In-situ vertical characteristics of optical properties and heating rates of aerosol over Beijing

Ping Tian¹, Dantong Liu²*, Delong Zhao³, Chenjie Yu⁴, Quan Liu¹, Mengyu Huang¹, Zhaoze Deng⁵, Liang Ran⁵, Yunfei Wu⁶, Shuo Ding², Kang Hu², Gang Zhao⁷, Chunsheng Zhao⁷, Deping Ding¹,³

¹. Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, Beijing, 100089, China.
². Department of Atmospheric Science, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
³. Field Experiment Base of Cloud and Precipitation Research in North China, China Meteorological Administration, Beijing, 100089, China.
⁴. Centre for Atmospheric Sciences, School of Earth and Environmental Sciences, University of Manchester, Manchester, M139PL, UK
⁵. Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China.
⁶. CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China.
⁷. Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, 100871, China

Corresponds to: Dantong Liu (dantongliu@zju.edu.cn)
Abstract. Characterizing vertical profiles of aerosol optical properties is important because only replying on the surface or column-integrated measurements is unable to unambiguously constrain the radiative impacts of aerosol. This study presents series of vertical profiles of in-situ measured multi-wavelength optical properties of aerosols during three pollution events in Nov. to Dec. 2016 over Beijing region. For all pollution events, clean periods (CP) before pollution initialization showed higher scattering Ångström exponent and smaller asymmetry parameter (g), and relatively uniform vertical structures. The heavy pollution (HP) periods showed increased particle size, causing these parameters to vary in the opposite way. During the transition periods (TP), regional transport of aged aerosols at upper level was found. The AERONET aerosol optical depth (AOD) matched the in-situ measurements within 10 %, however the AERONET absorption optical depth (AAOD) was 10-20 % higher than in-situ measurements, and this positive discrepancy increased to 30 % at shorter wavelength. The absorption of brown carbon (BrC) was identified by increased absorption Angström exponent (AAE), and the heating rate of black carbon (BC) and BrC was calculated by computing the wavelength-dependent absorption coefficient and actinic flux by the radiative transfer model. BC and BrC had heating rate up to 0.18 K/h and 0.05 K/h in the planetary boundary layer (PBL) respectively during the pollution period. The fraction of BrC absorption increased from 12 % to 40 % in the PBL from CP to HP period. Notably, higher contribution of BrC heating was found above the PBL under polluted condition. This study gives a full picture of shortwave heating impacts of carbonaceous aerosols during different stages of pollution event, and highlights the increased contribution of BrC absorption especially at higher level during pollution.
1. Introduction

The optical properties of aerosol, which is how aerosol scatters or absorbs solar radiation, have caused important radiative impacts on earth system (IPCC2013). The optical properties depend on the particle size (Bergin et al., 2001), refractive index (Ebert et al., 2002; Quinn, 2002) and mixing state of aerosols. There are still large uncertainties in evaluating the radiative forcing of aerosol especially in east Asia region due to lack of information on vertical distribution of these parameters (Liao and Seinfeld, 1998; Ramanathan et al., 2001; Li et al., 2017). Previous studies showed that the surface observation or column-integrated measurements may not provide sufficient information to derive vertical profiles of aerosol optical properties (Andrews et al., 2011; Rosati et al., 2016). Modelling studies found the radiative forcing impact is sensitive to the aerosol vertical distribution (Haywood et al., 1998), and especially for the absorbing aerosol such as black carbon (BC) will exert different climatic impacts depending on the location of aerosol layer (Yu et al., 2002; Ban-Weiss et al., 2011; Wilcox et al., 2016). Even though most aerosol was contained inside the planet boundary layer (PBL), the climatic sensitivity to absorbing aerosol rapidly increases with altitude (Ramanathan et al., 2001; Hodnebrog et al., 2014; Nazarenko et al., 2017). Absorbing aerosol above the PBL has the potential to suppress the PBL development and enhance the inversion cap at top of the PBL (Ding et al., 2016; Wang et al., 2018c), further exacerbating the pollution. However, this impact depends on the location of the absorbing layer which may also promote the convection by heating the layer above (Koch and Del Genio, 2010; Yu et al., 2019). It is therefore important to characterize the vertical profile of absorbing component in the atmosphere in order to understand its influence on atmospheric thermodynamics.

The North China Plain (NCP) has raised great attention in recent decade because of the severe air pollution and high frequency of haze days. The causes of pollution have been widely investigated through surface measurements (Zhang et al., 2013; Zhang et al., 2015; Zhong et al., 2018), however only limited studies have considered the evolution of pollutants in vertical direction (Tian et al., 2019; Wang et al., 2018a). It was found the surface aerosol concentration over Beijing not only depended on the emission but the vertical structure of aerosol distribution was largely dependent on local and synoptic meteorological conditions (Ran et al., 2016a; Zhao et al., 2019), and regional transport will introduce enhanced aerosol
loadings to high level (Liu et al., 2018). The vertical distribution of aerosol optical properties, however have not been in detail investigated, which will provide important insights to improve the understanding on the aerosol-PBL interactions hence the causes of pollution (Li et al., 2017).

