Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Discussion papers
https://doi.org/10.5194/acp-2019-812
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2019-812
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 25 Oct 2019

Submitted as: research article | 25 Oct 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Chemistry and Physics (ACP).

Scattering matrices of mineral dust aerosols: a refinement of the refractive index impact

Yifan Huang1,2, Chao Liu1,2, Yan Yin1,2, and Lei Bi3 Yifan Huang et al.
  • 1Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • 2Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • 3Department of Atmospheric Sciences, Zhejiang University, Hangzhou 310027, China

Abstract. Dust, as one of the most important aerosols, plays a crucial role in the atmosphere by directly scattering and absorbing solar and infrared radiation, while there are significant uncertainties in determining dust optical properties to quantify radiative effects and to retrieve their properties. Both laboratory and in situ measurements show variations in dust refractive indices (RIs), and different RIs have been applied in different numerical studies of model developments, aerosol retrievals, and radiative forcing simulations. This study reveals the importance of the dust RI for the model development of its optical properties. The Koch-fractal polyhedron is used as the modeled geometry, and the pseudo-spectral time domain method and improved geometric-optics method are combined to cover optical property simulations over the entire size range. Our results indicate that the scattering matrix elements of different kinds of dust particles can be reasonably reproduced by choosing appropriate RIs even using a fixed particle geometry. The uncertainty of the RI would greatly affect the determination of the geometric model, as a change in the RI, even in the widely accepted RI range, strongly affects the appropriate shape parameters to reproduce the measured dust phase matrix elements. A further comparison shows that the RI influences the scattering matrix elements differently from geometric factors, and, more specifically, the P11, P12, and P22 elements seem more sensitive to dust RI. In summary, more efforts should be devoted to account for the uncertainties on the dust RI in modeling its optical properties, and the development of corresponding optical models can potentially be simplified by considering only variations over different RIs. Considerably more research, especially from direct measurements, should be carried out to better constrain the uncertainties related to the dust aerosol RIs.

Yifan Huang et al.
Interactive discussion
Status: open (until 20 Dec 2019)
Status: open (until 20 Dec 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Yifan Huang et al.
Yifan Huang et al.
Viewed  
Total article views: 164 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
122 40 2 164 2 2
  • HTML: 122
  • PDF: 40
  • XML: 2
  • Total: 164
  • BibTeX: 2
  • EndNote: 2
Views and downloads (calculated since 25 Oct 2019)
Cumulative views and downloads (calculated since 25 Oct 2019)
Viewed (geographical distribution)  
Total article views: 110 (including HTML, PDF, and XML) Thereof 110 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 11 Nov 2019
Publications Copernicus
Download
Short summary
Dust optical properties are fundamental to quantify aerosol radiative effects and to retrieve their properties. This study reveals the importance of the dust refractive index (RI) for the model development of its optical properties. Our results indicate that the scattering matrix elements of different dust particles can be reasonably reproduced by choosing appropriate RIs but a fixed particle geometry, and the RI influences the scattering matrix elements differently from geometric factors.
Dust optical properties are fundamental to quantify aerosol radiative effects and to retrieve...
Citation