOHRₗₜₜ and cOHRₗₜₜ show good agreement and high strong correlation (r²=0.97 95 for ATom-1 and ATom-2). The model underestimates cOHRₗₜₜ by up to up to 15-12 % in the lowest 3 km; we discuss this difference further below. The measured relationship between OHR and cOHRₗₜₜ is weaker (r²=0.72 53 for ATom-1, r²=0.75 56 for ATom-2) and cOHRₗₜₜ is less than OHR below 3 km. There is an enhancement in OHR near the surface not present in cOHRₗₜₜ by approximate0.2 to 0.46 s⁻¹ in the Northern Hemisphere and 0.4 s⁻¹ in the Southern Hemisphere. Thames et al. (2020) showed that median missing reactivity (between OHR and an observationally-constrained box model) below 4 km during the ATom-1, ATom-2, and ATom-3 deployments was between 0.2 and 0.8 s⁻¹. They provided statistical evidence that while near the level of the instrument accuracy, missing OHR in the marine boundary layer was statistically significant. We find that the missing OHR is ~30% discrepancy is not associated with acetonitrile or CO (r²<0.032) indicating that biomass
burning is not the cause. Acetaldehyde in Northern Hemisphere summer has the strongest relationship with the missing reactivity-OHR ($r^2=0.4219$, p-value $<< 0.01$, Fig. S3) which suggests a potential role for unmeasured reactive VOCs or their oxidation products from the ocean, as also suggested by Read et al. (2012) and Thames et al. (2020).

Ocean emissions of a variety of VOCs have been suggested as a source may be a source of remote secondary organic aerosol (Gantt et al., 2010; Kim et al., 2017; Mungall et al., 2017) but their impact on remote reactivity has not been quantified. Read et al. (2012) found that missing model oxygenated VOC (OVOC) in the remote marine tropical atmosphere (mainly acetaldehyde) may cause up to an 8% underestimation of the model global methane lifetime due to missing cOHR$_{mod}$. Our base simulation, described in Section 2.1, only includes air-sea exchange of acetone, acetaldehyde, methanol, and dimethyl sulfide and methanol. We test determine whether additional compounds emitted from the ocean, but not generally included in models, could increase cOHR$_{mod}$ and improve reconcile the observed discrepancy described above. We follow the standard methodology for air-sea exchange described in Millet et al. (2008) to include emission of the species listed in Table 3 using available measurements measured seawater concentrations, of each species in seawater, with the addition of isoprene implemented as a direct emission according to Arnold et al. (2009). As shown in Table 3, air-sea exchange represents a net sink of VOCs on an annual basis (-68 Tg C yr$^{-1}$) but this is largely driven mainly due to ocean uptake of acetone which is not a significant negligible component of cOHR.

Interfacial photochemistry may provide an additional abiotic source of abiotic VOCs from the ocean. This source is treated separately from air-sea exchange as described above but ocean uptake may still act on these emissions. We model abiotic ocean VOC emissions of VOCs according to Brüggemann et al. (2018) by applying species-specific emission factors to the monthly ocean photochemical potential derived in their study. We use the emission factor appropriate for the upper bound of this source according to Brüggemann et al. (2017) (Table S2S4). Table 4 provides a breakdown of these additional VOCs with a total annual emission of 28 Tg C yr$^{-1}$.

Figure 9-10 shows the annual mean impact of all ocean emissions described in Tables 3 and 4 (including an adjustment to the acetaldehyde seawater concentration described below in Section 5.1) on cOHR$_{mod}$ by turning off those ocean sources in a one-year simulation. Average annual surface cOHR$_{mod}$ over the ocean increases by 10% over the base simulation and 15% over the simulation with no ocean emissions. The largest increases occur in regions of higher biogenic activity along coastlines and in the Southern Ocean due to the adjustment to acetaldehyde emissions discussed in Section 5.1. The incremental impact of the additional ocean emissions over the base simulation is shown in Fig. S43. Without any ocean emissions, global mean OH would be 3% greater than in the case with comprehensive treatment of ocean VOC-treatment. Figure 8-9 shows that along the flight tracks, cOHR$_{mod}$ increases below 3 km by approximately 3-14 % 0.1 s$^{-1}$ in summer and 0.2 s$^{-1}$ in winter which reduces
the model bias against cOHR\textsubscript{obs}. However the majority of the added species (Table 3 and 4) were measured during ATom and would therefore contribute to cOHR\textsubscript{obs} and cannot explain the gap in OHR.

We evaluate the impact of further expanding the oceanic source of reactive VOCs to reconcile the discrepancy between cOHR\textsubscript{obs} and OHR in a similar manner to Mao et al. (2009). Here, we test a source of alkanes as previously suggested by Read et al. (2012), using the model species ALK4 (\textgreater{}C\textsubscript{4} alkanes) that has a calculated lifetime of less than two days in the Northern Hemisphere summer (\(k_{OH} = 2.3 \times 10^{12}\) cm3 molecules-1 s-1 at 298 K). Known alkanes have been measured in seawater (Plass - Dülmer et al., 1993) but the implied source is small. Consequently, we use the ALK4 species for testing purposes only. Generating the missing OHR in this way requires an implausibly large oceanic ALK4 source of 340 Tg C yr-1 compared against all other sources of VOCs in the model (Tables 3 and 4). A sensitivity test with this source, shown in Fig. 89, largely closes the gap between cOHR\textsubscript{mod} and OHR but would result in a 20 to -50 % reduction in OH along the flight tracks below 3 km, biasing the model OH simulation (Fig. 3) and degrading model NO\textsubscript{y} (Fig. 7) due to increased PAN formation.