This study chose three typical pollution events occurring in wintertime over Beijing, and performed successive flights on daily basis for each event. The vertical profiles of multi-wavelength aerosol optical properties were in-situ characterized, accounting for all stages during pollution events from pollution starts, full development and cease. The directly measured optical parameters were used as inputs for radiative transfer calculation, hereby the heating rate of light-absorbing aerosols, including black and brown carbon (BrC) was estimated. The results here for the first time provide a full picture of vertical profiles of aerosol optical properties over Beijing region during the heavy pollution events.

2. Instrumentation and data analysis

A Kingair 350ER turbo aircraft in Beijing weather modification office was employed for the in-situ measurements over Beijing during the 2016 winter in this study. Meteorological parameters including the temperature, relative humidity, pressure, wind direction and wind speed with a time resolution of 1 s were measured by the Aircraft Integrated Meteorological Measurement System (AIMMS-20, Aventech Research Inc, Canada), which was calibrated annually. The aerosol instrumentation inside the cabin was connected to an isokinetic inlet (Model:1200, Brechtel Inc, USA), which can deliver particle with a high transport efficiency (90%) for sub-micrometer particles. The maintained room temperature in the cabin had drying effects when the temperature inside was higher than outside the cabin, in addition to which, a silicate drier was utilized ahead of all instruments to maintain the sampling RH lower than 40%.

In-situ measurements of aerosol optical properties were performed during three pollution events over Beijing in Nov. 15th to Dec. 21th 2016, including 14 flights covering the start, development and cease stage for each pollution event. All flights were conducted around midday when the PBL was well developed. Table 1 summarizes the information of each flight. The in-cloud data in this study was screened out according to in-situ measured RH and liquid water content, thus only the out-of-cloud data is reported here.
2.1 Aerosol optical properties

The aerosol scattering (σ_{sca}) and hemispheric backscattering (σ_{bsca}) coefficients at $\lambda=450$ nm, 525 nm, and 650 nm were measured by an integrating nephelometer (Aurora3000, Ecotech Inc, Australia), and the flowrate of Aurora3000 was maintained at 4 L/min during flight. The baseline of Aurora3000 in real time was corrected for Rayleigh scattering of gas molecule at different air pressure (Fig. S1). In addition, the σ_{sca} and σ_{bsca} at all wavelengths were corrected for truncation affects (Anderson and Ogren, 1998; Müller et al., 2009).

The scattering Ångström exponent (SAE) measures the wavelength dependence of σ_{sca} assuming a power relationship with λ, expressed as:

$$SAE = -\frac{\ln (\sigma_{\lambda_1}/\sigma_{\lambda_2})}{\ln (\lambda_1/\lambda_2)}$$ \hspace{1cm} (1)

where σ_{λ} denotes the σ_{sca} at λ, the value of SAE could also be used to reflect particles size with larger particles showing a smaller SAE (Carrico et al., 1998).

The asymmetry parameter (g) is obtained from measured backscattering fraction according to the empirical function from Andrews et al. (2006).

$$g = -7.143889 \cdot \beta^3 + 7.4633439 \cdot \beta^2 - 3.9356 \cdot \beta + 0.9893,$$ \hspace{1cm} (2)

where β is the hemi-spherical backscatter fraction ($\sigma_{bsca}/\sigma_{sca}$) measured by the Aurora3000.

The absorbing coefficient (σ_{abs}) at different wavelengths (370, 470, 520, 590, 660, 880, and 950 nm) was measured by an Aethalometer (AE33, Magee Scientific Inc, USA) (Hansen, 2005; Drinovec et al., 2015). The flowrate of AE33 was maintained at 4 L/min below 3000 m. The shadowing effect of the AE33 was corrected by the two spot measurements with different attenuation (Drinovec et al., 2017). The multiple scattering artifact of AE33 was corrected by measuring the ambient aerosol in parallel with photoacoustic spectrometer (PASS3, DMT Inc, USA) which is independent of the filter artifacts. The PASS3 was calibrated using the NO$_2$ and BC standard. (Arnott et al., 2005). Fig. S2 shows the two weeks’ ambient measurements between AE33 and PASS3 at three overlapped wavelengths. Multiple scattering correction factor of 2.88 was consistently found at three λ, which was applied to correct the AE33 measurement.
The absorbing Ångström exponent (AAE), which can weight the absorption at different wavelength, is calculated using power fitting at seven wavelengths.

$$\sigma_{abs}(\lambda) = \sigma_{abs,0}(\frac{\lambda}{\lambda_0})^{AAE},$$

(3)

We estimated the σ_{abs} of brown carbon (BrC) assuming that BC is the only absorber at $\lambda=950$ nm, then the absorption of BC at other wavelengths was extrapolated by assuming an AAE of 1 (Kirchstetter et al., 2004; Lack et al., 2013; Massabò et al., 2015), and the contribution of BrC at each wavelength was obtained by subtracting the BC absorption from the total absorption (Schnaiter et al., 2005; Liu et al., 2015). It should be noted that previous studies point out the AAE$_{BC}$ may be less than 1, thus assuming AAE$_{BC}$=1 may lead to underestimation of BrC contribution (Gyawali et al., 2009; Lack and Cappa, 2010; Feng et al., 2013). We therefore consider the results reported here is the lower bound of BrC contribution.

