The day-to-day co-variability between mineral dust and cloud glaciation: A proxy for heterogeneous freezing.

Supplement information

Diego Villanueva¹, Bernd Heinold¹, Patric Seifert¹, Hartwig Deneke¹, Martin Radenz¹, Ina Tegen¹
¹Leibniz Institute for Tropospheric Research, Leipzig, 04318, Germany

Correspondence to: Diego Villanueva (ortiz@tropos.de)

For figures S.1 to S.14:
 a) Time average at -15°C (averaged in a 12 K range), 2007-2010.
 b) Time-zonal average, 2007-2010.
 c) Zonal average at -15°C (averaged in a 12 K range), 2007-2010.

S 1-S 3: Frequency phase ratio (FPR) variables.
S 4-S.7: Dust aerosol data from MACC reanalysis.
S.8-S.9: Cloud volume fraction of all and stratiform clouds (CALIPSO-GOCCP).
S.10-S.13: Vertical velocity (MACC), relative humidity (ERA-Interim), isotherm height and temperature (ECMWF-AUX).
S.14-S.16: Sample size distribution.
S.17-S.20: Day-to-day dust-ice statistics without meteorological constraints.
S1. \text{FPR}_{\text{DARDAR}} \,[\%]
S2. FPR_ALT_DARDAR [%]
S3. FPR$_{GOCCP}$ [%]
S4. MACC coarse dust [kg/kg].
S5. Standard deviation of coarse log (dust) MACC [log(kg/kg)].
S6. MACC fine dust [kg/kg].
S7. Standard deviation of fine log (dust) MACC [log(kg/kg)].
S8. Cloud volume fraction [%].
S9. Stratiform cloud volume fraction [%].
S10. MACC vertical velocity [Pa/s] for stratiform clouds.
S11. MACC relative humidity [%] for stratiform clouds.
S12. ECMWF-AUX isotherm height [m] for stratiform clouds.
S14. Sample size of stratiform clouds [#gridboxes(month, dust decile, temperature, latitude, longitude)].
S15. Sample size of stratiform clouds [#gridboxes(month, dust decile, temperature, latitude, longitude)] for different seasons.
S16. Sample size for a) highest fine dust decile b) lowest fine dust decile. c) difference between highest and lowest decile.
S17. Day-to-day covariance of fine dust mixing-ratio (MACC) and FPR$_{GOCCP}$ 2007-2010. The covariance is normalized by the fine dust standard deviation. a) Time mean covariance between 12 monthly covariance values at -15°C (averaged in a 12 K range). b) Time-zonal mean covariance. c) Monthly-zonal mean covariance at -15°C. Red colours denote a high correlation between day-to-day fine dust and ice occurrence. The colour and pattern of the boxes correspond to the regression lines in S 18 and S 19.
S18. Average cloud phase for the mid-latitude and high-latitude bands for -15 °C (range -21 °C to -9 °C) in the period 2007-2010. The horizontal axis corresponds to the different time deciles (day-to-day variability) of fine (a) and coarse (b) dust mixing-ratio (MACC), calculated for each each 3°C temperature bin and gridbox (1.875°x1.875°) and averaged along each 12 °C temperature range and latitude band (30°x360°). The vertical bars are positioned at each dust decile and show the mean zonal standard deviation within each latitude band. The lines represent the linear regressions ($FPR = A \cdot m^2 + FPR_0$). Only stratiform and non-precipitating clouds were included.
Same as Fig 7.a but for a) -30 °C (range -36 °C to -24 °C) and b) winter (blue) and summer (red) seasons for the 40-80°N/S latitude bands.
S 20. Average sea/land cloud phase (CALIPSO-GOCCP) a) at -15 °C (range -21 °C to -9 °C) against the MACC deciles of fine dust mixing ratio and b) against temperature for 2007-2010. The vertical lines correspond to the standard deviation between a) Longitudes and b) Months of the year.