Response to Reviewers

We appreciate the reviewers for their constructive criticisms and valuable comments, which were of great help in improving the quality of the manuscript. We have updated the manuscript based on their comments and provided a detailed response below. Reviewer comments are in regular black, our responses are in blue, and the additions/updated text from the manuscript are in red.

Interactive comment on “The evolutionary behavior of chromophoric brown carbon during ozone aging of fine particles from biomass burning” by Xingjun Fan et al.

Anonymous Referee #2
General Comments:
The manuscript presents a laboratory study characterizing the evolution of chromophores and fluorophores of material collected in quartz filters during the combustion of rice straw (RS), corn straw (CS) and pine wood (PW) exposed to O3. The work interprets that O3 causes a reduction in light absorption and fluorescence of biomass burning (BB) brown carbon (BrC) material (captured in the filters), which is associated to a loss of aromaticity with a drop in average molecular weight. The manuscript needs some clarification and improvement in the writing and should considerably improve by connecting the findings with literature that is missing.

Re: We would like to thank the reviewer again for the constructive and thoughtful suggestions. Detailed responses to the individual specific comment/suggestion are as follows.

Specific comments for a major revision recommended are provided below.

Specific Comments:
1) In the abstract (in page 1), there are some inaccuracies and confusing terms. For example, in l. 2, how much of “little is known. . .” really? There is some literature missing that has not been considered.

Re: Thanks for the comments. We agree with the comment that “little is known. . .” is inaccuracy, because some literatures are unconsidered. This sentence has been rewritten in revised manuscript. (see Page 1, lines 2-4)

Page 1, lines 2-4: “Biomass burning (BB) emits large amounts of brown carbon (BrC), however, the evolutionary behavior of BrC in BB emissions (BB-BrC) resulted from complex atmospheric processes are poorly understood.”

In l. 4, what is the meaning of “the transformation of levels. . .”?

Re: The “levels” herein refers to the contents. We have changed “levels” into “contents”. (see Page 1, lines 4)

In l. 11, what are the protein-like components of BB? Is there really much proteins or what do the authors want to explain in the manuscript?

Re: In this study, the protein-like components were obtained from the excitation-emission matrix combined with a parallel factor analysis (EEM-PARAFAC). The protocol has been widely used to identify BrC components in BB aerosol and ambient aerosol (Chen et al., 2016a, b; Fan et al., 2019; Huo et al., 2018; Matos et al., 2015). These protein-like components mainly included nitrogen-containing compounds, such as amines and amides, and even oxygen-containing compounds, such as phenol- and naphthalene-like substances (Chen et al., 2016a). Therefore, the protein-like components of BB-BrC identified in this study were mainly comprised of the organic substances with similar position of fluorescence peaks to proteins, rather than the real proteins. For better understanding, we have added some descriptions in revised
manuscript. (see Page 9, lines 3-7)

References:

Finally, a strong statement is used in l. 27-30 but no connections has been directly provided in the manuscript about how to use the data to parametrize the optical properties of BrC in climate models.

Re: Thanks. We agree with your comment that no connections have been directly
provided in the manuscript about how to use the data to parametrize the optical properties of BrC in climate models, thus the strong statement here is inaccurate. We have rewritten it in revised manuscript. (see Page 1, lines 28-30)

Page 1, lines 28-30: “Our results provide new insights into the evolutionary behavior of the chromophoric and fluorescent properties of BB-BrC during O3 aging, which are of great significance for better understanding the heterogeneous oxidation pathways of BB-derived BrC in atmospheric environment.”

It would be fundamentally important to connect the findings of the aromatic structures in the above seven papers with the material in the revision at multiple points of the manuscript such as p. 7 l. 29 and l. 34; p. 9 l. 10, l. 18, and l. 25; p. 10 l. 1; p. 11 l. 10 and l. 15.

Re: Thanks for the comments. We have carefully read these references. These studies provided some important insights of the O3 oxidation mechanism of BB-derived oxy-aromatics (i.e. catechol and its substituted ones) occurred in air-water and air-solid interfaces (Lavi et al., 2017; Magalhães et al., 2017; Pillar et al., 2014, 2015, 2017; Pillar-Little and Guzman, 2018; Sun et al., 2019). They are helpful for us to investigate the evolutionary behaviors of light absorbing compounds during O3 aging of BB-derived smoke compounds. According to the comments, we have revised the “Introduction” based on these literatures. (see Page 2, line 20, 24-25, 32; Page 3, lines
In addition, these studies also revealed valuable information on the transformation of aromatic structures during O₃ oxidation, which are helpful for us to address the relevant statements on evolutionary behaviors of BB-BrC in this study. We have connected these findings with multiple points of the study and revised that in the current manuscript.
(See Page 7, lines 13-16, 21-23; Page 9, lines 29-33; Page 11, lines 5-9, 14-18)

References:
3) p. 4 l. 38: What is the metal for the metal mesh holding the biomass materials? What is the temperature of the combustor through operation? Is it constant or variable? Indicate in the revised manuscript.

