1. **Distinct diurnal variation of organic aerosol hygroscopicity and its relationship with oxygenated organic aerosol**

Ye Kuang,†,†, Yao He,†, Wanyun Xu, Yele Sun,*, Pusheng Zhao, Yafang Cheng, Gang Zhao, Jiangchuan Tao, Nan Ma, Hang Su, Yanyan Zhang, Jiayin Sun, Peng Cheng, Wenda Yang, Shaobin Zhang, Cheng Wu, Chunsheng Zhao

1. Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
3. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
4. Max Planck Institute for Chemistry, Mainz 55128, Germany
5. State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
6. Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
7. Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China

† These authors contribute equally to this paper.

*Correspondence to: Ye Kuang (kuangye@jnu.edu.cn), Yele Sun (sunyele@mail.iap.ac.cn)

1. **Aerosol light scattering closure study**
Because that measurements from dry nephelometers are used to estimate V_{tot} for κ_{chem} calculations and measured PNSD are used for retrieving $\kappa_{f(RH)}$, the measurement quality of aerosol optical properties and PNSD are important for results in this study. A closure study between measured σ_{sp} and that modelled based on measured PNSD with Mie theory (Bohren and Huffman, 2008) is first conducted to double check data quality of used datasets of σ_{sp} and PNSD. Measured σ_{sp} and σ_{bsp} by the nephelometer bears uncertainties associated with angular truncation errors and non-ideal light source (Müller et al., 2011). To achieve consistency between measured and modelled σ_{sp}, correction factors for measured σ_{sp} associated with truncation errors and non-ideal light source are calculated based on parameters for truncation and non-Lambertian illumination correction functions provided by (Müller et al., 2011). For modelling σ_{sp} and corresponding correction factors using Mie theory, BC was considered to be half externally and half core-shell mixed with other non-light-absorbing aerosol components. Refractive index and density of BC were assumed to be $1.80 - 0.54i$ and $1.5g cm^{-3}$ (Kuang et al., 2015). Refractive index of non-light-absorbing aerosol components (other than BC) was set to be $1.53 - 10^{-7}i$ (Wex et al., 2002). More details about Mie calculation please refer to Kuang et al. (2015).
The closure results between modelled and measured σ_{sp} and σ_{bsp} at 525 nm for PM1 and PM10 aerosol particles are shown in Fig. 1. Modelled σ_{bsp} for both PM1 and PM10 agree well with the measured σ_{bsp}, and most points lie between the 20% relative lines. However, Modelled σ_{sp} for both PM1 and PM10 are obviously higher than measured σ_{sp}, and the average relative difference between them for PM10 and PM1 are 22% and 13%, respectively. Considering the measured PNSD by SMPS for particles larger than 200 nm has an uncertainty range of 30% (Wiedensohler et al., 2012), and the measured σ_{sp} has an uncertainty of about 9% (Sherman et al., 2015), modelled and measured σ_{sp} and σ_{bsp} values agree well with each other during this campaign.

2. supplement figures

Figure S1. Comparison between measured and modelled σ_{sp} and σ_{bsp} at 525 nm, solid red line is the 1:1 line, and red dashed lines are 20% relative lines.
Figure S2. Comparisons between $V_{\text{tot,PNSD}}$ and $V_{\text{tot,Chem}}$ (a), $V_{\text{tot,PNSD}}$ and $V_{\text{tot,Neph}}$ (b), the unit of V_{tot} is $\mu m^3/cm^3$.

Figure S3. The size-resolved σ_{sp} contributions simulated based on the average PNSD of PM10 of period 2.
Figure S4. Examples of PNSD of PM10 and PM1 during fog events and non-fog events.

Figure S5. Size-resolved κ distributions which are derived from measured size-segregated chemical compositions during HaChi campaign, colors represent corresponding values of average σ_{sp} at 550 nm (Mm^{-1}), black solid line is the average size-resolved κ distribution and error bars are standard deviations. (reprint from (Kuang et al., 2018))
Figure S6. Normalized size-resolved volume or σ_{sp} distribution of PM$_1$ for average PNSDs corresponding to five ranges of aerosol Ångström exponent (0.9-1.1, 1.1-1.3, 1.3-1.5, 1.5-1.7, 1.7-1.9) during this field campaign.
Figure S7. Normalized size-resolved volume or \(\sigma_{sp} \) distribution of PM\(_{1}\) for average PNSDs corresponding to five ranges of aerosol Ångström exponent (0.9-1.1, 1.1-1.3, 1.3-1.5, 1.5-1.7, 1.7-1.9).

Figure S8. x-axis represents mass fraction of nitrate in NR-PM1, and y axis represents the difference between calculated and measured \(k_{chem} \) in Period1.

