Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for origin

Zoran Kitanovski1,*, Pourya Shahpoury1,2, Constantini Samara3, Aristeidis Voliotis3,4, Gerhard Lammel1,5

1 Max Planck Institute for Chemistry, Multiphase Chemistry Department, Mainz, Germany
2 Environment and Climate Change Canada, Air Quality Processes Research Section, Toronto, Canada
3 Aristotle University of Thessaloniki, Department of Chemistry, Environmental Pollution Control Laboratory, Thessaloniki, Greece
4 University of Manchester, School of Earth and Environmental Sciences, Centre for Atmospheric Sciences, Manchester, United Kingdom
5 Masaryk University, Research Centre for Toxic Compounds in the Environment, Brno, Czech Republic

*now at: Lek Pharmaceuticals d.d., Ljubljana, Slovenia

Correspondence to: Zoran Kitanovski (z.kitanovski@mpic.de); Pourya Shahpoury (p.shahpoury@mpic.de)

Abstract

Nitro-monoaromatic hydrocarbons (NMAHs), such as nitrocatechols, nitrophenols and nitrosalicylic acids, are important constituents of atmospheric particulate matter (PM) water soluble organic carbon (WSOC) and humic-like substances (HULIS). Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons (NPAHs, OPAHs) are toxic and ubiquitous in the ambient air; due to their light absorption properties, together with NMAHs they are part of aerosol brown carbon (BrC). We investigated the winter concentrations of these substance classes in size-resolved particulate matter (PM) from two urban sites in central and southern Europe, i.e. Mainz (MZ), Germany and Thessaloniki (TK), Greece. \sum_{11}NMAH concentrations in PM$_{10}$ and total PM were 0.51-8.38 and 12.1-72.1 ng m$^{-3}$ at MZ and TK site, respectively, whereas \sum_{8}OPAHs were 47-
1636 and 858-4306 pg m\(^{-3}\), and \(\sum_{17}^{NPAHs}\) were \(\leq 90\) and 76-578 pg m\(^{-3}\), respectively. NMAHs and the water-soluble OPAHs contributed 0.4 and 1.8%, and 0.0001 and 0.0002 % to the HULIS mass, at MZ and TK, respectively. The mass size distributions of the individual substances generally peaked in the smallest or second smallest size fraction i.e., \(<0.49\) \(\mu\)m or 0.49-0.95 \(\mu\)m. The mass median diameter (MMD) of NMAHs was 0.10 \(\mu\)m and 0.27 \(\mu\)m at MZ and TK, respectively, while the MMDs of NPAHs and OPAHs were both 0.06 \(\mu\)m at MZ, and 0.12 and 0.10 \(\mu\)m at TK. Correlation analysis between NMAHs, NPAHs and OPAHs from one side and WSOC, HULIS, nitrate, sulphate and potassium cation (K\(^+\)) from another, suggested that the fresh biomass burning emissions dominated at the TK site, while aged air masses (influenced by biomass and fossil fuel burning) were predominant at the MZ site.

1. Introduction

Atmospheric humic-like substances (HULIS) represent a complex mixture of aliphatic and aromatic compounds with multiple functional groups, such as hydroxyl, carbonyl, carboxyl, nitro, nitrooxy, and sulphate groups (Havers et al., 1998; Graber and Rudich, 2006; Hallquist et al., 2009; Claeys et al., 2012). They are a major constituent of aerosol water-soluble organic carbon (WSOC), contributing between 9 and 72% of WSOC mass (Decesari et al., 2000; Graber and Rudich, 2006; Lin et al., 2010; Zheng et al., 2013). The distribution of HULIS molecular weights (MWs) is unimodal and ranges between 100 and 500 Da with most of the compounds grouping around 200 Da (Graber and Rudich, 2006; Claeys et al., 2012; Song et al., 2018), unlike soil humic and fulvic acids with MW distributions extending well beyond 1000 Da. Due to the presence of light-absorbing polyconjugated and aromatic compounds (Duarte et al., 2005; Graber and Rudich, 2006; Claeys et al., 2012; Zheng et al., 2013), HULIS are an important constituent of aerosol water-soluble brown carbon (BrC; Laskin et al., 2015, and references therein). The intense light-absorption of HULIS in the ultraviolet and violet and blue visible regions, between 200 and 500 nm, can affect aerosol optical properties and atmospheric photochemical processes (Andreae and Gelencser, 2006). Owing to the presence of highly polar polyfunctional material, HULIS has surface-active properties and can make aerosols act as cloud condensation nuclei (CCN). In the aerosol aqueous phase, HULIS can increase the solubility of hydrophobic organic compounds and change the reactivity and solubility of metal aerosols, owing to metal-complexation properties (Graber and Rudich, 2006). Finally, due to the presence of redox-active moieties, HULIS can
catalyse electron transfer reactions and formation of reactive oxygen species (ROS), which could pose oxidative stress in humans upon inhalation (Verma et al., 2015).

Biomass burning (BB) is considered as one of the main sources of HULIS in the atmosphere (Lin et al., 2010; Claeyts et al., 2012; Pavlovic and Hopke, 2012; Zheng et al., 2013) and an important source of aerosol nitroaromatic compounds (NACs; Claeyts et al., 2012; Song et al., 2018). Recent studies found that nitro-monoaromatic hydrocarbons (NMAHs), such as 4-nitroacetocatechol (4-NC; MW: 155 Da) and isomeric methyl-nitrocatechols (MNCs; MW: 169 Da) are abundant constituents of particulate matter (PM) HULIS, originating from BB (Claeyts et al., 2012; Song et al., 2018).

NMAHs are emitted into the atmosphere by primary and secondary processes. 4-NC, MNCs, nitroguaiacols (NGs) and nitrosalicylic acids (NSAs) are predominantly formed by secondary oxidation of lignin thermal decomposition products (m-cresol, phenols, methoxyphenols, catechols, salicylic acid etc.) in the gas- and aqueous phase (Inumia et al., 2010; Kelly et al., 2010; Kroflič et al., 2015; Frka et al., 2016; Teich et al., 2017; Finewax et al., 2018; Xie et al., 2017; Wang et al., 2019). Therefore, the yellow-coloured water-soluble 4-NC and MNCs have been proposed as suitable tracers for highly oxidized secondary BB aerosols (Inumia et al., 2010; Kitanovski et al., 2012b; Kahnt et al., 2013; Caumo et al., 2016; Chow et al., 2016). In the past decade, the ambient PM nitrocatechols (NCs) have been measured in several studies world-wide, i.e. Europe (Inumia et al., 2010; Zhang et al., 2010; Kitanovski et al., 2012b; Kahnt et al., 2013; Mohr et al., 2013; Teich et al., 2014; Frka et al., 2016), South America (Claeyts et al., 2012; Caumo et al., 2016), North America (al Naiema and Stone, 2017), Asia (Chow et al., 2016; Li et al., 2016; Wang et al., 2019) and Australia (Inumia et al., 2016). They represent a significant fraction of the PM organic carbon (OC), e.g. 0.8% in winter PM$_{10}$ collected at an urban background location in Slovenia (range 0.4-1.3%; Kitanovski et al., 2012b), 0.75% in winter PM$_{10}$ collected at rural site in Belgium (Kahnt et al., 2013) and ≈0.3% in PM$_{10}$ collected in Brazil during the BB season (Caumo et al., 2016). Nitrosalicylic acids (2-hydroxy-nitrobenzoic acids) have been reported in PM samples collected at rural (van Pinxteren and Herrmann, 2007; van Pinxteren et al., 2012; Teich et al., 2017; Wang et al., 2018), urban (Kitanovski et al., 2012a and 2012b; Teich et al., 2017; Wang et al., 2018) and remote (Wang et al., 2018) sites. Similar to NCs, they are mainly associated with secondary BB aerosols (Kitanovski et al., 2012b; Teich et al., 2017; Wang et al., 2018). Nitrophenols (NPs), structurally related compounds to NCs, are emitted from primary sources (e.g. traffic, coal and wood combustion, industry and agricultural use of pesticides), which usually
predominate their secondary formation, especially in urban areas (Harrison et al., 2005; Cecinato et al., 2005; Hoffmann et al., 2007; Linuma et al., 2007; Zhang et al., 2010; Ganranoo et al., 2010; Özel et al., 2011; Mohr et al., 2013; Kitanovski et al., 2012a and 2012b; Inomata et al., 2015; Teich et al., 2017; Wang et al., 2018).

Polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives (NPAHs and OPAHs), as well as hydroxy derivatives (OH-PAHs), are ubiquitous in the atmosphere (Walgraeve et al., 2010; Lammel, 2015; Bandowe and Meusel, 2017; Shahpoury et al., 2018). They are primarily emitted from incomplete combustion of fossil fuels (Zielinska et al., 2004; Karavalakis et al., 2010; Pham et al., 2013; Inomata et al., 2015), wood, coal and biomass burning (Ding et al., 2012; Shen et al., 2012, 2013a and 2013b; Huang et al., 2014; Vicente et al., 2016).

The PAH derivatives are secondarily formed by the reaction of parent PAHs with atmospheric oxidants such as OH, NOx and O3. Some NPAHs have distinct sources; for instance, 3-nitrofluoranthene (3-NFLT) and 1-nitropyrene (1-NPYR) are specifically associated with combustion sources, whereas 2-nitrofluoranthene (2-NFLT) and 2-nitropyrene (2-NPYR) are produced through oxidation of their parent species in the atmosphere (Bandowe and Meusel, 2017).

Similarly, OPAHs benzanthrone (OBAT), benz(a)fluorenone (BaOFLN) and benz(b)fluorenone (BbOFLN) have been associated with primary sources, whereas 9,10-anthraquinone (9,10-O2ANT), 1,2-benzanthraquinone (1,2-O2BAA), and 9-fluorenone (9-OFLN) have been attributed to both source types (Kojima et al., 2010; Souza et al., 2014; Lin et al., 2015; Zhuo et al., 2017).

The primary sources dominate in winter time with residential heating surpassing traffic emission (Lin et al., 2015). It is anticipated that functionalized 2- and 3-ring PAHs (e.g. 2- and 3-ring OPAHs) would exhibit the highest hydrophilicity among their analogs and could also be part of PM HULIS (Vione et al., 2014; Fan et al., 2016; Haynes et al., 2019). The water-soluble OPAHs, in particular quinones, were suggested to contribute to light-absorption properties of brown carbon (Laskin et al., 2015; Haynes et al., 2019). Moreover, the ROS activity of HULIS from PM2.5 was associated to OPAHs, i.e. quinones and hydroxy-quinones (Verma et al., 2015). It has been shown in controlled experiments that the chemical aging of PM from various origins would increase its ROS activity and this effect is enhanced in the presence of O3 (Li et al., 2009; McWhinny et al., 2011; Stevanovic et al., 2013; Verma et al., 2014 and 2015; Antiñolo et al., 2015). This process has been attributed to oxidation of PAHs and formation of water-soluble derivatives.
NMAHs, PAHs and N/OPAHs significantly contribute to the aerosol BrC due to their light-absorption capacity in the UV and visible range (Mohr et al., 2013; Teich et al., 2017; Xie et al., 2017). Determining the size-resolved mass distribution of the PM molecular tracers is important for assessing the particle emission sources, atmospheric transport, and health effects (Neusüss et al., 2000). In particular, there is a limited knowledge about the size-resolved characteristics of NMAHs and N/OPAHs, and their relation to atmospheric HULIS (Claeys et al., 2012; Song et al., 2018). Therefore, the aim of the present work is to fill this gap by studying the size-resolved PM from polluted urban air at two locations in central and southern Europe, i.e. Mainz (MZ), Germany and Thessaloniki (TK), Greece, and to apply these data to determine the possible emission sources. The concentrations of ions, organic acids, HULIS and HULIS-C in the samples used in this study can be found in a companion paper (Voliotis et al., 2017).

2. Experimental

2.1 Chemicals and solutions

Solvents including methanol (MeOH, Chromasolv, LC-MS grade; Fluka, Buchs, Switzerland), tetrahydrofuran (THF, LiChrosolv, HPLC grade; Merck, Darmstadt, Germany), high-purity water (18.2 MΩ cm; Elga PURELAB, Veolia Water Technologies, Celle, Germany), ethylenediaminetetraacetic acid (EDTA, trace metals basis; Sigma-Aldrich, St. Louis, USA), formic acid and ammonium formate (grade eluent additive for LC-MS; Fluka) were used for LC-MS mobile phase and sample preparation for NMAHs. Dichloromethane (DCM), n-hexane, and ethyl acetate (Suprasolv, GC-MS grade, Merck) were used for N/OPAH analysis. Analytical standards used in our study, their acronyms, and suppliers are listed in Tables 1 and S1. The internal standards (IS) of 2,4,6-trinitrophenol (picric acid, aqueous solution 1.0%; Sigma-Aldrich) and 4-nitrophenol-d₄ (4-NP-d₄; LGC, Teddington, UK) were used for NMAH quantification, whereas 1-nitronaphthalene-d₇, 2-nitrofluorenone-d₅, 9-nitroanthracene-d₈, 3-nitrofluoranthene-d₉, 1-nitropyrene-d₉, 6-nitrochrysene-d₁₁, 9,10-anthraquinone-d₈, and 9-fluorenone-d₈ (Chiron, Norway) were used for N/OPAH quantification. Individual stock solutions of NMAH standards were prepared in methanol at concentrations of 200 µg mL⁻¹, whereas those for N/OPAHs were prepared in toluene at 10 µg mL⁻¹. Standard mixtures were prepared for each substance class from individual stock solutions, and further used for preparation of calibration standards of NMAHs in methanol/water mixture (3/7, v/v) containing 5 mM ammonium formate buffer pH 3 and 400 µM.
EDTA (injection solvent), and calibration standards of N/OPAHs in ethyl acetate. NMAH and N/OPAH calibration standards were prepared in the concentration range of 0.1 to 500 and 0.25 to 1000 pg µL\(^{-1}\), with a fixed IS concentration of 100 and 200 pg µL\(^{-1}\), respectively.

2.2 Collection of samples

All PM samples were collected using a 5-stage high-volume cascade impactor with effective cut-off diameters: 0.49, 0.95, 1.5, 3 and 7.2 µm of aerodynamic particle size, \(D_p\), and a backup filter collecting particles < 0.49 µm (Table 2). The sampling in MZ was done using a high-volume air sampler Baghirra HV-100P (Baghirra, Prague, Czech Republic) equipped with a multi-stage cascade impactor (Tisch Environmental Inc., Cleves, USA, series 230, model 235) and a PM\(_{10}\) head. Downstream of the impactor, gaseous organics were collected in two polyurethane foam plugs (PUF; density 0.030 g cm\(^{-3}\); Organika, Malbork, Poland) placed in a glass cartridge. The PM was sampled on slotted quartz fibre filters (QFFs, TE-230-QZ, Tisch Environmental Inc., 14.3×13.7 cm) and a QFF backup filter (Whatman, 20.3×25.4 cm). Four sets of samples were collected at MZ between November and December 2015, each over the period of 70 hrs (flow rate: 60 m\(^3\) h\(^{-1}\); Table 2). The impactor used in TK was a Sierra Instruments, model 235; the PM samples were collected on QFFs (Tisch Environmental TE-230QZ, slotted 5.7×5.7 cm) and on QFF backup filters (Pall, 2500 QAT-UP), without a PM\(_{10}\) head, as described in Voliotis et al. (2017).

