Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Discussion papers
https://doi.org/10.5194/acp-2019-635
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2019-635
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 22 Jul 2019

Submitted as: research article | 22 Jul 2019

Review status
This discussion paper is a preprint. A revision of this manuscript was accepted for the journal Atmospheric Chemistry and Physics (ACP) and is expected to appear here in due course.

Detection and characterization of birch pollen in the atmosphere using multi-wavelength Raman lidar in Finland

Stephanie Bohlmann1, Xiaoxia Shang1, Elina Giannakaki1,2, Maria Filioglou1, Annika Saarto3, Sami Romakkaniemi1, and Mika Komppula1 Stephanie Bohlmann et al.
  • 1Finnish Meteorological Institute, P.O. Box 1627, 70211 Kuopio, Finland
  • 2Department of Environmental Physics and Meteorology, University of Athens, 15784 Athens, Greece
  • 3Biodiversity Unit, University of Turku, 20014 Turku, Finland

Abstract. We present the results of birch pollen characterization using lidar measurements based on a 11-day period of birch pollination from 5 to 15 May 2016 at the European Aerosol Research Lidar Network (EARLINET) station in Vehmasmäki (Kuopio, 62°44′ N, 27°33′ E), Finland. The ground-based multi-wavelength Raman lidar PollyXT performed continuous measurements at this rural forest site and has been combined with a Hirst-type volumetric air sampler which measured the pollen type and concentration on roof level (4 m). The period was separated into two parts due to different atmospheric conditions and detected pollen types. During the first period, high concentrations of birch pollen were measured with a maximum two-hour average pollen concentration of 3700 grains/m³. Other pollen types represented less than 3 % of the total pollen count. In observed pollen layers, the mean particle depolarization ratio at 532 nm was 10 ± 6 % during the intense birch pollination period. Mean lidar ratios were found to be 45 ± 7 and 55 ± 16 sr at 355 and 532 nm, respectively. During the second period, birch pollen was still dominant but a significant contribution of spruce pollen was observed. Spruce pollen grains are highly non-spherical, leading to a larger mean depolarization ratio of 26 ± 7 % of the birch-spruce pollen mixture. Furthermore, higher lidar ratios were observed during this period with a mean value of 60 ± 3 and 62 ± 10 sr at 355 and 532 nm, respectively. The presented study shows the potential of the particle depolarization ratio to track pollen grains in the atmosphere.

Stephanie Bohlmann et al.
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Stephanie Bohlmann et al.
Stephanie Bohlmann et al.
Viewed  
Total article views: 330 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
257 69 4 330 2 4
  • HTML: 257
  • PDF: 69
  • XML: 4
  • Total: 330
  • BibTeX: 2
  • EndNote: 4
Views and downloads (calculated since 22 Jul 2019)
Cumulative views and downloads (calculated since 22 Jul 2019)
Viewed (geographical distribution)  
Total article views: 247 (including HTML, PDF, and XML) Thereof 247 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 11 Nov 2019
Publications Copernicus
Download
Short summary
Measurements of the multi-wavelength Raman polarization lidar PollyXT have been combined with measurements of pollen type and concentration using a traditional pollen sampler at the rural forest site in Vehmasmäki, Finland. High particle depolarization ratios were observed during an intense pollination event of birch pollen occasionally mixed with spruce pollen. Our observations illustrate the potential of the particle depolarization ratio to track pollen grains in the atmosphere.
Measurements of the multi-wavelength Raman polarization lidar PollyXT have been combined with...
Citation