The global impact of bacterial processes on carbon mass

Barbara Ervens and Pierre Amato

Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France

Correspondence to: barbara.ervens@uca.fr and pierre.amato@uca.fr

Abstract. Many recent studies have identified biological material as a major fraction of ambient aerosol loading. A small fraction of these bioaerosols consist of bacteria that have attracted a lot of attention due to their role in cloud formation and adverse health effects. Current atmospheric models consider bacteria as inert quantities and neglect cell growth and multiplication. We provide here a framework to estimate the production of secondary biological aerosol (SBA) mass in clouds by microbial cell growth and multiplication. The best estimate of SBA formation rates of 3.7 Tg yr\(^{-1}\) are comparable to previous model estimates of the primary emission of bacteria into the atmosphere, and thus might represent a previously unrecognized source of biological aerosol material. We discuss in detail the large uncertainties associated with our estimates based on the rather sparse available data on bacteria abundance, growth conditions and properties. Additionally, the loss of water-soluble organic carbon (WSOC) due to microbial processes in cloud droplets has been suggested to compete under some conditions with WSOC loss by chemical (OH) reactions. Our estimates suggest that microbial and chemical processes might lead to a global loss of WSOC of 8 - 11 Tg yr\(^{-1}\) and 8 - 20 Tg yr\(^{-1}\), respectively. While also this estimate is very approximate, the analysis of the uncertainties and ranges of all parameters gives hints about the conditions under which microbial processes cannot be neglected as organic carbon sinks in clouds. Our estimates also highlight the urgent needs for more data concerning microbial concentrations, fluxes and activity in the atmosphere to evaluate the role of bacterial processes as net aerosol sink or source on various spatial and temporal scales.

1. Introduction

The characterization and quantification of outdoor bioaerosols is an active field of current atmospheric research since bioaerosols have been suggested to contribute to adverse health effects and cloud formation as ice-nucleating particles (Després et al., 2012). Biological material includes debris, pollen, bacteria, fungal spores, and viruses and is usually considered as being directly emitted to the atmosphere (primary biological aerosol, PBA (Jaenicke, 2005)). The total number and mass concentrations of PBA particles vary widely in space and time: Posfai et al. (1998) found 1% of particles with biological material above the Southern Ocean whereas Artaxo et al. (1990) identified more than 90% of all particles to contain biological material during the wet season in the Amazon. In an urban/remote region in Germany, 24% of all particles were found to include a biological fraction (Matthias-Maser and Jaenicke, 2000). Similar concentrations were observed at a remote high-altitude site with 16 - 64% of the mass of particles with diameters of less than 10 µm being composed of biological mass (Wiedinmyer et al., 2009) whereas the PBA number fraction was
much smaller (0.3 - 18%) in Rome, Italy (Perrino and Marcovecchio, 2016). Bacteria only comprise a small fraction of the total biological aerosol mass but they alone can contribute up to about ~20% of the total number of particles with diameters greater than 0.5 µm (Bowers et al., 2012).

Near the ground, typical concentrations of total airborne bacteria range from ~100 to 10⁶ cells m⁻³, depending on the emission source (Burrows et al., 2009b), and on temporal, meteorological, and other environmental conditions influencing its propensity to emit particles to the air (Carotenuto et al., 2017; Huffman et al., 2013; Lighthart, 1997; Lighthart and Shaffer, 1995). Atmospheric mixing aloft tends to homogenize the number and diversity of the various bacteria types as the distance from sources increases. In the free troposphere, concentrations of ~10,000 cells m⁻³ are reported, including in clouds (DeLeon-Rodriguez et al., 2013; Vaïtilingom et al., 2013). Some extent of selection toward certain species of bacteria probably occurs during aerosolization and atmospheric transport (Joly et al., 2015; Michaud et al., 2018). However, such selection has not been clearly proven yet as the bacterial assemblages found at high altitude often resemble those observed near the ground (Amato et al., 2017; DeLeon-Rodriguez et al., 2013; Smith et al., 2018).