The single scattering albedo (SSA) is the ratio of the scattering coefficient over the extinction coefficient at a given wavelength.

All the data related to volume concentration was corrected for standard temperature and pressure (STP, 1013.25hpa, 273.15K). In addition to the aircraft measurements, a micro pulse lidar (MPL, Sigma Inc, USA) was employed to measure the temporal evolution of aerosol extinction vertical profiles, and the vertical wind profile was measured by a wind profile radar with a vertical resolution of 150 m. Column aerosol optical properties during the aircraft observation period were obtained from Aerosol Robotic Network (AERONET) sun-photometer network (Che et al., 2009; Xia et al., 2008), where the site (AERONET BEIJING_PKU) was about 10 km away from the location of vertical profiles.

2.3 Radiative transfer calculation

The atmospheric irradiance and actinic flux are calculated using the pseudo-spherical version of the Discrete Ordinates Radiative Transfer Code (DISORT), as implemented in the libRadtran software package (Emde et al., 2016). The aircraft in-situ measured vertical profiles of AOD, single scattering albedo (SSA) and g are used as inputs. The other input parameters for the radiative transfer calculation is summarized in Table S1. The direct, upward diffuse, and downward diffuse irradiance and actinic flux
(AF, in mWm\(^{-2}\)) at \(\lambda=250-2550\) nm are calculated. The spectral instantaneous absorbing power of BC \((A_{BC})\) or BrC \((A_{BrC})\) can be calculated by multiplying the absorption coefficient of BC (or BrC) and AF at specified \(\lambda\), then integrating all \(\lambda\) will obtain the total absorbing power, expressed as:

\[
A_{BC \text{ or } BrC} = \int_{250\text{nm}}^{2550\text{nm}} AF(\lambda) \cdot \sigma_{BC \text{ or } BrC}(\lambda) \, d\lambda, \tag{4}
\]

By assuming no radiative loss of solar energy and the heat absorbed by aerosol is fully transferred to the surrounding air, the instantaneous heating rate of BC or BrC to ambient air is hence calculated as:

\[
H_{BC,BrC} = A_{BC,BrC}/(\rho \cdot C_p), \tag{5}
\]

where \(\rho\) and \(C_p\) are the air mass density and heat capacity, respectively.

3. Results and discussions

3.1 Overview and the pollution events

Three pollution events from Nov. 15\(^{th}\) to 18\(^{th}\) (Case 1), Dec. 10\(^{th}\) to 12\(^{th}\) (Case 2), and Dec. 16\(^{th}\) to 19\(^{th}\) (Case 3) in 2016 were captured. Fig. 1 shows the temporal evolution of surface PM\(_{2.5}\), AOD (AAOD) constrained by in-situ aircraft measurements and from AERONET, and vertical profiles of \(\sigma_{ext}\) and wind information during Case 1 pollution event. The other two events are shown in Fig. S3 and Fig. S4. Aircraft vertical profiles were performed on daily basis as the flight time indicated by vertical bars (Fig. 1). Each pollution event was classified as pollution initialization, development and peak pollution periods, corresponding to the pollution levels as clean period (CP, PM\(_{2.5},\text{surface} < 35\) μg/cm\(^2\)), transition period (TP, 35 μg/cm\(^2\) < PM\(_{2.5},\text{surface} < 200\) μg/cm\(^2\)) and heavy pollution (HP, PM\(_{2.5},\text{surface} > 200\) μg/cm\(^2\)). For the results here, a total of 14 profiles and 3, 5 and 6 profiles was observed for LP, TP and HP period, respectively (as detailed in Table. 1). As Fig. 1b shows, wind shear in both wind speed and direction appeared on top of PBL, consistent with the lidar vertical distribution of \(\sigma_{ext}\) (Fig. 1c). During LP, wind profiles (Fig. 1b) showed dominant northwesterly wind with high wind speed throughout the column, enhancing the pollutant dispersion in more developed PBL (Fig. 1c). During TP, the southerly air flow dominated and the PM\(_{2.5}\) underwent a rapid increase from 30 to 100 μg m\(^{-3}\) in several hours. During HP, the windspeed was relatively low at all altitude, maintaining the PM\(_{2.5}\) at a high level. Some flights
experienced boundary cloud (i.e., flight 20161117AM, flight 20161117PM and flight 20161118), which is indicated by the intensive extinction on top of the PBL (Fig. 1c).

Fig. 2 summarized the in-situ measured meteorological parameters at different stages of pollution events. The height of PBL (PBLH) was determined by considering a variety of factors. Firstly, a stable potential temperature (θ) (Fig. 2d-f) with vertical gradient $d\theta/dz < 5$ K/km in the PBL indicated an sufficient convective mixing (Su et al., 2017), with an apparent positive gradient above the PBL indicating a stable layer (Petra Seibert, 2000). Secondly, there is usually a temperature inversion on top of the PBL (Fig. 2a-c). During the CP, the weak temperature inversion (~0.15 K/100m) on top of the PBL allowed pollutants to penetrate the PBL and disperse in a higher atmospheric column (Fig. 2b). This inversion was significantly enhanced for the TP and HP periods, to 0.9 K/100m and 0.7 K/100m respectively. The large increase of the inversion during flight 20161211 was caused by regional transport from the south, when lower-latitude warmer air mass was imposed onto the measurement point (Tian et al., 2019). Additionally, the PBLH decreased gradually as pollution continued during the pollution event, in line with the enhanced aerosol concentration in the PBL. The moisture had similar features that a lower moisture content showed when lower pollution level and vertically efficiently dispersed, whereas stronger inversion also trapped the moisture inside the PBL, leading to a positive vertical gradient with the maximum RH showing on top of the PBL. There were some regional transport influences under TP, resulting in enhanced RH when airmass was advected from the south (Fig. 2f).