Thames et al. (20192020) found that a partial recycling of OH would be required to maintain consistency with observed OH and HO\textsubscript{2} during ATom when adding an unknown source of reactivity. If the unknown VOC we suggest includes some OH recycling in its oxidation mechanism, and does not produce PAN, the model bias in OH could be mitigated. We use isoprene as our test of a more reactive VOC that includes OH recycling test an by additional source of more reactive VOC including OH recycling using isoprene as the new test species by scaling the ALK4 emission source by the reaction rate of isoprene with OH to obtain a more reasonable emission source of approximately 44-9 Tg C yr-1. Figure 7-9 shows that this source actually has a minimal impact on cOHR\textsubscript{mod} of no more than 0.1 s-1. Only one third of the additional This is due to the increased reactivity cOHR\textsubscript{mod} from our ocean source of ALK4 is attributable to ALK4, the rest is due to CO, acetaldehyde, and other aldehydes in our test with ALK4 that contribute over half of the increase in cOHR\textsubscript{mod} from both increased chemical production and longer lifetimes from suppressed OH. Therefore a larger source of even a reactive VOC like isoprene is required to close the gap in missing OHR. Reconciling cOHR\textsubscript{mod} and OHR is therefore difficult using the existing suite of ATom measurement constraints and possible known precursors VOC precursors; further investigation of the accuracy of the OHR measurements in challenging remote conditions may be needed.

We also examine whether the model is able to capture accurately represents the components of cOHR\textsubscript{obs} and explore potential additional sources of missing cOHR\textsubscript{mod}. Figures 40-11 and 44-12 show the components of median cOHR in the base simulation below 3 km for each deployment. The composition of cOHR\textsubscript{mod} is well represented by the model generally consistent with cOHR\textsubscript{obs}. CO and methane make up half or greater of both cOHR\textsubscript{obs} and cOHR\textsubscript{mod} with a larger contribution in winter when the lifetime of CO is long. There is no systematic underestimate in CO as might be expected from the general model bias described by Shindell et al. (2006), with the exception of a 10 % underestimate during Northern Hemisphere winter when the lifetime of CO is longer and biases in continental sources could have a larger impact. During the ATom-1 deployment, cOHR\textsubscript{obs} is 50 % higher in the Northern Hemisphere (summer) than in the Southern Hemisphere (winter)
primarily largely due to the increase in methyl hydroperoxide (MHP) concentrations and the higher reactivity of methane. During the ATom-2 deployment, cOHR\textsubscript{obs} is 60\% higher in the Northern Hemisphere (winter) than in the Southern Hemisphere (summer) due to the large contribution of CO in Northern Hemisphere wintertime. The model successfully represents the observed seasonality during both deployments but underestimates cOHR\textsubscript{obs} by 12 \% in the Northern Hemisphere and 9 \% in the Southern Hemisphere.

The difference between measured and simulated cOHR is largely mainly due to difference between measured and simulated concentrations of OVOCs. These compounds contribute on average 26-25 \% to cOHR\textsubscript{obs} but only 17 \% to cOHR\textsubscript{mod}. The largest difference in reactivity is due to the large enhancement in measured acetaldehyde compared with model simulated by underestimated model from acetaldehyde ions. Differences between simulated and measured MHP (Fig. S95) are also important and could-and may reflect an error in the calculated MHP lifetime (Müller et al. 2016). However, the differences could however reflect bias-interferences in the MHP measurements in the boundary layer (Supplement, Section 96) have yet to be resolved and therefore. Due to the measurement uncertainty we do not explore further evaluate causes of underestimated MHP here. However, inability to reconcile remote acetaldehyde observations with models is a long-standing problem and has been previously observed over the remote ocean (Singh et al., 2001; Singh et al., 2003; Millet et al., 2010).

Singh et al. (2001) proposed that a large, diffuse, and as-yet unknown source of oxygenated compounds such as acetaldehyde must exist in the troposphere. Using observations from Cape Verde, Read et al. (2012) speculated that underestimated model acetaldehyde could be due to alcanes from terrestrial or ocean biogenic sources. We do consider potential missing sources of model acetaldehyde constrained by the ATom measurements over the ocean and assess their potential impact on simulated OH and CO in Section 65.1.

65.1 Evaluation of the remote sources of acetaldehyde

Inability to reconcile remote acetaldehyde observations with models is a long-standing problem (Singh et al., 2001; Singh et al., 2003; Millet et al., 2010; Nicely et al., 2016). Singh et al. (2001) proposed that a large, diffuse, and as-yet unknown source of OVOCs such as acetaldehyde must exist in the troposphere to solve this discrepancy. Read et al. (2012) determined that missing cOHR\textsubscript{mod} from OVOCs in the marine tropical atmosphere (mainly acetaldehyde), possibly from terrestrial or ocean sources of alcanes, could cause up to an 8\% underestimation of the methane lifetime. Nicely et al. (2016) showed that constraining a box model with observed acetaldehyde reduced tropospheric column OH by 9\% and that this acetaldehyde bias was present across eight different CTMs. Therefore, understanding the source of missing acetaldehyde may be part of the cause of the multi-model bias in the methane lifetime and global mean OH.

Figure 42-13 compares the model simulation of acetaldehyde against observations. Average observed concentrations peak in the Northern Hemisphere during ATom-1 with an average mixing ratio of 250-230 ppt below 3 km and 100 ppt above 3 km despite a lifetime of only several hours in summer. The maximum model underestimate occurs during this period. Observed
concentrations are at a minimum during the ATom-2 deployment indicating a strong seasonality in the source. In each deployment, concentrations remain as high as 70-100 ppt as far south as 60°S (Fig. S64) which the model does not reproduce. There is no apparent difference in model bias between observations over the Atlantic or Pacific Ocean (Fig. S87). The model underestimates acetaldehyde on average by more than a factor of two (60 to 90 % (~50 to 200 ppt)) below 3 km and does not capture the observed elevated levels throughout the troposphere, which could support the hypothesis of a missing long-lived precursor suggested by Singh et al. (2001).