The atmosphere is a harsh environment for living microorganisms: low temperatures at high altitude, UV radiation (Madronich et al., 2018) and high free radical concentrations (Haddrell and Thomas, 2017; Marinoni et al., 2011) are thought to greatly challenge living organisms (Amato et al., 2019; Joly et al., 2015; Smith et al., 2011). Additionally, the rapidly changing conditions in clouds, like condensation/evaporation and freeze/thaw cycles, can cause strong physiological shocks and physical damages to cells, which can eventually be lethal. The viability of airborne microorganisms is thus very variable in space and time depending on environmental conditions (Fahlgren et al., 2010; Hu et al., 2017; Lighthart and Shaffer, 1995; Monteil et al., 2014), but yet the fact that a fraction of bacteria cells are viable was shown in many experiments of microbial cultures from ambient aerosol samples (Amato et al., 2007c; Bovallius et al., 1978; Lighthart, 1997; Newman, 1948). This was specified and quantified more recently by direct observations and measurements of biological activity imprints (Amato et al., 2007b, 2017; Sattler et al., 2001; Wirgott et al., 2017). The multiplication of airborne bacteria was observed from aerosols generated from bacteria cultures (Dimmick et al., 1979), as well as in natural polluted fog (Fuzzi et al., 1997). Thus, the estimated emissions might be biased high as SBA formation provides an additional source of bacteria mass and, thus, observed bacteria concentrations represent the sum of emission fluxes that are smaller than assumed and the secondary production in the atmosphere. Efficient bacteria cell growth and multiplication are largely constrained by the presence of liquid water (Davey, 1989; Haddrell and Thomas, 2017). One can thus assume that microbial processes in the atmosphere are limited to the time microorganisms spend in clouds (Figure 1). Cell growth and multiplication lead to an increase of the initial cell mass and, thus, to more biological material. We introduce the term ‘secondary biological aerosol’ (SBA) mass here in order to distinguish this aerosol source from directly emitted PBA. Heterotrophic bacterial processes require the uptake of organic substrates by the cells, which are subsequently converted by metabolic processes into new organic products, biochemical energy and CO₂ (‘respiration’, Figure 1). These substrates include organics (e.g., carboxylic acids, sugars); other elements (e.g., nitrogen, phosphorous, potassium, metals) are also needed and exist in bioavailable forms in cloud water. The biotransformation of formate, acetate, succinate, lactate, oxalate, and formaldehyde (Ariya et al., 2002; Vaïtilingom et al., 2010), phenol (Lallemand et al., 2018) and methane (Šantl-Temkiv et al., 2013) by bacteria and fungi was studied in aqueous solution mimicking the typical chemical composition of
cloud water, and it was suggested that under specific conditions, microbial processes might be competitive to chemical radical processes as sinks for these compounds (Delort et al., 2010; Vaïtilingom et al., 2011, 2013). The efficiency of such metabolic processes strongly depends on the bacteria types, substrates and their availability within the cloud droplets. In the present study, we perform an estimate of the global importance of SBA formation and microbial WSOC loss. All parameters and their uncertainties are discussed based on the sparse data sets currently available.

Figure 1: Bacterial processes in the atmosphere leading to SBA formation and loss of water-soluble organic carbon (WSOC) in clouds

2. Data and assumptions on bacterial processes in clouds

2.1 Atmospheric concentrations of bacteria cells

Burrows et al. (2009a, 2009b) have summarized data on number concentrations and emission fluxes of bacteria above various ecosystems on the Earth surface. Their compilation also included the estimates of cell concentrations near the surface in a range of 10,000 m⁻³ (seas) up to 650,000 m⁻³ (urban). Bacteria populations aloft represent a mixture of bacteria that were emitted from different ecosystems and subsequently mixed (Burrows et al., 2009b). Despite these mixing processes, there are bacteria types that can be considered characteristic for each ecosystem (Wéry et al., 2017). Table 1 lists cell concentrations as published by Burrows et al. (2009b) complemented by some more recent measurements. We extend this overview by data on bacteria types, suggested as predominant or characteristic for each ecosystem. In several cases, more than one predominant bacteria type is listed as specific geographical, meteorological and other environmental conditions might lead to differences in the diversity of bacteria populations for the same category of ecosystem. We also provide global average data (Category ‘All’) and define one of the most abundant bacteria type (Alpha-Proteobacteria) alive in the atmosphere (Amato et al., 2019; Klein et al., 2016) as a representative type.