3.2 Vertical profile of σ_{ext}, σ_{sca} and σ_{abs}

Fig. 3 shows the vertical distribution of aerosol optical properties including extinction (σ_{ext}), scattering (σ_{sca}) and absorbing (σ_{abs}) coefficient. Different structures of vertical profiles were observed for CP, TP and HP periods. During CP, aerosol concentration was low and showed uniform mixing inside the PBL, with the σ_{ext}, σ_{sca} and σ_{abs} ranging from 220-270 Mm$^{-1}$, 180-240 Mm$^{-1}$, and 30-50 Mm$^{-1}$, respectively. The backward trajectories for the CP showed that the air masses were from the northwestern low emission region (Fig. S5). TP showed about 4-fold increase of σ_{ext} compare to the CP. During TP, the σ_{ext}, σ_{sca} and σ_{abs} had large variation inside the PBL, ranging from 325-1435 Mm$^{-1}$, 300-1275 Mm$^{-1}$, and 45-160 Mm$^{-1}$, respectively, and the mean PBLH decreased to 200-500 m. During these pollution accumulation periods...
(before the pollution reached peak level), two contrast vertical structures showed. One showed well-mixing in the PBL but declined concentration in the free troposphere (FT) (e.g. flight 20161115PM and 20161210) (Fig. 3a). The other one had the increased aerosol layer on top of the PBL, and showed positive vertical gradient for all optical properties at certain level (e.g. flight 20161116 AM, 20161211 and 20161216) (Fig. 3b). The former was because of the mostly cleaner northwesterly air mass and higher wind speed influencing the layer above the PBL, while the latter resulted from the southwesterly regional transport (Tian et al., 2019).

During HP period, most flights showed consistent exponentially-declined vertical profile patterns, and the PBLH was even lower than that in TP (Fig. 2f). The stronger temperature inversion (Fig. 2c) and lower wind speed (Fig. 1b) inside the PBL led to high stability of the PBL and promoted the pollutant accumulation. The aerosol concentration was largely enhanced towards the surface and sharply declined above the PBL. Interestingly, the absorption showed higher degree of negative vertical gradient than the scattering at $\lambda=440$nm, which reflected the different sources and mixing ratios of absorbing and non-absorbing aerosols. The surface emission tends to contain more primary sources of absorbing particles such as BC and BrC, while enhanced secondary aerosol formation at upper level may add additional aerosol extinction.

The vertical profiles of σ_{sca} and σ_{abs} during HP can be fitted as:

$$\sigma_{sca} = \sigma_{sca,0} \cdot \exp(-a \cdot H); \quad a = 0.0012 \pm 0.0001, \quad (6)$$

$$\sigma_{abs} = \sigma_{abs,0} \cdot \exp(-b \cdot H); \quad b = 0.0015 \pm 0.0001, \quad (7)$$

where σ_0 represent the surface value of σ_{sca} and σ_{abs}, and H is the altitude. The a and b are the parameter define the changing rate with the altitude. This parameterization could be used to represent the vertical structure of optical properties under heavy pollution condition.

3.3 Vertical profile of SSA, SAE, AAE and g

Fig. 4 shows the vertical profiles of aerosol single scattering albedo (SSA) for all the flights under different stages of pollution events. Overall, the SSA showed two modes inside the PBL. Under the CP,
SSA for most flights was populated at 0.85, and had less variation throughout the column in the PBL. Flight 20161115AM showed a strong elevation of SSA (0.94) at 2200 m (Fig. 4a), which may be influenced by a dust layer (as further discussed in the following). SSA showed positive vertical gradient for the TP and HP inside the PBL, i.e. from the surface to the PBLH, the mean SSA increased from 0.85 to 0.91 and from 0.87 to 0.92 for TP and HP period, respectively. This indicates the reduced fraction of absorbing particles, in turn suggesting an enhancement of secondary production of non-absorbing particles. There were a few profiles featuring with large enhancement of SSA (>0.95, for flight 20161211) at high altitude (Fig. 4b), and backtrajectory analysis (Fig. S5) showed that these resulted from regional transport when more aged pollutants were advected to a high altitude. The SSA in the FT was mostly higher than that in the PBL and maintained at 0.9-0.95 for TP and HP, meaning a lower absorbing particle fraction at higher altitude. Comparing among different stages during pollution event, it could be concluded that at the initialization stage of pollution when the total PM was relatively low, a lower SSA exhibited, while the increase of pollution level added more secondary species, hence increasing SSA. This trend consistent with previous ground studies in Beijing (He et al., 2009; Jing et al., 2011).