In earlier studies, measurement artifacts and uncertainties prevented interpretation of model-measurement disagreements in the remote atmosphere. Previous measurements of acetaldehyde had biases due including difficulties in background subtraction (Apel et al., 2008) with uncertainties as high as 70 ppt (Apel et al., 2003) which hindered analysis of clean conditions. The ATom measurement uncertainty is reduced to 10 ppt/20 % (Table 2) and does not have the biases present in previous campaigns (Wang S. et al., 2019). Previous work studies have also disputed whether observed acetaldehyde was compatible with observed PAN due to the significant role of acetaldehyde as a PAN precursor through production of the peroxycetetyl (PA) radical (Singh et al., 2001; Singh et al., 2003; Millet et al., 2010). Global simulations estimate that acetaldehyde is responsible for approximately 40 % of the production of the PA radical production (Fischer et al., 2014), which would be even larger if acetaldehyde is underestimated as suggested above. severely underestimated by models. Reaction of the PA radical with HO₂ is more prevalent in remote environments and produces peroxycetic acid (PAA) preferentially over PAN, making PAA a more useful constraint for the conditions sampled by ATom. Figure 43-14 shows the average model underestimate model simulation of PAA against observations for each deployment. PAA is underestimated by the model below 3 km of 70 to 90 % (60 to 250 ppt), with the model biases for PAA and acetaldehyde both peak with similar magnitude largest model bias during Northern Hemisphere summer, consistent with the model bias in acetaldehyde. Fig. 14-15 shows the model comparison with PAN, which is generally well simulated during this period.

Wang S. et al. (2019) find using an observationally-constrained box-model to show that the levels of acetaldehyde observed during ATom are required to explain the observed PAA, although the reaction rate of PAA + OH may be three times has an uncertainty of approximately a factor of three larger (Wu et al., 2017) than the maximum value used by Wang S. et al. (2019) which could result in even better agreement between PAA and acetaldehyde in the marine boundary layer. We evaluate the standard GEOS-Chem acetaldehyde budget, described in detail by Millet et al. (2010), against available ATom observations. The 2016 model budget for the base simulation is provided in Table 5. Acetaldehyde is mainly produced from VOC oxidation of VOCs (ethane, propane, ≥C₄ alkanes, ≥C₃ alkenes, isoprene, ethanol) and is also directly emitted from the ocean, terrestrial plant growth, biomass burning, and anthropogenic activities. The model parameterization of acetaldehyde ocean emissions is dependent on satellite-based observations of colored dissolved organic matter (CDOM) (Millet et al., 2010).

The model free tropospheric bias suggests that long-lived oxidation of VOCs oxidation must be underestimated due to the short lifetime of acetaldehyde (< 1 day). The longest-lived precursor VOCs in the model are ethane (two months) and propane
Ethane has the highest concentration of any measured non-methane VOC during ATom with an average of 1.5 ppb below 3 km during the Northern Hemisphere winter. The model underestimates average ethane and propane below 10 km by up to 30% during ATom-1 and 80%-100% and 40%, respectively during ATom-2 (Figs. S86 and S97, respectively) which could be due to underestimated natural geologic and fossil fuel emissions (Dalsøren et al., 2018). However, the oxidation of these species is too slow to provide the missing model acetaldehyde and would only marginally increase remote background levels even if it was produced at higher yield at low-NOx (currently model yields are ~50% for ethane, ~20% for propane, Millet et al., 2010). The model chemical mechanism used for these species is provided in Table S35. One or more precursors able to resolve the model acetaldehyde bias must therefore be present at higher cumulative concentrations than ethane or propane. Modeled ALK4, parameterized as a butane/pentane mixture, maintains a high acetaldehyde yield at low-NOx and has a shorter lifetime (~5 days), contributing to a larger perturbation to atmospheric acetaldehyde levels than ethane or propane for a given concentration change. The sensitivity test adding substantial ALK4 emissions from the ocean described in Section 4 would not resolve the free tropospheric bias in the Northern Hemisphere result in only small improvement in the free troposphere but would result in a 50-40% overestimate below 1 km. Furthermore, ALK4 is also too short-lived to substantially perturb the remote atmosphere from a continental source, thus the potential missing acetaldehyde precursors (from either a marine or terrestrial source) must have a longer lifetime.

As shown in Table 5, primary ocean emissions of acetaldehyde in the base simulation (22 Tg yr⁻¹) are lower than previous work (57 Tg yr⁻¹) due to updates to the model parameterization of the water transfer velocity (Johnson, 2010). Additional independent estimates of the ocean source are also much larger (34 to 42 Tg yr⁻¹, Read et al., 2012; Wang S. et al., 2019). However, an increased primary ocean source would not address the bias in the free troposphere or in winter when biogenic activity from CDOM is zero in the model at high latitudes. Ship-borne measurements generally measure non-zero acetaldehyde seawater concentrations of approximately 5 nM (Read et al., 2012) and a recent trans-Atlantic campaign found that acetaldehyde concentrations from 47°S to 50°N did not always correlate with levels of CDOM (Yang et al., 2014). Therefore, we set a minimum seawater concentration of 5 nM in the model parameterization regardless of CDOM level. This change adds 2 Tg C yr⁻¹ in emissions and increases concentrations over the remote ocean in winter by up to 50 ppt.

Figure 42-13 shows the combined effect of adding new ocean VOCs in Section 4-5 and improving the seawater parameterization described above on modeled acetaldehyde (labelled as “Improve Ocean VOCs”). Although the direct ocean source in this work is lower than previous estimates as described above, the secondary source from precursor VOCs is enhanced. Of the additional marine VOCs described in Section 45, 25 Tg C yr⁻¹ produce acetaldehyde as an oxidation product (Tables 3 and 4). This is compared to 12 Tg C yr⁻¹ of direct emissions in the base model. These sources substantially increase average near-surface simulated modeled acetaldehyde below 3 km, with the largest improvement during winter (40-60 to -970 ppt) when atmospheric lifetimes are longer and the influence of the ocean can extend aloft. In summer, the average model increase below 3 km impacts of 10-60 is less than 20 ppt are limited to the lowest model layer due to higher OH concentrations.
Recent work over North America suggested that free tropospheric VOCs may be underestimated due to errors in model vertical mixing (Chen et al. 2019), but in Northern Hemisphere summer slower mixing would not be expected to compensate for the short lifetime of acetaldehyde in this region (~4 hours). Thus the pervasive model bias in the free troposphere cannot be explained by an increase in known direct or indirect ocean sources.