2.3 Sample preparation and analytical methods

2.3.1 LC/MS analysis of nitro-monoaromatic hydrocarbons

Extraction of the filter samples for NMAH analysis was done using a validated procedure (Kitanovski et al., 2012b) with small modifications. Briefly, a 1.5 cm\(^2\) section of the filter was spiked with both IS (spiked mass: 100 ng) and subsequently extracted three times (5 min each) with 10 mL methanolic solution of EDTA (3.4 nmol mL\(^{-1}\)) in an ultrasonic bath. The combined extracts were concentrated to 0.5 mL using a TurboVap II (bath temperature: 40°C, nitrogen gas pressure: 15 psi; Biotage, Uppsala, Sweden). The concentrated extract was filtered through a 0.2-µm PTFE syringe filter (4 mm, Whatman; GE Healthcare, Little Chalfont, UK) into a 2-mL vial and was evaporated to near dryness under the gentle stream of nitrogen (99.999%; Westfalen AG, Münster, Germany). Finally, the extract was dissolved in methanol/water mixture (3/7, v/v) containing 5 mM ammonium formate buffer pH 3 and 400 µM EDTA for LC/MS analysis.
The NMAHs were determined using an Agilent 1200 Series HPLC system (Agilent Technologies, Waldbronn, Germany) coupled to an Agilent 6130B Series single quadrupole mass spectrometer equipped with an electrospray ionization (ESI) source. High-purity nitrogen was used as nebulizer and drying gas. The separation of the targeted analytes was done on an Atlantis T3 column (150 mm × 2.1 mm i.d., 3 μm particles size; Waters, Milford, USA), connected to an Atlantis T3 VanGuard pre-column (5 mm × 2.1 mm i.d., 3 μm particles size; Waters), using isocratic elution with a mobile phase consisted of MeOH/THF/water (30/15/55, v/v/v) mixture containing 5 mM ammonium formate buffer pH 3. The mobile phase flow rate, column temperature and injection volume were 0.2 mL min⁻¹, 30°C and 10 μL, respectively (Kitanovski et al., 2012b). The detection and quantification of NMAHs was done in single ion monitoring and negative ESI mode (Table 1). The optimized ESI-MS parameters were as follows: −1000V for the ESI capillary voltage, 30 psig for the nebulizer pressure and 12 L min⁻¹ and 340°C for the drying gas flow and temperature, respectively. Due to the lack of a reference standard for 3-methyl-4-nitrocatechol (3-M-4-NC), its concentrations were calculated based on the calibration curve of 4-M-5-NC. This is justified based on the structural similarity of the two substances and therefore similar ionization efficiency under ESI-MS conditions. LC/MSD ChemStation (Agilent Technologies) was used for data acquisition and analysis.

2.3.2 Chemical analysis of nitro- and oxy-polycyclic aromatic hydrocarbons

N/OPAHs were extracted from PM samples following a QuEChERS method with slight modifications (Albinet et al., 2014; Shahpoury et al., 2018). Briefly, each filter paper was placed inside a glass centrifuge tube (Duran, Schott, Mainz, Germany) and spiked with a mixture of internal standards containing 60 ng of each 1-nitronaphthalene-d₇, 2-nitrofluorene-d₉, 9-nitroanthracene-d₉, 3-nitrofluoranthene-d₉, 1-nitropyrene-d₉, 6-nitrochrysene-d₁₁, 9,10-anthraquinone-d₈, and 9-fluorenone-d₈. 7 mL of DCM was then added to each tube, the tubes were capped and the samples were extracted by vortexing for 1.5 min. The extracts were passed through a glass funnel plugged with deactivated glass wool and concentrated to 0.5 mL using a TurboVap II. The concentrated extracts were loaded on pre-conditioned SiO₂ solid-phase extraction cartridges (500 mg; Macherey-Nagel, Weilmünster, Germany) and the target analytes were eluted with 9 mL of 65:35 n-hexane-DCM.
The purified extracts containing the analytes were concentrated to 0.5 mL and the solvent was exchanged by adding 5 mL of ethyl acetate, concentrating the solution to 0.5 mL, and repeating the process three times. The sample volumes were adjusted to 0.3 mL and transferred to 2 mL vials containing 0.4 mL glass inserts. All solvents used for N/OPAH analysis were high-purity (Suprasolv, GC-MS; Merck, Darmstadt, Germany). All glassware used for analysis was pre-washed with lab-grade detergent, tap water and deionized water, and baked at 310°C for 12 hours. The samples were analysed using a Trace 1310 gas chromatograph (GC; Thermo Scientific, Waltham, MA, USA) interfaced to a TSQ8000 Evo triple-quadrupole mass selective detector (MS/MS; Thermo Scientific). The analysis was performed in negative chemical ionization with methane used as ionization gas (1.5 mL min⁻¹ flow rate; > 99.99%; Messer, Bad Soden, Germany). The analytes were separated on a 30-m DB-5ms capillary column (0.25 mm ID, 0.25 µm film thickness; J&W, Santa Clara, CA, USA) with helium (99.99 %; Westfalen AG, Münster, Germany) as carrier gas at 1 mL min⁻¹ flow rate. The GC inlet temperature was set to 250°C and operated in pulsed splitless mode (30 psi pulsed pressure for 1.5 min, and splitless time of 1.8 min). The GC oven temperature was held at 60°C for 2 min at the start of the analysis, then increased to 180°C at 15°C min⁻¹, and to 280°C at 5°C min⁻¹, followed by a final hold time of 15 min. MS transfer line and ion source temperature were set to 290 and 230°C, respectively. Emission current and electron energy were set to 100 µA and −70 eV, respectively. The target analytes were detected in selected ion monitoring mode, identified using their retention times and quantification ions (Table 1). The quantification was performed using the internal calibration method and 11-point calibration curves ranging from 0.25 to 1000 pg µL⁻¹. Trace Finder (Thermo Scientific, Waltham, USA) was used for chromatographic data acquisition and analysis.

2.3.3 Quality control and data analysis

Field blanks (n = 3) were prepared during sample collection by mounting the pre-baked filters on the sampler without switching it on. These filters were subsequently retrieved and processed along with the rest of the samples. Limits of quantification (LOQ) for analytes were calculated as mean concentration of each analyte in blanks + 3 standard deviations. When analyte concentrations in the samples exceeded the LOQ, mean blank concentrations were subtracted from those in the corresponding samples. Microsoft Office Excel 2013 (Microsoft Corp., Redmond, USA) and OriginPro 9.0 (OriginLab Corp., Northampton, USA) were used for statistical analysis and data.
visualization. Mass size distributions (MSDs) of NMAHs and N/OPAHs were additionally characterized by the mass median diameter (MMD), defined as \(\log \text{MMD} = \sum (c_i \log D_i) / \sum c_i \), with \(c_i \) and \(D_i \) being the concentration (ng m\(^{-3}\)) and geometric mean diameter, respectively, of six impactor stages. 0.001 \(\mu \)m was adopted as the lower cut-off of the lowermost stage (backup filter) and 10 \(\mu \)m as the upper cut-off of the uppermost stage, even in the absence of a PM\(_{10}\) head (i.e. TK samples).

3. Results and discussion

3.1 Levels of NMAHs

From the 11 targeted NMAHs, 8 were consistently detected in size-segregated PM from MZ and TK. 4-NG and DNOC were not detected in MZ samples, while being sporadically detected in the coarse PM (>3 \(\mu \)m) from TK. 2,4-DNP was detected more frequently in TK (three sample sets) than in MZ samples (one sample set).