The SAE reflects the particle size with larger size having a smaller SAE. A decreasing SAE was shown for increasing pollution levels inside the PBL (Fig. 4), i.e., from CP to HP, the SAE in the PBL showed an average value of 1.74, 1.45, and 1.21, respectively. For most of the profiles, SAE showed enhancement at higher altitude. This means smaller particle sizes at high level, which may result from a higher scavenging efficiency for larger particles where smaller particle remained un-scavenged in the upper level (Liu et al., 2009). These was exception for flight 20161211, when regional advection transported larger and aged particles to the higher altitude. The particle size also corresponded with asymmetry parameter (g, Fig. 4j-i), with larger particle presents more fraction of forward scattering (larger g).

AAE reflects the degree of absorption towards shorter wavelength, such as the presence of BrC will enhance the absorption in the UV. A lower AAE 1.2 ± 0.2 was shown for the CP (Fig. 4g), but increased to 1.56 ± 0.3 for TP in the PBL (Fig. 4h), and additional higher mode of AAE showed at 1.8-2.0 for the HP period (Fig. 4i). There was weak variation of AAE for CP throughout the column, but became largely spreading for TP, i.e., with either positive or negative vertical gradient at different levels. Notably, the AAE showed consistent positive vertical gradient for most of the HP profiles (Fig. 4i). This implied the
enhancement of BrC contribution at higher altitude for polluted troposphere. Flight 20161115AM showed a notably increased AAE up to 2 at altitude 2 km (Fig. 4g), which may reflect the influence from dust (Cazorla et al., 2013). The ground AAE had strong seasonal variation with winter normally showing a higher AAE due to higher emissions of solid fuel burning (Sun et al., 2017; Wang et al., 2018b). However, there is still lack of results on the vertical characteristics of AAE due to limited measurements, and the results here highlight the enhancement of BrC at high level, mainly for polluted environment.

3.4 Comparison of column integrated and in-situ constrained AOD/AAOD

To compare the AOD and AAOD between AERONET and that constrained by aircraft in-situ measurements, the AERONET data was chosen to match with the aircraft profiles in time (±3h) and location (within 10 km) (the PEK site). The comparison was performed at overlapped wavelength (440nm, 675nm, and 870nm) between AERONET and aircraft instruments. As Fig. 5a-c shows, high correlation ($R^2 > 0.95$) was found between columnar and in-situ measurement. In particular, the correlation was most unit under dry condition (RH < 40%), while the AERONET was about 10-20% higher than in-situ measurement when RH >60%. Improved agreement between both may be achieved by considering the particles hygroscopic growth, which requires composition measurement to constrain this factor but this was not available in this study.

Fig. 7d-f shows at three wavelengths the AAOD had lower correlations between both methods compare to AOD, with $R^2 = 0.75, 0.58,$ and 0.49 at 440 nm, 675 nm, and 870nm, respectively. The columnar AAOD was overall about 10-25 % higher than in-situ measurement. This is consistent with previous findings that the retrieved AAOD from AERONET was biased higher when compared to in-situ measurement (Andrews et al., 2017). Note that there was better agreement during CP, when lower pollution level and lower RH (shown in blue dots). This suggests a lower moisture and less AOD interface may improve the agreement of AAOD. As previous studies pointed out that the retrieval of the AERONET was sensitive to the variation of aerosol vertical distribution (Torres et al., 2014). We speculate that the better agreement for CP was due to the vertically homogeneous distribution of aerosol optical properties, and larger bias for CP and HP periods might be caused by the significant variations of the vertical profiles. Other factors like the particle hygroscopic growth under higher RH may introduce factors in enhancing the absorption,
e.g. more lensing effect on BC absorption via thicker and moisture coating (Wu et al., 2017). Though this study is not able to rule out the exact influencing factor in causing this discrepancy, a 25 % overestimation of the AERONET AAOD under polluted condition was shown for the dataset here.

3.5 Heating impacts of BC and BrC

Fig. 6 showed vertical profiles of irradiances from radiative transfer calculation using in-situ measurements as model inputs (Table S1). The results show that the presence of aerosols reduced the direct irradiance reaching the surface (Fig. 6a-c) but increased the upward diffuse (Fig. 6d-f) and downward diffuse irradiances, especially above the PBL (Fig. 6g-i). The direct irradiance on the surface ranged from 1×10^9 to 3.5×10^9 mW m$^{-2}$, with an average of 2.2×10^9 mW m$^{-2}$ during CP (Fig. 6a), which was about two-fold and three-fold larger than that during TP (Fig. 6b) and HP period (Fig. 6c), respectively. The combined direct, diffuse upward and downward irradiance which forms the actinic flux (AF), showed enhancement above the PBL and reduced within the PBL (Fig. 7a-c), but to what extent the enhancement or reduction occurred depends on the aerosol vertical profile. The vertical gradient of AF was slightly modified by aerosol loadings during CP, whereas for the TP and HP, aerosol effects caused AF about two times smaller within the PBL and 20 % larger above the PBL, leading to an increased vertical gradient of AF.