Photodegradation of organic aerosols (OA) is another potential source of oxygenated VOCs such as acetaldehyde to the troposphere (Kwan et al., 2006; Epstein et al., 2014; Wong et al., 2015; Wang S. et al., 2019). The source of secondary organic aerosols (SOA) is uncertain and it has been suggested that it to be up to four times larger than current estimates given an implied underestimate of the photochemical loss term (Hodzic et al., 2016). We test the potential impact of such a source on the model production of SOA by a factor of four to maximize the impact of R2 below.

We apply a photolysis frequency for OA of $4 \times 10^{13} \text{J}^{-1}$ (Hodzic et al., 2015) to the reactions R1 and R2 as an upper limit and describe the formulation of R1 and R2 below.

\[\text{OCPI} + h\nu = 0.5 \text{ALD2} \quad \text{(R1)} \]
\[\text{SOAS} + h\nu = 0.66 \text{SOAS} + \text{ALD2} \quad \text{(R2)} \]

The model species OCPI and SOAS represent the majority of modeled OA in the remote atmosphere. OCPI is aged (hydrophilic) organic carbon (12 g C mol$^{-1}$) and SOAS is SOA from all emission categories (150 g mol$^{-1}$). Both are assumed for the purposes of the sensitivity tests here to have an OA/OC ratio of 2.1. In R1, one molecule of carbon (0.5 ALD2) is produced per reaction. In R2, one acetaldehyde molecule (ALD2) is produced per reaction. The resulting impact on modeled acetaldehyde is only appreciable in the Northern Hemisphere winter (Fig. 12) when modeled aerosol amounts are highest and the lifetime of acetaldehyde is long. Given that this test represents an upper limit, we conclude that photolysis of organic aerosols cannot provide a sufficient source of acetaldehyde to reconcile the model with observations.

We consider whether an entirely unknown VOC with moderate lifetime and a high yield of acetaldehyde at low NOx could resolve the free-tropospheric model bias. We emit such a species with a lifetime of approximately one month against oxidation by OH, emissions of 100 Tg yr$^{-1}$ from either anthropogenic, biomass burning, or ocean sources, and a yield of 1 acetaldehyde molecule per reaction with OH. We do not test a terrestrial biogenic source here but expect the results would be similar to the biomass-burning case. These simulations result in average tropospheric concentrations of 1.2 to 4 ppb of the precursor VOC throughout the troposphere. The effect of the unknown VOC is compatible with the model simulation of OH (unlike the addition of oceanic ALK4 needed to reconcile OHR observations as described in Section 5). Summertime tropospheric OH below 3 km decreases by approximately 6% against ATom observations over the case with improved ocean emissions, well within measurement and model uncertainty. The maximum cOHR$_{mod}$ of this species is small (< 0.034 s$^{-1}$). The impact on
modeled acetaldehyde (Fig. 4213) is generally similar across all three source categories due to the long lifetime of this precursor. As shown in Fig. 42–13 and 43–14, the addition of this unknown VOC modestly improves the simulation of acetaldehyde and PAA everywhere but a large residual underestimate in Northern Hemisphere summer remains. The impact on PAN is minor with the exception of Northern Hemisphere winter (Fig. 4415), but this is likely driven by the model overestimate in NOy (Fig. 7, Section 4.1).

VOC emissions (Emission) inventories of VOCs are known to be incomplete, for example, missing emissions from volatile consumer products (McDonald et al., 2018) and biomass burning, or failing to identify as much as half of emitted VOCs from biomass burning (Akagi et al., 2011), both of which peak in summer. In the case of fire emissions, half of VOC emissions are unidentified (Akagi et al., 2011) and The average emission factor for unidentified VOCs from biomass burning roughly corresponds to 76–75 Tg yr⁻¹ of unidentified VOC, similar to our sensitivity tests of 100 Tg yr⁻¹ described above. However, recent attempts to quantify these unidentified VOCs from fire (Stockwell et al., 2015; Koss et al., 2018) find that newly identified compounds tend to be too reactive to impact the remote atmosphere, as needed here; however, but this work is ongoing and future efforts should investigate potential precursors of acetaldehyde that could be transported to the remote atmosphere. The missing source of precursor VOCs must would need to have substantial additional summertime emissions above and beyond the sensitivity tests shown in Fig. 42–13 to address the Northern Hemisphere summertime bias. The required magnitude of this perturbation will be is difficult to reconcile within known measurement and emission uncertainty constraints.

7.6 Conclusions

The rich-detailed set of chemical information available from the ATom field campaign provides the most comprehensive dataset ever collected to evaluate models in the remote atmosphere. The sampling strategy of collecting observations throughout the troposphere in multiple seasons is ideally suited for improving our understanding of tropospheric chemistry in a poorly observed region of the atmosphere. We use the first two deployments of the ATom field campaign during July-August 2016 and January-February 2017 to investigate sources of bias in model simulations of OH. Global models such as the GEOS-Chem CTM used here tend to overestimate the loss of methane by OH and underestimate CO which provides the main tropospheric sink of OH. Comparisons of the model with observations from the first two ATom deployments do not show systematic bias in the simulation of OH or the drivers of remote OH production (water vapor, photolysis of ozone, ozone and NOy) with the exception of wintertime NOy which is biased high by a factor two.

The model overestimate of wintertime NOy is largely attributable to nitric acid. This bias is not due to an anthropogenic inventory overestimate but may reflect insufficient wet scavenging as well as loss to seasalt aerosols by nitric acid, although the former mechanism may be counteracted by photolysis of the resulting nitrate aerosols. The impact of resolving this wintertime NOy bias on remote OH is uncertain but could partially improve the model overestimate of OH. Future work should
improve constraints on these mechanisms, which have all received only preliminary validation, and carefully examine their impact in the context of broader atmospheric chemistry, particularly NO$_x$ partitioning throughout the troposphere.