The concentrations of NMAHs associated to PM\(_{10}\) (MZ) and total PM (TK) are given in Table S3. PM\(_{10}\) and total PM \(\sum_{11} \)NMAH concentrations in MZ and TK were 0.51-8.38 and 12.1-72.1 ng m\(^{-3}\), respectively. In all sample sets, 4-NC was the most abundant NMAH with concentrations ranging within 0.05-3.90 ng m\(^{-3}\) (mean 2.46 ng m\(^{-3}\); Table S3) in MZ samples, and 10 times higher concentrations in TK samples (5.89-36.33 ng m\(^{-3}\); mean 22.11 ng m\(^{-3}\); Table S3). Second most abundant NMAH in MZ was found to be 4-NP with concentrations between 0.24 and 1.27 ng m\(^{-3}\) (mean 0.83 ng m\(^{-3}\); Table S3), while 4-M-5-NC was the second most abundant in TK samples (2.54 - 16.05 ng m\(^{-3}\); mean: 9.79 ng m\(^{-3}\); Table S3). In general, the concentration trends of NMAHs were 4-NC > MNCs > 4-NP > NPs > NSAs > DNP (dinitrophenols) for MZ samples, and 4-NC > MNCs > 4-NP > NSAs > NPs > DNP for TK samples. These trends are in good agreement with other studies, where 4-NC, MNCs and 4-NP were the most abundant NMAHs (Kitanovski et al., 2012b; Chow et al., 2016). However, we previously found different concentration trends in snow-scavenged atmospheric particles collected in MZ, where 4-NC and MNCs were the second most abundant NMAH species following NPs (Shahpoury et al., 2018). \(\sum \)NMAH winter concentrations at TK were higher than those found in winter PM\(_{2.5}\) and PM\(_{10}\) from Hong Kong (China; Chow et al., 2016) and rural Belgium (Kahnt et al., 2013), respectively, but lower than NMAH concentrations in winter PM\(_{10}\) samples from Ljubljana (Slovenia; Kitanovski et al., 2012b) and Shanghai (China; Li et al., 2016). The concentrations of individual NMAHs in winter PM\(_{10}\) from
MZ were among the lowest values reported so far (Iinuma et al., 2010; Kitanovski et al., 2012b; Kahnt et al., 2013; Mohr et al., 2013; Chow et al., 2016; Li et al., 2016; Teich et al., 2017; Wang et al., 2019).

In Table S3, one can easily notice the consistently higher (≈10 times) total PM concentrations of 4-NC, MNCs and NSAs in TK samples compared to those found in PM$_{10}$ samples from MZ. Smaller concentration discrepancies among the sites were observed for 4-NP and methyl-nitrophenols (MNPs) (up to 3 times higher concentrations in TK samples). Since 4-NC, MNCs and NSAs are considered as suitable tracers for BB aerosols (Iinuma et al., 2010; Kitanovski et al., 2012b; Kahnt et al., 2013; Caumo et al., 2016; Chow et al., 2016; Teich et al., 2017), this suggests that the air masses over TK during sample collection were greatly influenced by BB emissions. To test this hypothesis, a correlation analysis was done for NMAHs. Except for NPs in TK samples, generally high correlations were observed within the NMAHs compound groups (NSAs, NCs, NPs; $R_{adj}^2 > 0.8$; Table S4 and S5). The correlation analysis of TK samples showed several interesting features (Table S4). Firstly, 5-NSA highly correlated (R_{adj}^2 0.81 – 0.83) with 4-NP and potassium cation (K^+), but showed insignificant correlations with 4-NC, MNCs and nitrate. Moreover, 3-NSA showed significantly ($p<0.05$) high correlation only with K^+, but moderate with 4-NP. Additionally, 4-NP was highly correlated with K^+ and nitrate (R_{adj}^2 0.94 and 0.81, respectively).

Secondly, 4-NC and 4-M-5-NC showed low correlations with K^+ and nitrate, but highly correlated with 3-M-4-NP (R_{adj}^2 0.74 and 0.78, respectively). In our previous work (Kitanovski et al., 2012b), high correlations between NSAs and 4-NC, MNCs or nitrates were observed ($R_{adj}^2 > 0.8$), supporting NSAs’ secondary origin (Kitanovski et al., 2012b; Teich et al., 2017). Our TK results indicate different emission sources between NSAs and 4-NP on the one hand, and 4-NC and MNCs on the other hand. 5-NSA and 4-NP (2-M-4-NP included) most likely had the same emission source, i.e. BB (both correlate with K^+), and were probably formed by aqueous-phase nitration of their phenolic precursors (especially for 4-NP and 2-M-4-NP, which both highly correlated with nitrates) in deliquescent aerosol (Kroflič et al., 2018). Additionally, 3-NSA (insignificantly correlated with nitrate) was probably emitted primarily by BB (Wang et al., 2017). In contrast, low correlations of 4-NC and MNCs with K^+ and nitrates suggest that BB and aqueous-phase nitration might not be the dominating emission sources, and that their possible main source could be gas-phase nitration of anthropogenic precursors (Finewax et al., 2018), such as benzene and toluene (Xie et al., 2017; Wang et al., 2019), emitted from fossil fuel combustion (e.g. traffic, coal...
combustion). The statistically significant (p<0.05) correlations of 3-M-4-NP with 4-NC and 4-M-5-NC, in contrast to the correlations with 4-NP and nitrates, suggest that most likely 3-M-4-NP had similar emission sources with NCs (i.e. fossil fuel combustion). It can be noted from Table S4 that MNP isomers (2-M-4-NP and 3-M-4-NP) probably had different main emission sources, i.e. aqueous-phase nitration of a 2-M-4-NP precursor emitted from BB vs. fossil fuel combustion in case of 3-M-4-NP (Noguchi et al., 2007).

Correlation analysis for NMAHs in MZ samples presents quite a different picture (Table S5). Statistically significant (p<0.05) high correlations were observed among different NMAH compound groups (i.e. NSAs, NCs, NPs), with most of R^2_{adj} higher than 0.8. K+ was correlated with 5-NSA, 4-NC, MNCs and 3-M-4-NP, indicating their predominant emission from BB. Nitrate showed high correlations (R^2_{adj}>0.9) with 3-NSA, 4-NP, 2-M-4-NP and 2,4-DNP, suggesting that aqueous-phase nitration was a main source for these compounds over MZ (Table S5). Two pairs of positional isomers i.e. 3-NSA/5-NSA and 2-M-4-NP/3-M-4-NP showed distinct correlations within their pair with regard to nitrate and K+. 3-NSA and 2-M-4-NP, which were highly correlated with nitrates, showed no correlation with K+, indicating that aqueous-phase chemistry could have played a significant role in their formation. In contrast, the opposite was observed for 5-NSA and 3-M-4-NP (Table S5). In summer PM$_{2.5}$ over a rural site in northern China, Wang et al. (2018) observed weak correlations of NSAs with NO$_2$ that could indicate formation processes other than nitration. Primary NSA emission from traffic or BB cannot be excluded, since their positional isomers were found in diesel exhaust particles (Seki et al., 2010) or in BB smoke particles (Wang et al., 2017). The correlations of 4-NC and MNCs with K+, 4-NP and MNPs suggest similar sources for NCs and NPs over MZ (Chow et al., 2016; Voliotis et al., 2017; Wang et al., 2018).