The vertical profiles of absorbing power and heating rate of BC are shown in Fig. 7d-f. The results indicated that the atmospheric heating of BC was mainly inside the PBL for all cases, but exhibited different vertical structure for CP (Fig. 7d), TP (Fig. 7e), and HP period (Fig. 7f). Vertically homogeneously BC heating rates of 0.05 K/h was found inside the PBL during CP (Fig. 7d). During the regional transport cases (flight20161211 and flight20161216) for TP, positive vertical gradient (increase with increasing altitude) of BC heating rates was observed, and as high as 0.1 K/h heating rate could occur at top of the PBL height (Fig. 7e). During the HP period, negative heating rate (decrease with increasing altitude) of BC was found except from one flight on 20161212 in Case 2, and the BC heating rate at the surface could reach as high as 0.15 K/h (Fig. 7f). The reason causing negative vertical gradient of BC heating rate was the higher degree of negative gradient of σ_{abs} (Fig. 3i) than the positive gradient of AF (Fig. 7).
The contribution of BrC to absorbing power and heating rates was computed as the integrated portion of absorption over visible wavelength (370–950 nm in this study) by subtracting the BC absorption. Fig. 7g-i shows the vertical profile of BrC heating rate. Continuously increase of BrC heating rate in the PBL was observed from CP to HP, with mean heating rate of 0.02 K/h, 0.03 K/h, and 0.05 K/h during CP, TP and HP respectively. Though the BC was the main contributor to the heating in the PBL, the heating of BrC was more evenly distributed and could be comparable with the BC heating rate at high altitude especially during HP period (Fig. 7i).

The vertical gradient of the overall heating rate from absorbing components, i.e. increase or decrease heating rate with altitude, will importantly determine the influence on atmospheric stability. If the heating occurred near surface (Case 3), the lower layer will be heated leading to enhanced convective mixing (Sühring et al., 2014; Petaja et al., 2016); whereas if heating above the PBL (Case 2), an increase of temperature inversion will occur hence inhibiting the PBL development trapping the pollutants in the PBL (Wilcox et al., 2016).

3.6 The importance of BrC heating effects

Fig. 8 shows the measured absorption coefficient of BrC and BC inside and above the PBL at different λ for CP, TP and HP period, respectively. The results suggested that both σabs of BC and BrC increased with the pollution level, e.g. the σabs at λ = 440 nm was 42.8 Mm⁻¹ and 7.2 Mm⁻¹ on average in the PBL and above the PBL respectively under HP period, and was 4.7 Mm⁻¹ and 1.3 Mm⁻¹ for LP. The contribution of BrC to total σabs was found to increase from CP to HP period (Fig. 8c, f). This is in line with previous studies in urban Beijing that more BrC contribution to total absorption was found under higher pollution level (Xie et al., 2019; Ran et al., 2016b), suggesting the important role of BrC on absorption under polluted condition.

The BrC contribution to total heating rate showed notably different vertical structures. During CP, all profiles showed consistently low BrC contribution throughout the column, with about 7 % at the surface and 9 % in the FT (Fig. 8g). This means the low primary emission or the emission after being diluted by clean air mass had not contained important fraction of absorbing organics. During TP, BrC contribution...
inside the PBL increased to 22 % and showed considerable variation at higher level (Fig. 8h). During HP period, the surface contribution was comparable with that in TP, but showed remarkably enhanced BrC heating contribution at higher altitude, with a vertically increasing rate of 1.5 %/m in the PBL and reached as high as 45 % in the LFT. The higher heating contribution of BrC at higher altitude means the BrC absorption played an important role in heating at upper level, which may enhance the temperature inversion at the level hereby inhibiting the convective mixing under the heated layer.

By comparing the BrC heating contribution at the surface, there was an increase from CP to TP, however, not from TP to HP. This suggests the primary emission will increase the BrC fraction from CP to TP, but for even more pollution environment from TP to HP, the primary emission may provide limited further increased faction of BrC. The primary BrC may result from a range of combustion sources, with the polluted region at the south of Beijing may contain higher fraction of residential coal burning sources (Sun et al., 2017; Xie et al., 2019) which may influence the Beijing region under polluted period. The relatively consistent BrC contribution at ~20 % from TP to HP suggested the relatively uniform BrC profiles for the primary sources. During TP, the BrC contribution above the PBL had rarely been above 30 % (Fig. 8h), however during HP, there was further enhancement of BrC contribution up to 45 % above the PBL (Fig. 8i). Note that there was no direct injection of biomass burning plume to the high altitude during the study period, the higher portion of BrC absorption above the PBL during HP may be formed through secondary production in addition to the primary source contribution. As Fig. 7a-c shows, there was more intensive actinic flux received at higher altitude and this will promote the photochemical reactions of gas-phase species, allowing more secondary formation of aerosol which may contain a fraction of BrC (Feng et al., 2013; Nakayama et al., 2013). Previous studies also found promoted BrC formation with light source under certain RH (Nguyen et al., 2012; Updyke et al., 2012; Laskin et al., 2015; Zhao et al., 2015). The positive gradient of BrC heating contribution more likely resulted from enhanced RH from the surface to the top of PBL (Fig. 2i), because increased moisture will promote the aqueous reaction and gas-to-aerosol conversion which may also form part of the BrC observed here (Ervens et al., 2011; Nakayama et al., 2013). The secondary formation of BrC also requires the inorganic or VOC precursors being transported to the high level, therefore the enhancement of BrC mostly occurred under higher pollution level when sufficient gas precursors was transport to the level. The BrC may be
also subject to bleaching process and lose the absorbance (Sareen et al., 2013; Lee et al., 2014; Wong et al., 2019), because the profiles in this study were conducted over an urban megacity where the sampled pollutants were fairly young and may have not experienced sufficient ageing time for BrC to be degraded.