The atmospheric lifetime of bacteria cells is limited to several minutes (Otero Fernandez et al., 2019) to hours (Amato...
Several studies report total concentrations of bacteria cells in the atmosphere whereas others present only the concentration of viable cells. The complexity of distinguishing viable, cultivable and dead bacteria cells in the atmosphere has been discussed in several studies (Burrows et al., 2009a; Otero Fernandez et al., 2019).

Table 1: Summary of ambient cell concentrations C_{cell} and generation rates R_{cell} for predominant bacteria types in all ecosystems.

<table>
<thead>
<tr>
<th>Ecosystem</th>
<th>C_{cell} [m$^{-3}$]</th>
<th>Representative strain affiliation</th>
<th>Generation rate R_{cell} [h$^{-1}$]</th>
</tr>
</thead>
</table>
| All | 10,000 | Alpha-Proteobacterium Sphingomonas sp. (average of 32b-11, 32b-49, 32b-57, 35b-32, 35b-38) | $0.06 \ (5^\circ C)^e$
 | | | $0.2 \ (17^\circ C)^e$
 | | | $0.35 \ (27^\circ C)^e$
 | | | $0.45 \ (37^\circ C)^e$
| Tundra | 12,000 | Pseudomonas spp. (P. graminis) | $0.12 \ (5^\circ C)^e$
 | | | $0.21 \ (17^\circ C)^e$
 | | | $0.82 \ (27^\circ C)^e$
 | | | $0.27 \ (37^\circ C)^e$
| Grassland | 110,000 | Psychrobacter sp. | $0.0007 \ (-10^\circ C)^e$
 | | | $0.0001 \ (-10^\circ C)^e$
| Coastal | 76,000 | Pseudomonas syringae | $0.1 \ (5^\circ C)^e$
 | | | $0.25 \ (15^\circ C)^e$
 | | | $0.9 \ (27^\circ C)^e$
| Wetlands | 90,000 | Frigoribacterium sp. | $1.7 \times 10^{-4} \rightarrow 2.91 \times 10^{-4}$
 | | | (12-18°C) h
| Crops | 110,000 | Raphidonema spp. |
| Land ice | (5,000) | |
| Deserts | (10,000) | |
| | 612 | |
| Forests | 56,000 | |
| | 6,323-12,748 d | |
| Shrubs | 350,000 | |
| Seas | 10,000 | Pseudoalteromonas | $0.25 \ (T \ unknown)^k$
| Seas (estuary) b | 10,000 | Gamma-Proteobacterium (the fastest) j | $0.17 \ (14^\circ C)^l$
| | | | $0.19 \ (24^\circ C)^l$

a All cell concentrations are taken from Burrows et al. (2009b) unless otherwise noted. b ‘seas estuary’ was not included as a separate ecosystem by Burrows et al. (2009b); c (Lighthart and Shaffer, 1994); d (Helin et al., 2017); e Amato et al. (unpublished data; strains originally reported in Amato et al., 2007c or Vaïtilingom et al., 2012); f (Mäenistö and Häggblom, 2006); g (Bakermans et al., 2003); h (Morriss et al., 2000); i (Copeland et al., 2015); j (Stibal and Elster, 2005); k (Middelboe, 2000); l (Fuchs et al., 2000)
We assume in Section 3 that all bacteria cells as listed in Table 1 are metabolically active. In our estimates, we neither include assumptions on the limited lifetime of bacteria cells nor on their residence time in the atmosphere as it is assumed that PBA emissions lead to a continuous replenishment of bacteria in the atmosphere resulting in a steady-state concentration of living cells. The consequences of limited cell life- and residence time on SBA formation warrant further studies in more sophisticated model approaches.