We present the first comparison of measured OH reactivity (OHR) from aircraft with a global model to evaluate the tropospheric sink of OH. We calculate OH reactivity (cOH$_{\text{obs}}$) from relevant species observed during ATom and compare this to cOH from the model (cOH$_{\text{mod}}$). Measured OHR is higher than cOH$_{\text{obs}}$ by approximately 30% to 0.4 s$^{-1}$ below 3 km. This missing OHR correlates with acetaldehyde during summer indicating a potential source of missing reactive VOCs, similar to the findings of Mao et al. (2009) for the NASA INTEX-B field campaign and Wang S. et al. (2020). The addition of a comprehensive set of ocean emissions of VOCs increases global mean cOH by 10% but cannot reproduce the observed OHR enhancement during ATom-1. Adding sufficient alkanes to the model to resolve this bias requires an improbably large ocean VOC source (340 Tg C yr$^{-1}$) and would degrade the model simulation of OH and NO$_x$. Only one third of the increase in cOH in this test is due to the alkanes, the rest is from oxidation products and changes in OH, therefore a more reactive VOC would still need to be emitted in large amounts.

The model successfully simulates the seasonality and hemispheric gradient in cOH but has a persistent underestimate of up to 15–12% in the lowest 3 km, primarily due to an–missing model acetaldehyde–underestimate. The model does not underestimate CO, with the exception of Northern Hemisphere winter which has been previously recognized by (Kopacz et al., 2010) and attributed to underestimated fossil fuel emissions. The inability to reproduce observations of remote acetaldehyde was first observed during the PEM-Tropics campaign (Singh et al., 2001; Singh et al., 2003; Millet et al., 2010) but the measurement was uncertain. Improvements in measurement precision and the accompanying measurement of PAA during ATom (Wang S. et al., 2019) strengthen the conclusion that there is a large amount of acetaldehyde present in the atmosphere that cannot be explained by current models. We investigate possible underestimates in known sources of acetaldehyde including VOC emissions of VOCs from anthropogenic, biomass, or oceanic sources or production from the photolysis of organic aerosols. No known source can fully resolve the bias in acetaldehyde throughout the troposphere, and particularly in the Northern Hemisphere summer. We consider the possibility that there is a large, diffuse source of unknown VOCs by implementing 100 Tg yr$^{-1}$ of such a compound from ocean, biomass burning, or anthropogenic sources. This hypothetical source modestly reduces the model acetaldehyde bias and is compatible with the simulation of OH and cOH; however, an additional source is required to resolve the largest bias in the Northern Hemisphere summer. Errors or omissions in the oxidation mechanism of known VOCs may–could be another source also contribute to this bias. For example, significant uncertainties exist in peroxyl radical (RO$_2$) chemistry for large RO$_2$ molecules (Praske et al., 2017), although the flux of carbon through a minor pathway would have to be large, restricting the possible known sources. Further laboratory and field observations are needed to understand which precursors and sources could lead to the sustained production of acetaldehyde observed during ATom and prior campaigns.
This study demonstrates that long-standing model biases in global mean OH are unlikely to be due to errors in simulating tropospheric chemistry over the ocean. This implies that a large bias must be present in OH production or loss over land and future work should focus on evaluating continental OH sources and sinks. Errors in modeled OH were recently investigated by Strode et al. (2015) and when overestimates related to production terms were corrected, model OH remained too high in the Northern Hemisphere, suggesting that future studies should focus on errors in OH loss.

Author Contributions. CLH and KRT designed the study and wrote the paper with input from the co-authors. KRT modified the code, performed the simulations and led the analysis. HMA, ECA, DRB, WHB, RC, JDC, BCD, GSD, JWE, SRH, EJH, SRH, MJK, KM, FLM, JP, TBR, ABT, KU, POW, GMW provided ATom measurements used in the analysis. XW provided the model code for the sensitivity runs including acid displacement of chloride on coarse-mode seasalt aerosols. TS, ME and PSK provided the model code for the photolysis of particulate nitrate. GL and FY were responsible for the code for the revised treatment of wet scavenging in the model. DBM and XC provided the methanol seawater concentration and assisted in the ocean budget analysis. SRA provided the biogenic ocean isoprene emissions. KRT and CLH wrote the paper with input from the co-authors.

Competing interests. The authors declare that they have no conflict of interest.

Funding. This study was supported by CLH and KRT acknowledge from the National Science Foundation (AGS-1564495) and the National Oceanic and Atmospheric Administration (NA18OAR4310110). DBM and XC acknowledge support from the National Aeronautics and Space Administration (NNX14AP89G). TBR was supported by the National Aeronautics and Space Administration (IAT NNH15AB12I) and by funding from the National Oceanic and Atmospheric Administration Climate Program Office and AC4 program. RH, EA, SRH, and KU were supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

SH and KU were supported by NASA (NNX15AG71A). GL and FY acknowledge support from the National Aeronautics and Space Administration (NNX17AG35G). Caltech authors acknowledge support from the National Aeronautics and Space Administration (NNX15AG61A).

Data Availability. The ATom-1 and ATom-2 data (Wofsy et al., 2018) are available here doi:10.3334/ORNLDAAC/1581.

Acknowledgements. We acknowledge helpful conversations and advice from Andrea Molod, Rachel Silvern, Eloïse Marais, Sarah Safieddine, Martin Brüggemann, Christian George and James Crawford. We acknowledge Tom Hanisco and Jason St. Clair for the use of his-their formaldehyde observations from ATom and Barbara Barletta and Simone Meinardi for their contribution to the UCI WAS measurements.
References

Table 1. Annual emissions of CO and NO$_x$ for 2016 used in the GEOS-Chem simulations.