Re: In this study, the “metal” refers to “stainless steel”, which was used to hold the biomass materials. The “metal mesh” has been revised to “stainless steel mesh”. (see page 4, line 4)

In this study, the BB smoke samples were collected in a laboratory sampling system without any control conditions. The burning experiments simulated more likely a natural BB process. Each BB smoke filter sample was collected from a complete biomass burning process (from ignition to burnout). The temperature of the combustor is variable during the burning process. We have added this information of the sampling in the current manuscript. (see Page 4, lines 2-3)

4) p. 5 l. 1: What is the consideration for the gases adsorbed into the quartz filters?

Re: Thanks. Indeed, our quartz filters may adsorb gas-phase organic artifacts (i.e. semivolatile and intermediate volatility organic compounds) during BB smoke particles sampling (Geller et al., 2006; Parshintsev et al. 2011). According to previous studies, the average adsorbed organic artifacts (organic carbon, OC) amounts on quartz filters are very small (0.48-0.98 μgC/cm²) (Arhami et al., 2006; Subramanian et al., 2004). In the current study, the OC contents on fresh BB smoke filters are in the range of ~250-750 μgC/cm², which are much higher than the possible artifacts. Therefore, the potential contributions from O₃ oxidation of possible artifacts on filters to bulk BB-BrC compounds can be neglected. We have added the relevant descriptions in the section 2.2 in revised manuscript. (see Page 4, lines 23-29)

References:

L. 10: glass garden? Do you mean a terrarium?

Re: Yes, the “glass garden” is a terrarium, which refers to a glass dish. It was used to spread the filter samples exposed in ozone environment. The term “glass garden” has been revised to “glass dish (Φ = 90 mm)” in the text. (see Page 4, line 16)

L. 13: Why is the ozone so high (70 ppm) and how is it environmentally relevant? Why is the relative humidity fixed at 40%? Explain in the revised manuscript.

Re: Thanks for your comments. In this study, the experiment conditions (e.g., O3 concentrations, humidity, etc.) of O3 aging process were applied mainly based on the results of O3 simulation experiments in some previous studies. In fact, many O3
oxidation simulation experiments have been conducted to investigate the aging of carbonaceous compounds under different O₃ concentration (20 ppb – 12,200 ppm) (Baduel et al., 2011; D’Anna et al., 2009; Pillar et al., 2014, 2017). For example, low O₃ concentrations (20 ppb - 6 ppm) had been used for oxidizing the thin films of humic matters (Baduel et al., 2011; D’Anna et al., 2009) and oxy-aromatics (i.e. catechol and its substituted ones) (Pillar et al., 2014, 2017), in which the changes of the uptake coefficient of O₃ and the early aging mechanism occurred in air-particle interface had been explored. However, to explore the changes of physicochemical properties of particulate samples from combustion process and secondary chemical reactions, or to investigate the formation of light absorbing organic compounds during O₃ aging process, a relatively high O₃ concentrations (20 ppm-12,200 ppm) were generally used in the simulation experiments (Li et al., 2013, 2015; Decesari et al., 2002; Gallimore et al., 2011; Pillar et al., 2015; Zhu et al., 2019). Moreover, some studies have revealed that the oxidation mechanism at higher O₃ concentration is similar to that done under much lower O₃ concentration (Pillar et al., 2015; Gallimore et al., 2011). In this study, the main objective is to investigate the evolutionary behavior of chromophoric BrC compounds during O₃ aging of BB smoke samples, thus the aging simulation experiment was conducted at a relative higher O₃ concentration (70 ppm). The detailed explanation for high O₃ concentration used in this study have been provided in “S1. Ozone aging reactor and operation” in revised supporting information (SI). (see Page 1, lines 13-34 in revised SI)

Moreover, in this study, the O₃ exposure amount for 1 h in reactor were ~1.7×10¹⁵ molec cm⁻³ h. For a highly O₃ polluted (~120 ppb) area (Chen et al., 2020), 24 h-average atmospheric O₃ exposure amount were ~7.1×10¹³ molec cm⁻³ h. In this case, the oxidation for 1 h in our reactor was approximately equivalent to 260 d of oxidation at polluted atmosphere. However, the smoke samples of this study were highly condensed and coagulated on the filter, so the exposure area of particles were greatly reduced. As a result, the equivalent day for O₃ oxidation should be highly shortened. Importantly, our results demonstrated many similar oxidation behaviors of organic chromophores to
those of atmospheric humic matter and BB-derived oxy-aromatics under low O$_3$ concentration (20 ppb- 6 ppm) (Baduel et al., 2011; D’Anna et al., 2009; Pillar et al., 2014, 2017). Therefore, we believed that the evolutionary behaviors of BB-BrC revealed here should be similar to those occurred under atmospheric relevant O$_3$ concentrations during their lifetime in atmosphere. Some descriptions on atmospheric relevance have been added in section S1 in revised supporting information. (See Page 1, line 37 to Page 2, line 12 in revised SI).