2.2 Cell generation rates R_{cell}

Different levels of metabolic activity can be distinguished, from survival, where cells only repair molecular damages, to maintenance (dormancy), where cells do not divide but maintain biological functions, to growth, allowing the net production of biological mass (Price and Sowers, 2004) (Figure 1). The generation rate of a microorganism during growth is probably the most common microbiological criterion used for characterizing microbial multiplication in the laboratory; it corresponds to the time that is needed for doubling the cell number, i.e., for producing two “children” cells from one individual. This requires mass production from nutrients that provide the necessary molecular bricks and biochemical energy. The activity depends on physiological traits of the microorganism, with optima at a given temperature, pH, salinity, and other conditions that define its fitness for its habitat. The generation time in bacteria at their optimum growth conditions usually ranges from ~20 minutes (Marr, 1991) to several days or weeks; as conditions deviate from the optima, this lengthen to virtually infinite time in non-dividing cells.

The *cellular* growth rate itself, i.e. the increase of individual cell size and mass, is intimately linked with generation time: cell size increases in a predictable way as generation time decreases (Si et al., 2017), and it can vary of a factor of up to eight within a single bacteria species. Compared to generation rates, cellular growth rates are usually small and, thus, in the following only data for generation rates are used to estimate SBA mass formation rates.

Metabolic activity, in terms of carbon uptake per units of biomass and time, can range over more than ten orders of magnitude, depending on many factors of which temperature is a major one (Price and Sowers, 2004). Therefore, if available, temperature-dependent generation rates R_{cell} are listed in Table 1 and shown in Figure 2. In addition, the highest expectable growth rate for bacteria as measured under laboratory conditions in culture medium is also shown in the figure for constraining an upper theoretical limit. This corresponds to the generation rate of the laboratory model *Escherichia coli* under optimal conditions (37°C). However, it can be expected that this is not representative of situations encountered in clouds.

Generally, the temperature dependence of cell generation rates can be scaled by the empirical relationship

$$R_{cell}(T_2) = R_{cell}(T_1) \cdot Q_{10}^{(T_2 - T_1)/10}$$ \hspace{1cm} (1)

whereas $R(T_1)$ and $R(T_2)$ are the growth rates (h⁻¹) at two temperatures T_1 and T_2. Q_{10} is a dimensionless scaling factor that expresses the change of these rates over an interval of 10°C and typically has values between two and three within relatively small temperature intervals (Lipson et al., 2002; Sand-Jensen et al., 2007). In general, Equation (1) can be applied for all bacteria types and is usually valid for liquid water over a temperature range up to ~ 25°C; however, the slope (Q_{10} factor) and the maximum temperature depends on the bacteria type.
In Figure 2, the dashed lines towards lower temperatures represent extrapolations of the generation rates at ~20°C reflecting the general agreement between measured and calculated temperature dependencies using $Q_{10} = 2$ or 3, respectively. Using generation rates measured at ~20°C might lead to an overestimate for SBA mass formation rates in colder clouds. However, we chose these values for the calculations in Section 3 as most experimentally-derived growth rates are available for temperatures of 20 – 30°C. Generally, at temperatures below 0°C, cell metabolic activity is negligible in terms of carbon flux even though cells can maintain and survive under such conditions (Amato et al., 2009, 2010; Price and Sowers, 2004).

![Figure 2](https://doi.org/10.5194/acp-2019-619)

Figure 2: Temperature dependence of generation rates R_{cell} for bacteria types representative for the ecosystems in Table 1 and *E. coli* as a likely upper limit for cell generation. Dashed lines are extrapolations of the rates at $T \sim 20°C$ using $Q_{10} = 2$ or $Q_{10} = 3$, respectively.