<table>
<thead>
<tr>
<th>Emissions category</th>
<th>CO, Tg</th>
<th>Emissions category</th>
<th>NO$_x$, Tg N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel combustion1</td>
<td>590</td>
<td>Fuel combustion1</td>
<td>32.9</td>
</tr>
<tr>
<td>Biomass burning</td>
<td>311</td>
<td>Biomass Burning</td>
<td>6.0</td>
</tr>
<tr>
<td>NMVOC Oxidation</td>
<td>69889</td>
<td>Soil Emissions</td>
<td>7.8</td>
</tr>
<tr>
<td>Methane Oxidation</td>
<td>9368</td>
<td>Lightning emissions</td>
<td>6.0</td>
</tr>
<tr>
<td>Total</td>
<td>251628</td>
<td>Total</td>
<td>52.7</td>
</tr>
</tbody>
</table>

1Anthropogenic fossil fuel and biofuel combustion

Figure 1. Annual mean 2016 a) surface (log scale) and b) zonal mean cOHR calculated from individual model species. The GEOS-Chem species included in the calculation of cOHR are listed in Table S1.

Figure 2. ATom-1 ocean-only flight tracks colored by altitude.
Table 2. Description of ATom measurements used to evaluate the model simulation.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Instrument</th>
<th>Accuracy</th>
<th>Detection Limit/Precision</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHR</td>
<td>Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS)</td>
<td>0.8 s<sup>-1</sup></td>
<td>±± ±0.3-4 s<sup>-1</sup></td>
<td>Faloona et al., 2004; Mao et al., 2009</td>
</tr>
<tr>
<td>Water vapor</td>
<td>Diode laser hygrometer (DLH)</td>
<td>5%</td>
<td>0.1% or 50 ppb</td>
<td>Diskin et al., 2002; Podolske et al., 2003</td>
</tr>
<tr>
<td>NO<sub>y</sub></td>
<td>NOAA Nitrogen oxides and ozone (NO<sub>y</sub>O<sub>3</sub>)</td>
<td>0.05 ppb<sup>±2</sup></td>
<td></td>
<td>Pollack et al., 2010; Ryerson et al., 1998, 2000</td>
</tr>
<tr>
<td>Photolysis frequencies via actinic flux</td>
<td>Charged-coupled device Actinic Flux Spectroradiometers (CAFS)</td>
<td>jO<sub>3</sub> 20% jNO<sub>2</sub> 12%</td>
<td>jO<sub>3</sub> 10<sup>-7</sup> s<sup>-1</sup>/s jNO<sub>2</sub> 10<sup>-6</sup> s<sup>-1</sup>/s</td>
<td>Shetter and Mueller, 1999, Petropavloskikh, 2007, Hofzumahaus et al., 2004</td>
</tr>
<tr>
<td>Peroxyacetyl nitrate (PAN)</td>
<td>PAN and Trace Hydrohalocarbon ExpeRiment (PANTHER)</td>
<td>10%</td>
<td>2 ppt±±± 10 %</td>
<td>Elkins et al., 2001; Wofsy et al., 2011</td>
</tr>
</tbody>
</table>

Components of OH reactivity

<table>
<thead>
<tr>
<th>Components</th>
<th>Accuracy</th>
<th>Detection Limit/Precision</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH<sub>4</sub></td>
<td>NOAA Picarro</td>
<td>0.6 ppb</td>
<td>0.3 ppb</td>
</tr>
<tr>
<td>CO</td>
<td>Harvard Quantum Cascade Laser System (QCLS)</td>
<td>3.5 ppb</td>
<td>0.15 ppb</td>
</tr>
<tr>
<td>H<sub>2</sub></td>
<td>UAS Chromatograph for Atmospheric Trace Species (UCATS)/PANTHER</td>
<td>7.5 ppb<sup>±2</sup></td>
<td></td>
</tr>
<tr>
<td>NO, NO<sub>2</sub>, O<sub>3</sub></td>
<td>NOAA NO<sub>y</sub>O<sub>3</sub></td>
<td>0.006 ppb<sup>±2</sup>, 0.03 ppb<sup>±2</sup>, 1.7 ppb<sup>±2</sup></td>
<td></td>
</tr>
<tr>
<td>Methyl hydroperoxide, nitric acid, hydrogen peroxide, peroxyacetic acid, peroxyacetic acid,</td>
<td>Caltech Chemical ionization mass spectrometer (CIMS)</td>
<td>±±±± ± 30 %, ±±±± ± 30 %, ±±±± ± 50 %, ±±±± ± 30 %</td>
<td>25 ppt, 50 ppt, 50 ppt, 30 ppt, 100 ppt</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>NASA In Situ Airborne Formaldehyde (ISAF)</td>
<td>10%</td>
<td>10 ppt</td>
</tr>
<tr>
<td>Methanol, acetaldehyde, propane, dimethyl sulfide, ethanol, acetone, methyl ethyl ketone, propanal, butanal, toluene, methyl vinyl ketone, methacrolein i-Butane + n-butane + i-pentane + n-pentane</td>
<td>NCAR Trace Organic Gas Analyzer (TOGA)</td>
<td>30%, 20%, 30%, 15%, 30%, 20%, 20%, 20%, 30%, 15%, 20%, 20%</td>
<td>10 ppt, 10 ppt, 2 ppt, 30 ppt, 10 ppt, 2 ppt, 20 ppt, 2 ppt, 0.6 ppt, 4 ppt, 2 ppt</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>Model NO$_y$</th>
<th>ATHOS</th>
<th>ATom-1</th>
<th>ATom-2</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO + NO$_2$ + HONO + HNO$_3$ + HNO$_4$ + 2*N$_2$O$_5$ + ClNO$_2$ + Σ PN$_s$ + Σ AN$_s$.</td>
<td>74 % to 135%</td>
<td>0.018 ppt, 0.2 ppt factor of 1.35</td>
<td>Faloona et al., 2004; Brune et al., 2020</td>
<td></td>
</tr>
<tr>
<td>Ethane, benzene</td>
<td>UCI Whole air sampler (WAS)</td>
<td>5%, 5%</td>
<td>3 ppt, 3 ppt</td>
<td>Colman et al., 2001; Simpson et al.; 2010</td>
</tr>
</tbody>
</table>

