Supporting Material for: Deconvolution of Boundary Layer Depth and Aerosol Constraints on Cloud Water Path in Subtropical Stratocumuli

Anna Possner1, Ryan Eastman2, Frida Bender3, and Franziska Glassmeier4

1Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt/Main, Germany
2Department of Atmospheric Sciences, University of Washington, Seattle, USA
3Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
4Department of Environmental Sciences, Wageningen University, Wageningen, Netherlands
Figures

Figure 1. Probability density function of Boundary Layer Height (H_{BL}) in Subtropical stratocumulus regions shown in Fig. 2 in main manuscript.

Figure 2. Effective radius (R_{eff}) plotted against precipitation probability at cloud base for all sub-tropical marine stratocumuli. The precipitation probabilities at cloud base were obtained from the Advanced Microwave Scanning Radiometer for (AMSR/E) 89 GHz brightness temperature, for which a retrieval algorithm has been developed based on light rain CloudSat retrievals in collocating regions (Eastman et al. [2019]). Only data for the year 2007 are included here for which the precipitation probability retrieval is available.
Figure 3. De-seasonalised and de-regionised N_d climatology against H_{BL}. Markers denote climatological mean and bars denote the standard deviation for all clouds (red), precipitating clouds (blue) or non-precipitating clouds (green).