2.2 Bacteria growth efficiency (BGE)

Chemoheterotrophs - representatives of which were shown to maintain metabolic activity in clouds (Amato et al., 2017) - take up carbon from dissolved organic material for both recovering biochemical energy and converting the substrates into CO_2 and other products. Bacteria growth efficiency (BGE) is defined as the biological mass that is produced relatively to the amount of carbon taken up from the environment, the rest being converted into CO_2 (Eiler et al., 2003):

$$BGE = \frac{d[\text{organic products}]}{d[\text{organic products}] + d[CO_2]}$$

(2)

Note that in the original literature BGE is defined as a measure of ‘biomass production’ instead of organic products’ in Eq (2). Given the large body of atmospheric literature on aerosol processes that discusses ‘biomass’ as material from any living matter (e.g., aerosol from forest fires), we avoid using ‘biomass’ in the current context of microbial processes. BGE for planktonic bacteria range from < 0.4% to 80% with the highest values for eutrophic conditions (Eiler et al., 2003). In turn, when substrate availability is limited, values from ~7% to ~14% are generally observed.

As the conditions in cloud water can be considered oligotrophic with typical concentrations of dissolved organic carbon (DOC) of less than 0.1 mM (Herckes et al., 2013), low BGEs in the range of 0.1 – 10% can be expected, i.e. DOC is efficiently converted into CO_2.

2.4 Cloud properties relevant for microbial activity

2.4.1 Cell concentrations in cloud water

Bacteria cells have sizes of up to several micrometers which explains their high efficiency to act as cloud condensation nuclei (CCN) (Bauer et al., 2003; Després et al., 2012). Assessing the hygroscopicity of biological particles is complex since it cannot be calculated in a similar way as for chemical compounds where total hygroscopicity represents the sum of the contributions of all components (Ariya et al., 2009). Once particles form cloud droplets, chemical compounds dissolved in cloud water, will trigger the growth of the processed CCN and, thus, enhancing hygroscopicity and CCN activity of aged particles in subsequent cloud cycles. The dissolution of ambient cell populations of 100 to 50,000 m⁻³ (Table 1) results in 200 to 500,000 cells mL⁻¹ for clouds with liquid water contents (LWC) of 0.5 g m⁻³ and 0.1 g m⁻³ (Vaïtilingom et al., 2010). The reasonable agreement of cell concentrations outside of clouds and those in cloud water suggests that a large fraction of bacteria cells are scavenged and, thus, act as CCN. Some bacteria are well-known to efficiently act as ice nuclei (Amato et al., 2015; Möhler et al., 2008; Morris et al., 2004). In the current study, we neglect the potential role of ice clouds as media of microbial metabolic activity. In addition to low temperatures resulting in very low generation rates (Figure 2), the substrate diffusion to the bacteria will be limited resulting in negligible consumption of dissolved carbon.

2.4.2 Time fractions of microbial processes in clouds (F_cloud)

As we assume that both SBA mass production and WSOC loss only occur when bacteria are suspended in cloud droplets, we need to estimate the time bacteria spend in liquid clouds. In general, cloud contact times, i.e., the time air spends in a cloud, are dependent on cloud depth and vertical velocity (Feingold et al., 2013). This small-scale information is not consistently available for the large regions as covered by the ecosystems listed in Table 1. Instead, the fraction of cloud contact time F_cloud is here equaled to the atmospheric volume fraction that is filled with clouds (Lelieveld and Crutzen, 1990).

Global cloud coverage data based on satellite images derived from MODIS data (King et al., 2013) show cloud coverage of ~0.2 – 0.9 above various ecosystems. In order to convert these two-dimensional values of cloud coverage into three-dimensional values that describe the volume fraction of the atmosphere that is filled with clouds, we assume an average cloud thickness of 1.5 km within the lowest 6 km of the atmosphere where > 90% of all liquid clouds reside (Pruppacher and Jaenicke, 1995; Wang et al., 2000). This results in a conversion factor of 0.25 (1.5 km / 6 km) to obtain an average cloud volume, and thus F_cloud, above each ecosystem.