1Model NO$_y$ is defined as NO + NO$_2$ + HONO + HNO$_3$ + HNO$_4$ + 2*N$_2$O$_5$ + ClNO$_2$ + Σ PN$_s$ + Σ AN$_s$.
2Average of 2-sigma uncertainty for each individual 1 Hz measurement for ATom-1 and ATom-2.
3Included in cOHR are observations of species where at least 20% of the possible available measurements below 3 km are not missing.
4The GEOS-Chem concentration of H$_2$ is set to a constant value of 0.5 ppm, 500 ppt.
5Average of reported error for each individual measurement for ATom-1 and ATom-2.
6Lumped as >C$_4$ alkanes (ALK4) in GEOS-Chem.
7Lumped as >C$_3$ aldehydes (RCHO) in GEOS-Chem.
8Model NO$_y$ is defined as NO + NO$_2$ + HONO + HNO$_3$ + HNO$_4$ + 2*N$_2$O$_5$ + ClNO$_2$ + Σ PN$_s$ + Σ AN$_s$.
9Included in cOHR are observations of species where at least 20% of the possible available measurements below 3 km are not missing.

Figure 3. Median OH concentrations for the Northern hemisphere (>0°N) and Southern hemisphere (<0°S) from the ATHOS instrument described in Table 2 during ATom-1 (Jul-Aug, 2016) and ATom-2 (Jan-Feb, 2017) compared against the GEOS-
Chem model in 0.5 km altitude bins. The observations have been filtered to remove biomass burning (acetonitrile >200 ppt) and stratospheric (O3/CO > 1.25) influence. The dashed lines show the observed 25th-75th percentiles.

Figure 4. The same as Figure 3 for median water vapor concentrations. Water vapor mixing ratio was measured by the DLH instrument as described in Table 2.
Figure 5. The same as Figure 3 for median photolysis frequencies for ozone ($j_{O^3}j(O^1D)$). j_{O^3} was determined from actinic flux measured by the CAFS instrument is used to calculate $j(O^1D)$ as described in Table 2.
Figure 6. The same as Figure 3 for median ozone concentrations. Ozone was measured by the NOAA NO$_3$O$_3$ instrument as described in Table 2.

Figure 7. The same as Figure 3 for median NO$_y$ (a) and NO (b) concentrations. NO$_y$ and NO were measured by the NOAA NO$_3$O$_3$ instrument as described in Table 2.

Figure 8. Comparison of modeled and observed HNO$_3$, ozone, NO$_y$ and NO with sensitivity studies including scaling emissions from the U.S. and Asia, improved chlorine chemistry (Wang X. et al., 2019), and the photolysis of particulate nitrate.
on coarse-mode seasalt aerosols (Kasibhatla et al., 2018) as described in Section 4. HNO$_3$ was measured by the Caltech CIMS, ozone, NO, and NO$_y$ were measured by the NOAA NO$_y$O$_3$ instrument (Table 2).

Figure 89. The same as Figure 3 for median OHR. OHR was measured by the ATHOS instrument as described in Table 2. The calculation of cOHR in the model and observations includes the species described in Table 2. In order to allow for a point-by-point comparison of cOHR in the model and observations, missing values are filled in the observational components of cOHR using linear interpolation. All calculated reactivity values are determined using the temperature and pressure of the ATHOS instrument inlet which differs from ambient values. The sensitivity tests are described in Section 5.

Table 3. Biogenic ocean VOC emissions of VOCs

<table>
<thead>
<tr>
<th>GEOS-Chem species2</th>
<th># lumped species</th>
<th>Produces acetaldehyde?</th>
<th>Annual Net Emissions (Tg C)</th>
<th>Reference for seawater concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD2</td>
<td>1</td>
<td>Yes</td>
<td>10.2515</td>
<td>Millet et al., 2010</td>
</tr>
<tr>
<td>MOH</td>
<td>1</td>
<td>No</td>
<td>-1.5556</td>
<td>Pers. comm. D. Millet</td>
</tr>
<tr>
<td>ACET</td>
<td>1</td>
<td>No</td>
<td>-75.70</td>
<td>Fischer et al., 2012</td>
</tr>
<tr>
<td>LIMO</td>
<td>1</td>
<td>Yes</td>
<td>0.04</td>
<td>Hackenberg et al., 2017</td>
</tr>
<tr>
<td>MTPA</td>
<td>3</td>
<td>Yes</td>
<td>0.05</td>
<td>Hackenberg et al., 2017</td>
</tr>
<tr>
<td>MTPO</td>
<td>2</td>
<td>Yes</td>
<td>0.06</td>
<td>Hackenberg et al., 2017</td>
</tr>
<tr>
<td>EOH</td>
<td>1</td>
<td>Yes</td>
<td>-5.60</td>
<td>Beale et al., 2010</td>
</tr>
<tr>
<td>C2H6</td>
<td>1</td>
<td>Yes</td>
<td>0.343</td>
<td>Plass-Dülmer et al., 1993</td>
</tr>
<tr>
<td>C2H4</td>
<td>1</td>
<td>No</td>
<td>0.75</td>
<td>Plass-Dülmer C. et al., 1993</td>
</tr>
<tr>
<td>PRPE</td>
<td>2</td>
<td>Yes</td>
<td>0.965</td>
<td>Plass-Dülmer C. et al., 1993</td>
</tr>
<tr>
<td>GEOS-Chem species(^2)</td>
<td># lumped species</td>
<td>Produces acetaldehyde?</td>
<td>Annual Net Emissions (Tg C)</td>
<td>Reference for seawater concentration</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>C3H8</td>
<td>1</td>
<td>Yes</td>
<td>0.176</td>
<td>Plass-Dülmer et al., 1993</td>
</tr>
<tr>
<td>ALK4</td>
<td>2</td>
<td>Yes</td>
<td>0.12</td>
<td>Plass-Dülmer et al., 1993</td>
</tr>
<tr>
<td>C2H2</td>
<td>1</td>
<td>No</td>
<td>0.052</td>
<td>Plass-Dülmer et al., 1993</td>
</tr>
<tr>
<td>ISOP</td>
<td>1</td>
<td>Yes</td>
<td>1.64</td>
<td>Arnold et al., 2009</td>
</tr>
<tr>
<td>RCHO</td>
<td>1</td>
<td>Yes</td>
<td>7.47</td>
<td>Singh et al., 2003</td>
</tr>
<tr>
<td>MEK</td>
<td>1</td>
<td>Yes</td>
<td>-7.243</td>
<td>Schlundt et al., 2017</td>
</tr>
<tr>
<td>Total net emission</td>
<td></td>
<td></td>
<td>-68.3225</td>
<td></td>
</tr>
<tr>
<td>Total net emission producing acetaldehyde</td>
<td></td>
<td></td>
<td>8.1523</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Net ocean emissions = upward flux out of the ocean - ocean uptake.