3.2 Mass size distributions of NMAHs

MSDs of NMAHs over the two sampling locations are given in Fig. 1 and 2. NSAs (3-NSA and 5-NSA) and NCs (4-NC, 4-M-5-NC, 3-M-5-NC and 3-M-4-NC) showed unimodal distributions with MSDs generally peaking in the finest PM fraction ($PM_{0.49}$) in both MZ and TK samples. Overall, NMAHs were prominent in smaller size fractions ($PM_{0.95}$) in MZ compared to TK (Fig. 1 and 2). For NSAs, in one out of the four samples collected at MZ, MSDs peaked in $PM_{1.5-0.95}$ fraction, while the $PM_{0.95}$ mass fractions of 3-NSA and 5-NSA were 22% and 44%, respectively (Fig. S1a). In this sample only, 5-NSA showed bimodal distribution (dominant peaks in $PM_{0.49}$ and $PM_{1.5-0.95}$).
Moreover, 4-NP and MNPs were the most abundant NMAHs (Fig.S1a). The dominant MSD peak of NSAs in PM$_{1.5-0.95}$ and the concentration abundance of 4-NP and MNPs could indicate possible influence of primary traffic emissions (fossil fuel combustion; Seki et al., 2010; Inomata et al., 2015) at the beginning of the sampling campaign in MZ. During the next sampling periods at MZ site (Figs. S1b, S1c and S1d), 75-86% of NSAs' PM$_{10}$ mass was associated with PM$_{0.95}$, which is in line with the observations at TK (66-82% of total PM mass belongs to PM$_{0.95}$; Fig. S2). At both sites, usually more than 90% of the compound total mass was associated with PM$_{3}$ (range: 83-99%). 87-93% and 82-88% of NCs at MZ and TK were associated with PM$_{0.95}$ (Figs. S1, S2 and S5). The coarse mode (>3 µm) accounted for only 1% (MZ) or 2.5% (TK). The larger coarse fraction found in TK could be partially attributed to the fact that the sampling system did not have a PM$_{10}$ inlet, thus it could potentially collect coarse particles up to approximately 30 µm (Voliotis et al., 2017). The unimodal distributions of NCs peaking in the fine PM fraction are in line with the only report on MSDs of 4-NC (Li et al., 2016). The MSDs of HULIS in MZ and TK closely followed the MSDs of NCs and NSAs (Figs. 1 and 2), suggesting that these compounds could be important constituents of PM HULIS (for detailed discussion see Sect. 3.5). The accumulation of the NCs’ and NSAs’ mass in the submicrometer (<0.95 µm) PM fractions could indicate fresh combustion emissions (e.g. BB) and/or gas-to-particle conversion processes of their precursors over MZ and TK (Li et al., 2016).

Nitrophenols (i.e. 4-NP, 2-M-4-NP and 3-M-4-NP) showed bimodal distributions with a dominant peak in the finest fraction (PM$_{0.49}$) and a smaller peak in PM$_{3-0.95}$ (Figs. 1, 2, S1, S2 and S5). Bimodal distribution of NPs (i.e. 4-NP, 4-NG, 2,6-dimethyl-4-nitrophenol and 2,6-dinitrophenol) with a small mode peak in the fine PM fraction and a big one in the coarse fraction, was recently reported during winter haze episodes over Shanghai, China (Li et al., 2016). Our results imply that BB and gas-to-particle conversion processes were likely more prevalent emission sources for NPs in MZ and TK (dominant NPs’ peak in PM$_{0.49}$) than fossil fuel (diesel) combustion sources (Harrison et al., 2005; Noguchi et al., 2007; Inomata et al., 2015; Li et al., 2016). For 4-NP, at both sites, around 80% of PM$_{10}$ mass (or of the total PM mass at TK) was associated with PM$_{3}$, while ≈ 60% was associated with PM$_{0.95}$ (Figs. S1 and S2). Similarly, for methyl-nitrophenols 83-88% of PM$_{10}$ mass at MZ and 75-83% of total PM mass at TK sites were associated with PM$_{3}$, while 58-65% of PM$_{10}$ at MZ and 48-61% of total PM mass at TK sites were associated with PM$_{0.95}$ (Figs. S1 and S2).
MMD of NMAHs was 0.10 µm (0.24 for NPs, 0.07 for NCs and 0.11 µm for NSAs) at MZ vs. 0.27 µm (0.60 for NPs, 0.24 for NCs and 0.31 µm for NSAs) at TK. The larger MMDs at TK could be explained by the larger size range collected at this site as mentioned above, but they could also be indicative of aerosol aging. In aged aerosols, semivolatiles are expected to be re-distributed with the MMD approaching the surface mean diameter, which for urban and continental aerosol peaks around 0.2 µm (Jaenicke, 1988), a shift which could not be resolved by the sampling technique applied. Note that the low size resolution (6 stages) may hide modes, which in particular applies for the so-called accumulation mode, which adds mostly to PM$_{0.49}$, but also to the size fraction between 0.49 and 0.95 µm.

3.3 Levels of N/OPAHs

N/OPAHs were studied in size-resolved PM in both MZ and TK sites. At both sites, particle-phase OPAHs were detected more frequently than NPAHs: seven out of eight OPAHs targeted for analysis were detected in nearly all MZ and TK samples (Table S3; Figs. S3 and S4). In contrast, only eight out of seventeen targeted NPAHs were found in the PM samples, of which only 1-nitronaphthalene (1-NNAP), 9-nitroanthracene (9-NANT), 2-NFLT, and 7-nitrobenz(a)anthracene (7-NBAA) were detected in both MZ and TK samples. Interestingly, 3-nitrophenanthrene (3-NPHE), 3-NFLT, and 1- and 2-NPYR were only found in TK samples. This was not due to differences in individual LOQs between the two sites (see Table S2). The mean concentrations of NPAHs in PM were dominated by 9-NANT followed by 2-NFLT and 7-NBAA at both sites (Figs. 1 and 2, Table S3), with concentrations reaching to 225, 154, and 71 pg m$^{-3}$, respectively. This pattern closely resembles those previously reported for PM from several locations in central Europe (Tomaz et al., 2016, and references therein), including NPAHs found in snow-scavenged atmospheric particles from MZ sample site (Shahpoury et al., 2018). As for OPAHs, the mean analyte concentrations in PM were dominated by OBAT, followed closely by BbOFLN, BaOFLN, 9,10-O$_2$ANT, and 1,2-O$_2$BAA. The latter two quinones could be of high importance due to their redox activity, and their potential to catalyse the formation of reactive oxygen species (ROS) within the human respiratory system (Ayres et al., 2008; Bates et al., 2019). The two substances were found to dominate two out of four MZ samples with concentrations up to 221 and 137 pg m$^{-3}$, respectively. These concentrations were higher at TK site and reached 354 and 514 pg m$^{-3}$, respectively.
Overall, all N/OPAHs showed considerably higher concentrations in TK than in MZ samples. ∑NPAH concentrations in PM$_{10}$ from MZ and in total PM from TK were <LOQ-90 and 76-578 pg m$^{-3}$, respectively, whereas ∑OPAHs demonstrated much higher levels ranging 47-1636 and 858-4306 pg m$^{-3}$, respectively. The sum of three quinones 1,4-naphthoquinone (1,4-O$_2$NAP), 9,10-O$_2$ANT, and 1,2-O$_2$BAA were 30-363 and 428-873 pg m$^{-3}$, respectively. The levels of particle-phase NPAHs found in MZ fall in the lower end of the range (50-500 pg m$^{-3}$) observed for various types of sites in Europe (Tomaz et al., 2016, and references therein). The levels at TK represent the upper end of this range, while being within the concentration range previously found at other sites in Thessaloniki (1204 ± 249 pg m$^{-3}$ at a traffic site, 383 ± 77 pg m$^{-3}$ at an urban background site, Besis et al., 2017). The total OPAH concentrations at both sites fall in the lower end of the range previously observed in Europe (0.5-50 ng m$^{-3}$; Tomaz et al., 2016 and references therein).