Comparison of previous estimates of global cloud coverage of 60% (Pruppacher and Jaenicke, 1995) and the volume fraction of liquid clouds within the atmosphere of 15% (Lelieveld and Crutzen, 1990) generally supports this relationship. The resulting F_cloud values are summarized in Table 2 together with the percentage area fraction of each ecosystem of the Earth surface, taken from Burrows et al. (2009b) and originally obtained from Olson (1992).
Table 1: Surface coverage of ecosystems on Earth surface (Burrows et al., 2009b) and estimated time fraction bacteria spend in clouds (F_{cloud})

<table>
<thead>
<tr>
<th>% of Earth surface a</th>
<th>F_{cloud}</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>100</td>
</tr>
<tr>
<td>Tundra</td>
<td>3.3</td>
</tr>
<tr>
<td>Grassland</td>
<td>2.2</td>
</tr>
<tr>
<td>Coastal</td>
<td>0.2</td>
</tr>
<tr>
<td>Wetlands</td>
<td>0.6</td>
</tr>
<tr>
<td>Crops</td>
<td>3.0</td>
</tr>
<tr>
<td>Land ice</td>
<td>3.1</td>
</tr>
<tr>
<td>Deserts</td>
<td>3.7</td>
</tr>
<tr>
<td>Forests</td>
<td>7.0</td>
</tr>
<tr>
<td>Shrubs</td>
<td>5.8</td>
</tr>
<tr>
<td>Seas</td>
<td>71.0</td>
</tr>
</tbody>
</table>

a Data from Burrows et al. (2009b) and Olson (1992)

3. Results and Discussion

3.1 SBA mass production

3.1.1 Calculation of SBA formation rates

We calculate the SBA mass formation rate [ng m$^{-3}$ day$^{-1}$] above each ecosystem i, using Eq (3):

$$\left(\frac{dm}{dt}\right)_{\text{SBA},i,\text{day}} = R_{\text{cell},i} \cdot F_{\text{live}} \cdot C_{\text{cell},i} \cdot F_{\text{cloud},i} \cdot m_{\text{cell}}$$

where R_{cell} is the cell generation rate [h$^{-1}$] (Table 1). For ecosystems, for which R_{cell} of the representative bacteria types is not available, we assume the average value of $R_{\text{cell}} = 0.3$ h$^{-1}$ as an upper limit for atmospherically-relevant conditions, corresponding to a generation time of approximately three hours. C_{cell} denotes the ambient cell concentration [cell m$^{-3}$] (Table 1), F_{live} is the fraction of living cells in total cell concentration and assumed to be unity here, F_{cloud} is the fraction of total time bacteria when are active in clouds (Table 2), and m_{cell} is the average mass of a single cell, independent of the bacteria type. The cell mass m_{cell} is assumed to be $52 \cdot 10^{-15}$ g cell$^{-1}$ (Sattler et al., 2001), equivalent of a spherical particle with diameter of 500 nm and a density of 1 g cm$^{-3}$.

For nearly all ecosystems, predicted SBA formation rates are in the range of ~ 0.1 to ~ 1 ng m$^{-3}$ s$^{-1}$ (Figure 3a), with higher values for crops and shrubs where C_{cell} were found to be highest (Table 1). The average formation rate (0.6 ng m$^{-3}$ day$^{-1}$), calculated using the average values representative for all ecosystems (Category ‘All’ in Table 1), is similar to most of the other formation rates, suggesting that using these average data for a global estimate gives a reasonable order of magnitude of SBA formation. Only above land ice where C_{cell} is small, the rate is significantly smaller. Given that the temperatures above land ice might be on average lower than above other regions, the relative importance of SBA formation there might be even smaller.

To compare the mass production to other global aerosol sources, $m_{\text{SBA,day}}$ is converted into a production flux [Tg yr$^{-1}$] for each ecosystem i and scaled by the surface fraction of each ecosystem A_i:

\[P_{\text{SBA},i} = \left(\frac{dm}{dt} \right)_{\text{SBA,day}} \cdot 365 \text{ days} \cdot A_i \cdot V_{\text{atmos}} \tag{4} \]

where \(V_{\text{atmos}} \) is the volume of atmosphere (3 \(\times \) 10^{18} m\(^3\), 0 – 6 km) and \(A_i \) is the surface fraction of each ecosystem (Table 2).