\(^2\)More information on the GEOS-Chem species definitions can be found here: http://wiki.seas.harvard.edu/geos-chem/index.php/Species_in_GEOS-Chem.

5 **Table 4.** Abiotic ocean VOC emissions of VOCs according to Brüggemann et al. (2018)\(^1\)

<table>
<thead>
<tr>
<th>GEOS-Chem species(^2)</th>
<th># lumped species</th>
<th>Produces acetaldehyde?</th>
<th>Annual Emission (Tg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACET</td>
<td>1</td>
<td>No</td>
<td>10.07</td>
</tr>
<tr>
<td>EOH</td>
<td>1</td>
<td>Yes</td>
<td>5.16</td>
</tr>
<tr>
<td>ALD2</td>
<td>1</td>
<td>Yes</td>
<td>2.26</td>
</tr>
<tr>
<td>MOH</td>
<td>2</td>
<td>No</td>
<td>0.79</td>
</tr>
<tr>
<td>RCHO</td>
<td>21</td>
<td>Yes</td>
<td>3.88</td>
</tr>
<tr>
<td>ISOP</td>
<td>1</td>
<td>Yes</td>
<td>1.04</td>
</tr>
<tr>
<td>PRPE</td>
<td>13</td>
<td>Yes</td>
<td>4.44</td>
</tr>
<tr>
<td>MACR</td>
<td>1</td>
<td>Yes</td>
<td>0.42</td>
</tr>
<tr>
<td>ACTA</td>
<td>1</td>
<td>Yes</td>
<td>0.10</td>
</tr>
<tr>
<td>CH2O</td>
<td>1</td>
<td>No</td>
<td>0.03</td>
</tr>
<tr>
<td>XYLE</td>
<td>1</td>
<td>No</td>
<td>0.05</td>
</tr>
<tr>
<td>TOLU</td>
<td>1</td>
<td>No</td>
<td>0.04</td>
</tr>
<tr>
<td>BENZ</td>
<td>1</td>
<td>No</td>
<td>0.02</td>
</tr>
<tr>
<td>Total net emission</td>
<td></td>
<td></td>
<td>28.30</td>
</tr>
<tr>
<td>Total net emission producing acetaldehyde</td>
<td></td>
<td></td>
<td>17.29</td>
</tr>
</tbody>
</table>
Table S2 shows the emission factor assumed for each species and the lumping methodology for Table 4. More information on the GEOS-Chem species definitions can be found here: http://wiki.seas.harvard.edu/geos-chem/index.php/Species_in_GEOS-Chem.

Figure 910. Impact of all ocean emissions (Tables 3 and 4) on annual simulated 2016 surface cOHR as described in the text.
Figure 41. Median observed and modeled OHR and cOHR (see text) below 3km in the Northern Hemisphere (>0°N) and Southern Hemisphere (<0°S) during ATom-1. The “Other” category the following species as described in Table 2: ethanol, propane, ethane, acetone, >C3 aldehydes, methyl ethyl ketone, methyl vinyl ketone, methacrolein, benzene, toluene, >C4 alkanes, peroxyacetic acid, peroxynitric acid, dimethyl sulfide, nitric acid, NO, and NO2. The diameter of each pie chart is scaled relative to that with maximum cOHR for ATom-1.
Figure 11. Same as Figure 10 but for ATom-2. The diameter of each pie chart is scaled relative to that with maximum cOHR for ATom-2.
Figure 132. The same as Figure 3 for median acetaldehyde profiles. Acetaldehyde was measured by the TOGA instrument as described in Table 2. The sensitivity studies are described in the text.
Figure 143. The same as Figure 3 for median peroxyacetic acid (PAA) profiles. PAA was measured by the Caltech CIMS instrument as described in Table 2. The sensitivity studies are described in the text.
Figure 154. The same as Figure 3 for median peroxyacetyl nitrate (PAN) profiles. PAN was measured by the PANTHER instrument as described in Table 2. The sensitivity studies are described in the text.

Table 5. Model sources of acetaldehyde in 2016

<table>
<thead>
<tr>
<th>Sources (Tg yr⁻¹)¹</th>
<th>Millet et al. (2010)</th>
<th>This Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photochemical production</td>
<td>128</td>
<td>469166</td>
</tr>
<tr>
<td>Net ocean emission</td>
<td>57</td>
<td>22</td>
</tr>
<tr>
<td>Terrestrial plant growth + decay</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>Biomass burning</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Anthropogenic emission</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total source</td>
<td>213</td>
<td>213219</td>
</tr>
</tbody>
</table>

¹Emissions are given in Tg of acetaldehyde per year for comparison to Millet et al. (2010). These totals are for the baseline model simulation described in Section 2.1.