N/OPAHs were predominant in the sub-micrometre PM fraction (PM$_{0.95}$; 85-91% of PM$_{10}$ at MZ and 78-85% of total PM at TK site; Figs. 1, 2, S3, S4 and S5), with relatively more enrichment in PM$_{0.49}$ compared to PM$_{0.49-0.95}$ across the two sites. The mean concentrations of ∑NPAHs in PM$_{0.49}$ from MZ and TK were 101±73 and 417±134 pg m$^{-3}$, whereas in PM$_{0.49-0.95}$ were 22.8±15.9 and 222±95 pg m$^{-3}$, respectively. ∑OPAHs showed similar patterns at MZ and TK sites – they were 460±566 and 1426±1210 pg m$^{-3}$ in PM$_{0.49}$, respectively, and 81.6±78.8 and 555±209 pg m$^{-3}$ in PM$_{0.49-0.95}$. The targeted NPAHs did not show a second mode in any sample, whereas for 9-OFLN and 9,10-O$_2$ANT a second mode was found in MZ samples. Such differences between mass distributions indicate that these OPAHs are subject to different atmospheric processes compared to the other N/OPAHs that we studied. This could point at different emission and formation pathways in the atmosphere (see Sect. 3.4 for further discussion). Some of the OPAHs with single O-atom, namely OBAT, BaOFLN, and BbOFLN, originate from primary sources (i.e. combustion of fossil fuels and biomass; Albinet et al., 2007; Karavalakis et al., 2010; Shen et al., 2013b; Souza et al., 2014; Huang et al., 2014; Tomaz et al., 2016; Vicente et al., 2016), whereas some quinones, such as 9,10-O$_2$ANT and 1,2-O$_2$BAA, are associated with both primary and secondary sources (Kojima et al., 2010; Souza et al., 2014; Lin et al., 2015; Zhuo et al., 2017). In order to better understand the potential sources of the target substances, we performed correlation analysis between the measured levels of N/OPAHs and other PM constituents, namely, WSOC, HULIS, nitrate, sulphate, and K$^+$. We found a significant correlation ($n = 5$, $p<0.05$) between 9,10-O$_2$ANT and 1,2-O$_2$BAA at TK site, which suggests a common emission source (Table S6). The data shown in
Tables S6 and S7 also indicate significant correlations (p<0.05) between the levels of BaOFLN and 1-NPYR (produced by primary sources), and WSOC, HULIS, and K⁺ (BB marker) in TK samples. 1-NPYR is the predominant congener among NPAHs found in diesel engine exhaust particles and was proposed as marker for diesel emission (Bamford et al., 2003; IARC 2013), but it may also be emitted with relatively small quantities from biomass-fuelled combustion (Shen et al., 2012; Orakij et al., 2017). These findings suggest the importance of primary emission sources including BB and diesel exhaust in TK study area. For MZ samples, we found significant correlations (n = 4, p<0.05) of 9-OFLN, BaOFLN, and 9-NANT with WSOC and HULIS, without any significant correlations to K⁺, suggesting the presence of mixed air masses that were fed by both primary and secondary sources at MZ site. The absence of both NPYR isomers in MZ samples, which are indicative of road traffic and industrial emissions and long-range transported pollution (IARC, 1989; Finlayson-Pitts and Pitts, 2000; Lammel et al., 2017), indicates that chemically aged air was advected during the MZ campaign (Voliotis et al., 2017).

3.4 Mass size distribution of N/OPAHs

N/OPAH MSDs are shown in Figs. 1 and 2. On average, the MMDs of NPAHs were 0.06 µm at MZ and 0.12 µm at TK, while those for OPAHs were 0.06 µm at MZ and 0.10 µm at TK. The MMDs for quinones were 0.07 and 0.15 at the two sites, respectively. We found two distinct MSD patterns among the samples: the first pattern observed in three samples across the two sites (one sample set from MZ and two sets from TK; Figs. S3c, S4a, d and e), was dominated by OBAT followed by BbOFLN. The MMD of OPAHs in these three samples was on average 0.06 µm (ranging within 0.05-0.09 µm). The unique analyte distribution in these samples was accompanied by a noticeably higher enrichment in PM₀.₄₉ as well as relatively high concentrations compared to the rest of samples. The preferential enrichment of OBAT, BaOFLN, and BbOFLN in submicrometre PM was previously reported from locations in Europe, Asia, and the USA (Allen et al., 1997; Albinet et al., 2008; Ladji et al., 2009; Ringuet et al., 2012; Shen et al., 2016; Gao et al., 2019). The observed pattern could be the evidence of fresh emission from primary sources, as was discussed in the previous section. The second pattern, which was seen in the remaining six sample sets, was considerably different: the target substances were more evenly distributed across different PM size ranges, and often dominated by relatively high abundance of quinones, 9,10-O₂ANT and 1,2-O₂BAA – the two quinones were previously reported with preferential enrichment in ultrafine
PM (Ringuet et al., 2012; Shen et al., 2016). The MMD of OPAHs in these five sample sets was on average 0.25 µm (ranging within 0.08-0.49 µm). This distribution points at relatively aged air masses and the contribution of both primary and secondary sources.

In terms of the inter-site variability of target substance MSD, the size fraction PM$_{0.49}$ was more prominent in MZ than in TK, i.e. on average 74% for NPAHs, 75% for OPAHs, 69% for quinones at MZ, compared to 55, 60, and 52%, respectively, at TK site (Figs. 1-2 and S3-5). The largest differences found among each substance group were for 9-NANT (28% higher at MZ), BbOFLN (25% higher), and 1,2-O$_2$BAA (17% higher). The values for NPAHs from TK were lower than those previously found for wintertime PM at this site (59 and 71% for a traffic and urban background site, respectively; Besis et al., 2017). The higher enrichment of predominant NPAHs (9-NANT and 2-NFLT; Figure S3-S4) in PM$_{0.49}$ in the present study is in agreement with the MSDs reported for these compounds from several other locations in Europe and Asia (Ringuet et al., 2012; Lan et al., 2014; Lammel et al., 2017). The preferential enrichment of N/OPAHs in sub-micron PM, especially PM$_{0.49}$, raises concerns with respect to the inhalation toxicity of airborne PM; this is because PM$_{0.49}$ is capable of reaching deeper regions in the lung. This is exacerbated by the ability of quinones to catalyse redox reactions and the formation of ROS in the respiratory system.

3.5 NMAHs and N/OPAHs as part of HULIS

Because of their water-solubility, NMAHs are constituents of PM HULIS and WSOC (Claeys et al., 2012; Teich et al., 2017). This substance class contributed ≈0.4 and 1.8% to HULIS mass at the MZ and TK sites, respectively (Table 3). This contribution was fairly even across the size fractions addressed, while showing a maximum for particles size 0.95-3 µm, namely ≈0.7 and 2.0% by mass at the MZ and TK sites, respectively. The large particle size, 0.95-3 µm, points to the significance of aqueous phase processes and in general slower formation of NMAHs (Voliotis et al., 2017). The water-soluble N/OPAHs, i.e. 1,4-O$_2$NAP and 1-NNAP, contributed up to 0.0006 % to HULIS (Table 3; water solubility of ≥50 mg L$^{-1}$ was used as criterion), with values peaking in the PM size fractions 0.95-3 and >3 µm at MZ and TK, respectively. Similar to NMAHs, the N/OPAH mass mixing ratios in HULIS did not significantly vary with particle size (Table 3).

Our reported NMAH contribution to HULIS mass is in good agreement with the results of previous reports from urban sites in Europe (Kitanovski et al., 2012b; Claeys et al., 2012) and Brazil (Caumo et al., 2016). Specifically, Kitanovski et al. (2012) found that NMAHs contributed 0.4-1.3% to the

3.5 NMAHs and N/OPAHs as part of HULIS

Because of their water-solubility, NMAHs are constituents of PM HULIS and WSOC (Claeys et al., 2012; Teich et al., 2017). This substance class contributed ≈0.4 and 1.8% to HULIS mass at the MZ and TK sites, respectively (Table 3). This contribution was fairly even across the size fractions addressed, while showing a maximum for particles size 0.95-3 µm, namely ≈0.7 and 2.0% by mass at the MZ and TK sites, respectively. The large particle size, 0.95-3 µm, points to the significance of aqueous phase processes and in general slower formation of NMAHs (Voliotis et al., 2017). The water-soluble N/OPAHs, i.e. 1,4-O$_2$NAP and 1-NNAP, contributed up to 0.0006 % to HULIS (Table 3; water solubility of ≥50 mg L$^{-1}$ was used as criterion), with values peaking in the PM size fractions 0.95-3 and >3 µm at MZ and TK, respectively. Similar to NMAHs, the N/OPAH mass mixing ratios in HULIS did not significantly vary with particle size (Table 3).