4. Conclusions

This study provides detailed characterization of vertical profiles of aerosol optical properties over the Beijing region by continuous aircraft in-situ measurements at different stages during the pollution events. The results combining the direct measurements of scattering and absorption at multiple wavelength, give a full picture of how the optical properties had evolved at different layers during typical pollution event. During clean period for pollution initialization (CP), the aerosols showed relatively uniform characteristics throughout the planetary boundary layer (PBL) and lower free troposphere (FT), such as lowing scattering or absorption coefficient, larger SAE (due to smaller particle size) and lower fraction of brown carbon (BrC) reflected by smaller AAE. The transition period (TP) when pollution was developing had large variation of all optical properties, and enhanced aerosol loadings at higher altitude were encountered when being influenced by regional advection. The fully developed heavy pollution period (HP) featured with the shallow PBL accumulated over 80 % of the scattering and absorption within the PBL, and deceased SAE due to enlarged particles size. Notably the absorption towards shorter wavelength became larger under more polluted environment, especially for the higher altitude.

The AOD and AAOD measured by passive remote sensing was for the first time compared with in-situ measurements over this polluted region. AOD showed high correlation between AERONET and in-situ measurement within 10 %, and the most discrepancy between both could be possibly resolved by considering the hygroscopic growth of aerosols under high RH condition. The AAOD however showed 10-25 % higher for remote sensing especially at shorter wavelength, consistent with other studies (Müller et al., 2012; Andrews et al., 2017). The possibilities of causing this could be the non-homogeneously vertically structure of optical properties, mixing state of light-absorbing aerosol, and also the particle hygroscopic growth, which are unable to be ruled out only using the results here.

The heating rates of aerosols was calculated by the radiative transfer model (DISORT) by using in-situ measured profiles as inputs. BC was the main heating species, having 0.05 K/h, 0.1 K/h and 0.15 K/h
heating rate in the PBL during pollution initialization, transition and full development respectively, and showed positive vertical gradient of heating when regional transport The contribution of BrC was found to increase by 20 % throughout the column from CP to HP period, in particular the increased BrC contribution was pronounced at the layer above the PBL during HP, which was proposed to result from the intensive photochemical reactions above the PBL. The BrC present at this layer will have the potential to contribute to the heating at this layer, hence enhancing the temperature inversion on top of the PBL hereby the capping effect to the pollutants trapped in the PBL. Particles at higher altitude may be transported to wider region spatially in both vertical and horizontal directions through convection, which may lead BrC present at this layer to have wilder and longer radiative impacts. Different mechanism of BrC formation at different levels such as above the PBL (where more solar flux received) or within the PBL (where more moisture was constrained) warrants future studies.

Data availability. All data in this paper are available from the authors upon request (tianping@bj.cma.gov.cn).

Competing interests. The authors declare no conflicts of interest.

Author contribution. D. D., and M. H. led and designed the study; P. T. and D. L. designed the study, set up the experiment, analyzed the data, and wrote the paper. D. Z. and Q. L. conducted the aircraft observation. C. Y. performed the radiative transfer model calculation. Z.D., L. R., and Y. W. contributed to the aircraft data analysis. S.D and K. H contribute to the surface data analysis. G. Z and C. Z. conducted the aerosol absorption comparison experiment.

Acknowledgment. This research was supported by the National key Research and Development Program of China (2016YFA0602001), and the National Natural Science Foundation of China (41875044, 41675038, 41875167). Part of this work is supported by the National Center of Meteorology, Abu Dhabi, UAE under the UAE Research Program for Rain Enhancement Science.
Reference

Gyawali, M., Arnott, W. P., and Moosmuller, H.: In situ aerosol optics in Reno, NV, USA, during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic

Nazarenko, L., Rind, D., Tsagaridis, K., Del Genio, A. D., Kelley, M., and Tausnev, N.: Interactive nature

Sühring, M., Maronga, B., Herbert, F., and Raasch, S.: On the Effect of Surface Heat-Flux Heterogeneities on the Mixed-Layer-Top Entrainment, Boundary-Layer Meteorol., 151, 531-556, 10.1007/s10546-014-

aerosol optical property observations and an improved absorption Ångström exponent segregation method, Atmos. Chem. Phys., 18, 9061-9074, 10.5194/acp-18-9061-2018, 2018b.

