Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Discussion papers
https://doi.org/10.5194/acp-2019-621
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2019-621
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 03 Sep 2019

Submitted as: research article | 03 Sep 2019

Review status
This discussion paper is a preprint. A revision of this manuscript was accepted for the journal Atmospheric Chemistry and Physics (ACP) and is expected to appear here in due course.

Interannual Variability and Trends of Combustion Aerosol and Dust in Major Continental Outflows Revealed by MODIS Retrievals and CAM5 Simulations During 2003–2017

Hongbin Yu1, Yang Yang2, Hailong Wang2, Qian Tan3,4, Mian Chin1, Robert C. Levy1, Lorraine A. Remer5, Steven J. Smith2, Tianle Yuan1,5, and Yingxi Shi1,5 Hongbin Yu et al.
  • 1Earth Sciences Division, NASA Goddard Space Flight Center, USA
  • 2Pacific Northwest National Laboratory, USA
  • 3Bay Area Environmental Research Institute, USA
  • 4NASA Ames Research Center, USA
  • 5Joint Center for Earth Science & Technology, University of Maryland at Baltimore County, USA

Abstract. Emissions and long-range transport of mineral dust and combustion-related aerosol from burning fossil fuels and biomass vary from year to year, driven by the evolution of the economy and changes in meteorological conditions and environmental regulations. This study offers both satellite and model perspectives of interannual variability and possible trend of combustion aerosol and dust in major continental outflow regions over the past 15 years (2003–2017). The decade-long record of aerosol optical depth (AOD, denoted as τ), separately for combustion aerosol (τc) and dust (τd), over global oceans is derived from the Collection 6 aerosol products of the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard both Terra and Aqua. These MODIS/Aqua datasets, complemented by aerosol source-tagged simulations using the Community Atmospheric Model Version 5 (CAM5), are then analyzed to understand the interannual variability and potential trend of τc and τd in the major continental outflows. Both MODIS and CAM5 consistently yield a similar decreasing trend of −0.017 to −0.020 decade−1 for τc over the North Atlantic Ocean and the Mediterranean Sea that is attributable to reduced emissions from North America and Europe, respectively. On the contrary, both MODIS and CAM5 display an increasing trend of +0.017 to +0.036 decade−1 for τc over the tropical Indian Ocean, the Bay of Bengal, and the Arabian Sea, which reflects the influence of increased anthropogenic emissions from South Asia and Middle East in the last two decades. Over the northwestern Pacific Ocean that is often affected by East Asian emissions of pollution and dust, the MODIS retrievals show a decreasing trend of −0.021 decade−1 for τc and −0.012 decade−1 for τd, which is however not reproduced by the CAM5 model. In other outflow regions strongly influenced by biomass burning smoke or dust, both MODIS retrievals and CAM5 simulations show no statistically significant trends; and the MODIS observed interannual variability is usually larger than that of the CAM5 simulation.

Hongbin Yu et al.
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Hongbin Yu et al.
Viewed  
Total article views: 428 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
293 129 6 428 11 2 5
  • HTML: 293
  • PDF: 129
  • XML: 6
  • Total: 428
  • Supplement: 11
  • BibTeX: 2
  • EndNote: 5
Views and downloads (calculated since 03 Sep 2019)
Cumulative views and downloads (calculated since 03 Sep 2019)
Viewed (geographical distribution)  
Total article views: 348 (including HTML, PDF, and XML) Thereof 341 with geography defined and 7 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 19 Nov 2019
Publications Copernicus
Download
Short summary
Emissions and long-range transport of mineral dust and combustion-related aerosol from burning fossil fuels and biomass vary from year to year, driven by the evolution of economy and changes in meteorological conditions and environmental regulations. This study offers both satellite and model perspectives of interannual variability and possible trend of combustion aerosol and dust in major continental outflow regions over the past 15 years (2003–2017).
Emissions and long-range transport of mineral dust and combustion-related aerosol from burning...
Citation