Our reported NMAH contribution to HULIS mass is in good agreement with the results of previous reports from urban sites in Europe (Kitanovski et al., 2012b; Claeys et al., 2012) and Brazil (Caumo et al., 2016). Specifically, Kitanovski et al. (2012) found that NMAHs contributed 0.4-1.3% to the
winter urban PM$_{10}$ OC mass from Ljubljana (Slovenia), while in another study, 4-NC alone contributed 0.46% and 0.04% to the HULIS mass in urban spring and summer PM$_{2.5}$ from Budapest (Hungary), respectively (Claeys et al., 2012). Moreover, NMAHs (4-NP, 4-NC, MNCs and dimethyl-nitrocatechols (DMNCs)) contributed 0.28% and 0.35% to the OC mass in winter PM$_{10}$ samples from São Paulo, Brazil (Caumo et al., 2016). Lower NMAH contribution to HULIS (or OC) mass were reported for rural sites in Europe. For example, 4-NC contributed 0.03% to the HULIS mass in summer PM$_{2.5}$ from K-puszta, Hungary (Claeys et al., 2012), while total NMAHs (NPs, 4-NC, MNCs and DMNCs) presented 0.75% of OC mass in winter PM$_{10}$ sampled at a rural background site in Belgium (Kahnt et al., 2013).

In Sect. 3.2 we emphasized the similar MSDs at both locations between HULIS on one side and NCs and NSAs on the other. These two NMAH subclasses on average contributed to ≈83% and ≈94% of total NMAHs in PM$_{0.95}$, and ≈55% and 87% of total NMAHs in PM$_{3.0.95}$ at MZ and TK sites, respectively (Table S8). At both sites, NCs were the dominant NMAH species. It is also interesting to note that HULIS showed higher correlations with NSAs and NCs in MZ (R^2_{adj} 0.68-0.98; Table S5), than in TK (R^2_{adj} 0.24-0.59; Table S4). BaOFLN and 1-NPYR, as well as 9-OFLN, BaOFLN and 9-NANT showed similar MSDs and significant correlations (R^2_{adj} ≥ 0.8; Tables S6-S7) with HULIS at TK and MZ, respectively, suggesting that these N/OPAHs are most likely constituents of the HULIS. The significant correlations in the levels of 1-NPYR with HULIS, WSOC, and K$^+$ (Table S6) are particularly interesting, as 1-NPYR is exclusively associated with primary emission sources. These observations are in line with our previous discussion that MZ site was mainly influenced by aged air masses, while TK site by a mixture of fresh (BB and fossil fuel) emissions and aged aerosols (Voliotis et al., 2017).

With mass mixing ratios of the order of 1%, NMAHs are constituents of HULIS with limited significance by mass, but their relevance is more significant due to their optical properties (Mohr et al., 2013; Laskin et al., 2015; Teich et al., 2017; Xie et al., 2017). Teich et al. (2017) found that the mass contributions of total NMAHs (NPs and NSAs) to WSOC on average was five times lower than their contribution to the light absorption of the aqueous PM extract at 370 nm (Teich et al., 2017). This implies that even small fractions of chromophoric HULIS compounds such as NMAHs and water soluble N/OPAHs can have an excessive influence on the aerosol light absorption (Mohr et al., 2013; Teich et al., 2017) and the atmospheric photochemical processes, especially in polluted areas (Laskin et al., 2015; Teich et al., 2017).
4. Final remarks

We studied the composition and MSDs of NMAHs and N/OPAHs in PM from urban locations in Germany and Greece, with some of the target substances (i.e. NSAs, MNCs and MNPs) studied in size-resolved PM for the first time. At both locations, NCs were the most abundant NMAH species, and OPAHs were more abundant and more frequently detected than NPAHs. The total concentrations of the most abundant NMAHs, NCs, and N/OPAHs were up to 10 times higher in TK than in MZ. Correlation analysis of NMAHs revealed distinct features among the sites, suggesting mixed air masses influenced by fresh BB and aged fossil fuel combustion emissions at TK, and aged advected air influenced by combustion emissions (i.e. BB) at MZ.

The MSDs of NMAHs, OPAHs and NPAHs were rather similar, but exhibited temporal and spatial variations due to daily changes in atmospheric conditions and different sources. In general, NCs, NSAs, OPAHs and NPAHs showed unimodal MSDs peaking in the finest PM fraction, PM$_{0.49}$, which was more prominent in MZ than in TK. NPs exhibited bimodal MSDs with the dominant peak in PM$_{0.49}$. The MMDs of all chemical classes were lower at MZ than at TK. Larger MMDs at TK could be explained by the larger PM size range collected at this site, but they could also be an indication of aerosol aging. On average, NMAHs and water-soluble N/OPAHs (i.e. 1,4-O$_2$NAP and 1-NNAP) contributed up to 1.8 and 0.0006% to the HULIS mass in the study areas. Although NMAHs and N/OPAHs represent a small fraction of PM HULIS (and WSOC), due to their light absorption properties, their impact on the total aerosol light absorption could be disproportionally large. This is particularly important for atmospheric photochemical processes in polluted areas.

Acknowledgements

We thank Eleni Papakosta (Prefecture of Thessaloniki), Thorsten Hoffmann and Anna Honcza (Max Planck Institute for Chemistry) for onsite and laboratory support. This research was supported by the Max Planck Society and the Postgraduate Program “Environmental Chemistry and Pollution Control” of the Aristotle University of Thessaloniki.

Author contributions. GL and CS conceived the study. PS and AV conducted the air sampling and field measurements. ZK and PS did the chemical analysis of samples. ZK, PS, and GL did the data analysis. ZK, PS, and GL discussed the results and wrote the manuscript with input from all co-authors.
References