Table 1. Flight summary of the vertical observation of aerosol optical properties campaign

<table>
<thead>
<tr>
<th>Flight number</th>
<th>Time range Local time</th>
<th>Case</th>
<th>Pollution period</th>
<th>Mixing layer height</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF1</td>
<td>20161115 12:00</td>
<td>Case_1</td>
<td>LP</td>
<td>1450 m</td>
</tr>
<tr>
<td>RF2</td>
<td>20161115 14:00</td>
<td>Case_1</td>
<td>LP</td>
<td>1450 m</td>
</tr>
<tr>
<td>RF3</td>
<td>20161116 12:00</td>
<td>Case_1</td>
<td>TP</td>
<td>850 m</td>
</tr>
<tr>
<td>RF4</td>
<td>20161116 14:00</td>
<td>Case_1</td>
<td>TP</td>
<td>750 m</td>
</tr>
<tr>
<td>RF5</td>
<td>20161117 12:00</td>
<td>Case_1</td>
<td>TP</td>
<td>1250 m</td>
</tr>
<tr>
<td>RF6</td>
<td>20161117 14:00</td>
<td>Case_1</td>
<td>TP</td>
<td>1150 m</td>
</tr>
<tr>
<td>RF7</td>
<td>20161118 12:00</td>
<td>Case_1</td>
<td>HP</td>
<td>1050 m</td>
</tr>
<tr>
<td>RF8</td>
<td>20161210 14:00</td>
<td>Case_2</td>
<td>LP</td>
<td>950 m</td>
</tr>
<tr>
<td>RF9</td>
<td>20161211 14:00</td>
<td>Case_2</td>
<td>MP</td>
<td>950 m</td>
</tr>
<tr>
<td>RF10</td>
<td>20161212 14:00</td>
<td>Case_2</td>
<td>HP</td>
<td>450 m</td>
</tr>
<tr>
<td>RF11</td>
<td>20161216 14:00</td>
<td>Case_3</td>
<td>TP</td>
<td>350 m</td>
</tr>
<tr>
<td>RF12</td>
<td>20161217 14:00</td>
<td>Case_3</td>
<td>HP</td>
<td>350 m</td>
</tr>
<tr>
<td>RF13</td>
<td>20161218 14:00</td>
<td>Case_3</td>
<td>HP</td>
<td>350 m</td>
</tr>
<tr>
<td>RF14</td>
<td>20161219 14:00</td>
<td>Case_3</td>
<td>HP</td>
<td>250 m</td>
</tr>
</tbody>
</table>
Fig. 1. Temporal variations from Nov. 15th to 18th of vertical profiles of wind direction (a), and wind speed (b) measured by wind profile radar; (c) particle extinction measured by MPL lidar; (d) aerosol optical depth and aerosol absorption optical depth (e) from AERONET (asterisk) and derived from aircraft in-situ measurements (open star); (f) surface PM$_{2.5}$ and RH. The vertical bars denote the periods.
of flight profiles, with blue, black and red representing the clean period, transition period and heavy pollution during a pollution event respectively. The other two pollution events can refer to supplement Fig. S2 and Fig. S3.

Fig. 2. Vertical profiles of temperature (a, b, c), relative humidity (d, e, f) and potential temperature (g, h, i) for Clean Period, Transition Period and Heavy Pollution period, respectively. The black and red dots represent for inside the PBL and above the PBL.
Fig. 3. Vertical profiles of aerosol extinction, scattering and absorption coefficient at 440 nm for CP
(blue), TP (black) and HP period (red), respectively. The blue and red lines represent for inside and above the ML, respectively.

Fig. 4. Vertical profiles of aerosol single scattering albedo at 440 nm (SSA, a-c), scattering Ångström

https://doi.org/10.5194/acp-2019-780
Preprint. Discussion started: 16 September 2019
© Author(s) 2019. CC BY 4.0 License.

Fig. 4. Vertical profiles of aerosol single scattering albedo at 440 nm (SSA, a-c), scattering Ångström
exponent (SAE, d - f), absorption Angström exponent (AAE, g - i), and asymmetry parameter (g, j - l) for CP (left panel), TP (middle panel) and HP period (right panel), respectively.

Fig. 5. Comparison between AERONET and aircraft in-situ constrained AOD and AAOD: a) - c) The comparison of AOD between AERONET vs Aircraft at 440nm, 675nm, and 870nm, respectively, and colored by RH; d) – f) Compare of AAOD between the retrieval AERONET one and aircraft in-situ measurement at 440nm, 670nm, and 880nm. The blue, black, and red notes represent for CP, TP, and HP period, respectively.
Fig. 6. Radiative transfer results calculated by DISTORT. a)-c), b)-e), and g)-i) show the direct, diffuse upward and diffuse downward irradiance respectively. The left, middle and right panel represent for CP, TP and HP period respectively, with black and red lines denoting above and within the PBL. The solid
line represent for the aerosol condition, while the grey dash line represent for the no-aerosol condition.

Fig. 7. Actinic flux (a-c), BC absorbing power (d-f) and BrC absorbing power (g-i). The left, middle and right panel was for LP, TP and HP respectively, with the black and red line denoting within and above the PBL. The gray lines in a) to c) show the aerosol free results. The upper x-axis from d) to i) shows the heating rate.
Fig. 8. Spectral absorption coefficient of BC and BrC inside and above the PBL for CP (a, d), TP (b, e) and HP period (c, f), respectively, shown in black and brown carbon color respectively. The vertical profiles of heating portion of BrC for CP, TP and HP period are shown in g) – i).