In addition, many previous studies have revealed that relative humidity (RH) has some effects on the oxidation of organic compounds, in which the rate of reaction generally increased with RH increase (Baduel et al., 2011; Gallimore et al., 2011; Pillar et al., 2015). However, the objectives of this study are mainly to investigate the O$_3$ aging behavior of BrC in BB smoke samples, and to explore the influences of the type of fuels and oxidation time on the evolutionary behavior of light absorbing BrC components. Therefore, a moderate RH (~40%) was used in this study. Certainly, much more studies on O$_3$ aging of BB emission as a function of O$_3$ concentration and RH should be conducted in the future work. We have added some descriptions to state that in revised manuscript. (see Page 13, lines 29-33)

References:

5) p. 6 l. 2-3: Despite mentioning that more details are in the SI, provide literature references for the concepts of SUVA254, AAE, MAE365, and HIX.

Re: thanks. Some necessary literature references for the concepts of SUVA254, AAE, MAE365, and HIX have been added in the revised text.
6) p. 6 l. 24: Provide software version and company name that sell it.

Re: The software version and company name are OriginPro 2018C and OriginLab (USA), respectively, which have been provided in revised text. (see Page 5, line 39)

7) p. 7 l. 37: Despite what is explained, it appears that in this work there is no soot. How is this point connected to the results?

Re: Thanks for the comment. Soot particles often refer to elemental carbon (EC), black carbon (BC) or even light-absorbing carbons in atmosphere (Li et al., 2013, 2015; Han et al., 2013), which are largely formed by incomplete combustion of biomass and fossil fuels (Khalizov et al., 2010). As reported in previous studies and measured in this study, biomass burning could release large amounts of soot, which contributed to 6-55% of total mass of particles (Hong et al., 2017; Schmidl et al, 2011). Moreover, many previous studies have revealed that O₃ oxidation of soot particles could form new chromophoric compounds (Li et al., 2013, 2015; Decesari et al., 2002; Zhu et al., 2019), suggesting that it is one of the important reactions during the aging of BB BrC. Therefore, the O₃ oxidation of soot component in smoke samples was discussed in this study. For better understanding, we have made some descriptions in the revised supporting information. (see page 1, lines 27-31 in SI)

References:

Re: Thanks. We have carefully read these references (Eugene et al., 2016; Rincón et al., 2009, 2010; Xia et al., 2018). In these studies, the changes in absorption with wavelength for chromophores and/or fluorophores during photochemical reaction of BB-derived organic compounds (i.e. glyoxylic acid, pyruvic acid, phenolic compounds)
were investigated, and the photobleaching behaviors for the chromophores were also discussed. These findings are very helpful for us to explain the bleaching behaviors of BB BrC, especial for those associated to changes in absorption depending on wavelength, during O₃ oxidation. According to comments, we have added some descriptions and revised that in the current manuscript. *(Page 6, lines 35-39; Page 7, lines 20-23; Page 8, lines 2-4; Page 9, lines 29-33)*

References:

9) p. 7 l. 34: What is the meaning of polycondensation? Clarify.

Re: Thanks. The “polycondensation” means that some highly stable and condensed chromophores were formed during O₃ oxidation. These chromophores might lead to the high HIX values of aged BrC. In addition, the polyhydroxylation of aromatic compounds might also lead to high HIX values for chromophores *(Pillar et al., 2014, 2015, 2017)*, so that the “polycondensation” might be inaccurate. We have deleted this sentence and added some other descriptions in the current manuscript. *(see Page 7, lines 16-23)*
Page 7, lines 16-23: “The noticeable HIX increases seen for the three types of BB-BrC indicate that the O₃ aging may strongly decompose the protein-like fluorophores, probably phenolic compounds (Chen et al., 2016a), to form polyhydroxylated aromatic species or newly humic-like fluorophores (Pillar et al., 2014, 2015, 2017; Decesari et al., 2002; Li et al., 2013) (Figure 3b). For example, O₃ oxidation of phenolic compounds could form polyhydroxylated aromatic compounds with absorption red-shift, which might lead to their HIX values increase (Lavi et al., 2017; Magalhães et al., 2017; Pillar et al., 2015; Rincón et al., 2009, 2010).”

10) p. 30 l. 30: “. . .is in good. . .”

Re: Revised.