Table 1. Analytes targeted in this study

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Abbreviation</th>
<th>Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Nitrosalicylic acid</td>
<td>3-NSA</td>
<td>182</td>
</tr>
<tr>
<td>5-Nitrosalicylic acid</td>
<td>5-NSA</td>
<td>182</td>
</tr>
<tr>
<td>4-Nitrocatechol</td>
<td>4-NC</td>
<td>154</td>
</tr>
<tr>
<td>4-Nitroguaiacol</td>
<td>4-NG</td>
<td>168</td>
</tr>
<tr>
<td>4-Methyl-5-nitrocatechol</td>
<td>4-M-5-NC</td>
<td>168</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>4-NP</td>
<td>138</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>2,4-DNP</td>
<td>183</td>
</tr>
<tr>
<td>3-Methyl-4-nitrophenol</td>
<td>3-M-4-NP</td>
<td>152</td>
</tr>
<tr>
<td>3-Methyl-5-nitrocatechol</td>
<td>3-M-5-NC</td>
<td>168</td>
</tr>
<tr>
<td>3-Methyl-4-nitrocatechol</td>
<td>3-M-4-NC</td>
<td>168</td>
</tr>
<tr>
<td>2-Methyl-4-nitrophenol</td>
<td>2-M-4-NP</td>
<td>152</td>
</tr>
<tr>
<td>2-Methyl-3,5-dinitrophenol</td>
<td>DNOC</td>
<td>197</td>
</tr>
<tr>
<td>(Dinitro-ortho-cresol)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Nitronaphthalene</td>
<td>1-NNAP</td>
<td>173.1</td>
</tr>
<tr>
<td>2-Nitronaphthalene</td>
<td>2-NNAP</td>
<td>173.1</td>
</tr>
<tr>
<td>5-Nitroacenaphthene</td>
<td>5-NACE</td>
<td>199.1</td>
</tr>
<tr>
<td>2-Nitrofluorene</td>
<td>2-NFLN</td>
<td>211.1</td>
</tr>
<tr>
<td>9-Nitroanthracene</td>
<td>9-NANT</td>
<td>223.1</td>
</tr>
<tr>
<td>9-Nitrophenanthrene</td>
<td>9-NPHE</td>
<td>223.1</td>
</tr>
<tr>
<td>3-Nitrophenanthrene</td>
<td>3-NPHE</td>
<td>223.1</td>
</tr>
<tr>
<td>2-Nitrofluoranthene</td>
<td>2-NFLT</td>
<td>247.1</td>
</tr>
<tr>
<td>3-Nitrofluoranthene</td>
<td>3-NFLT</td>
<td>247.1</td>
</tr>
<tr>
<td>1-Nitropyrene</td>
<td>1-NPYR</td>
<td>247.1</td>
</tr>
<tr>
<td>2-Nitropyrene</td>
<td>2-NPYR</td>
<td>247.1</td>
</tr>
<tr>
<td>7-Nitrobenz(a)anthracene</td>
<td>7-NBAA</td>
<td>273.1</td>
</tr>
<tr>
<td>6-Nitrochrysene</td>
<td>6-NCHR</td>
<td>273.1</td>
</tr>
<tr>
<td>1,3-Dinitropyrene</td>
<td>1,3-N2PYR</td>
<td>292.1</td>
</tr>
<tr>
<td>1,6-Dinitropyrene</td>
<td>1,6-N3PYR</td>
<td>292.1</td>
</tr>
<tr>
<td>1,8-Dinitropyrene</td>
<td>1,8-N3PYR</td>
<td>292.1</td>
</tr>
<tr>
<td>6-Nitrobenz(a)pyrene</td>
<td>6-NBAP</td>
<td>297.1</td>
</tr>
<tr>
<td>1,4-Naphthoquinone</td>
<td>1,4-O-NAP</td>
<td>158.1</td>
</tr>
<tr>
<td>9-Fluorenone</td>
<td>9-OFLN</td>
<td>180.1</td>
</tr>
<tr>
<td>9,10-Anthraquinone</td>
<td>9,10-O2ANT</td>
<td>208.1</td>
</tr>
<tr>
<td>2-Nitro-9-fluorenone</td>
<td>2-N-9-OFLN</td>
<td>225.1</td>
</tr>
<tr>
<td>Benz(a)fluorenone</td>
<td>BaOFLN</td>
<td>230.1</td>
</tr>
<tr>
<td>Benz(b)fluorenone</td>
<td>BbOFLN</td>
<td>230.1</td>
</tr>
<tr>
<td>Benzanthrone</td>
<td>OBAT</td>
<td>230.1</td>
</tr>
<tr>
<td>1,2-Benzanthraquinone</td>
<td>1,2-O-BAA</td>
<td>258.1</td>
</tr>
</tbody>
</table>

Q1 – m/z of ions used for quantification in ESI(−)MS for NMAHs and NCI-MS for N/OPAHs
<table>
<thead>
<tr>
<th>Cut-off diameters (µm)</th>
<th>Sampling date</th>
<th>Sample volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 7.2</td>
<td>17.-20.11.2015</td>
<td>3402</td>
</tr>
<tr>
<td>7.2 - 3</td>
<td>26.-29.11.2015</td>
<td>4124</td>
</tr>
<tr>
<td>3 - 1.5</td>
<td>01.-04.12.2015</td>
<td>4088</td>
</tr>
<tr>
<td>1.5 - 0.95</td>
<td>04.-07.12.2015</td>
<td>4197</td>
</tr>
<tr>
<td>0.95 - 0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td><0.49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cut-off diameters (µm)</th>
<th>Sampling date</th>
<th>Sample volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 – 3 b</td>
<td>27.-29.1.2016</td>
<td>3228</td>
</tr>
<tr>
<td>3 - 0.95 b</td>
<td>08.-10.2.2016</td>
<td>3228</td>
</tr>
<tr>
<td>0.95 - 0.49</td>
<td>16.-18.2.2016</td>
<td>3228</td>
</tr>
<tr>
<td><0.49</td>
<td>22.-24.2.2016</td>
<td>3172</td>
</tr>
<tr>
<td></td>
<td>17.-19.3.2016</td>
<td>3175</td>
</tr>
</tbody>
</table>

b pooled from two impactor stages
Table 3. Mean absolute concentrations and mass mixing ratios (in brackets) of HULIS in WSOC as well as of NMAHs and water-soluble (WS) N/OPAHs in HULIS in (a) Mainz and (b) Thessaloniki PM.

<table>
<thead>
<tr>
<th>Particle size µm</th>
<th>WSOC (µgC m³)</th>
<th>HULIS µg m³ (% C/C)</th>
<th>NMAHs ng m³ (%)</th>
<th>WS N/OPAHs pg m³ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.49</td>
<td>1.14</td>
<td>0.80 (39)</td>
<td>3.41 (0.43)</td>
<td>0.7 (0.0001)</td>
</tr>
<tr>
<td>0.49-0.95</td>
<td>0.68</td>
<td>0.31 (25)</td>
<td>1.24 (0.40)</td>
<td>0.2 (0.0001)</td>
</tr>
<tr>
<td>0.95-3</td>
<td>0.18</td>
<td>0.09 (28)</td>
<td>0.65 (0.73)</td>
<td>0.3 (0.0003)</td>
</tr>
<tr>
<td>3-10</td>
<td>0.12</td>
<td>0.09 (42)</td>
<td>0.27 (0.30)</td>
<td>0.2 (0.0002)</td>
</tr>
<tr>
<td>Total</td>
<td>2.07</td>
<td>1.29 (33)</td>
<td>5.58 (0.43)</td>
<td>1.4 (0.0001)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Particle size (µm)</th>
<th>WSOC (µgC m³)</th>
<th>HULIS µg m³ (% C/C)</th>
<th>NMAHs ng m³ (%)</th>
<th>WS N/OPAHs pg m³ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.49</td>
<td>2.02</td>
<td>1.29 (34)</td>
<td>24.0 (1.9)</td>
<td>2.7 (0.0002)</td>
</tr>
<tr>
<td>0.49-0.95</td>
<td>1.28</td>
<td>0.83 (34)</td>
<td>13.9 (1.7)</td>
<td>0.7 (0.0001)</td>
</tr>
<tr>
<td>0.95-3</td>
<td>0.57</td>
<td>0.35 (32)</td>
<td>6.89 (2.0)</td>
<td>0.5 (0.0001)</td>
</tr>
<tr>
<td>> 3</td>
<td>0.33</td>
<td>0.11 (18)</td>
<td>1.87 (1.7)</td>
<td>0.7 (0.0006)</td>
</tr>
<tr>
<td>Total</td>
<td>4.20</td>
<td>2.58 (32)</td>
<td>46.6 (1.8)</td>
<td>4.5 (0.0002)</td>
</tr>
</tbody>
</table>

a Voliotis et al., 2017
b 1,4-O2NAPs and 1-NNAP (criteria: water solubility > 50 mg L⁻¹)
Figure 1. Mass size distributions (MSDs) of PM-bound NMAHs, N/OPAHs, WSOC, HULIS and ions in Mainz (Germany). The error bars represent standard deviations. a compound MSD calculated from one (out of four) sample set (detected and quantified in one sample set only); b compound MSD calculated from three (out of four) sample sets (detected and quantified in three sample sets only)
Figure 2. Mass size distributions (MSDs) of PM-bound NMAHs, N/OPAHs, WSOC, HULIS and ions in Thessaloniki (Greece). The error bars represent standard deviations. b compound MSD calculated from three (out of five) sample sets (detected and quantified in three sample sets only).

https://doi.org/10.5194/acp-2019-673
Preprint. Discussion started: 7 August 2019
© Author(s) 2019. CC BY 4.0 License.