Figure 3: Predicted production of secondary biological aerosol mass above the various ecosystems. The blue bar indicates the predicted production using the average values for all ecosystems (‘all’ in Table 1); a) SBA formation rates [ng m\(^{-3}\) day\(^{-1}\)]; b) SBA production rates [Tg year\(^{-1}\)]. The red shaded bar represents the sum of the contributions from all ecosystems, bacteria emissions are shown for comparison, taken from Burrows et al. (2009b).

The production fluxes for each ecosystem are shown in Figure 3b, together with their sum for all ecosystems. The total predicted amount of SBA production is 3.7 Tg yr\(^{-1}\) with highest contributions from bacterial activities above seas (0.5 Tg yr\(^{-1}\)) as they cover most of the globe (71%) and above shrubs (0.5 Tg yr\(^{-1}\)) since the highest bacteria concentrations have been identified there (Table 1). Forests with a much smaller surface area (7%) but higher cell concentration contribute the same amount (0.5 Tg yr\(^{-1}\)). We suggest that this formation rate of 3.7 Tg yr\(^{-1}\) can be
considered the best estimate of SBA formation based on the available sparse data set presented in Tables 1 and 2. Using average data (Category ‘All’ in Tables 1 and 2) instead of those for individual ecosystems results in 0.7 Tg yr⁻¹, i.e. on a similar order of magnitude as the more sophisticated best estimate These values are similar to the range of 1 - 10 Tg yr⁻¹ that was extrapolated by Sattler et al. (2001) based on carbon production rates of bacteria in supercooled clouds at mount Sonnblick observatory in the Austrian Alps. Our estimated SBA mass production represents the production of total bacteria mass. The carbon content of bacteria cells is roughly 50% of their dry mass, with the remainder composed of nitrogen, oxygen, phosphorous, hydrogen and other elements (Whitman et al., 1998). Thus, we suggest that SBA formation may lead to 1.9 Tg carbon yr⁻¹ (0.4 Tg carbon yr⁻¹ if the average value is applied, respectively) that is bound in biological mass.

3.1.2 Discussion of uncertainties in SBA formation

The formation rates in Section 3.1.1 represent an estimate of a previously unrecognized source of biological aerosol mass in the atmosphere. All parameters are associated with large uncertainties that need to be constrained in the future as they might vary depending on temporal, meteorological, spatial and geographical conditions. Ranges of observed values for all parameters in Eq (3) and Eq (4) are summarized in Table 3 and discussed in the following:

(i) The cell concentrations C_{cell} in the atmosphere homogenize aloft due to mixing processes and average to concentrations of ~10,000 m⁻³ at most locations. However, spatial deviations might be present in particular locations, such as cell concentrations of > 10⁶ m⁻³ that were found in highly polluted areas (Xie et al., 2018), and even 10⁷ m⁻³ near the ground (Paez-Rubio et al., 2005).

(ii) The growth rates R_{cell} assumed here likely represent an overestimate as cloud temperatures are likely lower than ~15-20°C. At temperatures > ~0°C, this overestimate is likely less than an order of magnitude (Figure 2); in supercooled clouds (< 0°C), metabolic activity R_{cell} might be restricted to occur in liquid droplets whereas in ice particles, it is some orders of magnitude lower and cell multiplication can be considered negligible.

(iii) While some of the studies listed by Burrows et al. (2009b) and in Table 1 report the concentrations of viable cells, others give the total cell concentrations. In addition, the large discrepancy in reported F_{live} between < 0.1% up to nearly 100% as discussed e.g., by Lindeman et al. (1982), Lighthart and Shaffer (1994) and Gandolfi et al. (2013), might be also due to differences in the measurement techniques. Consistent experimental methodologies are needed to give comprehensive data on F_{live} and the survival rates of bacteria in aerosol particles (Otero Fernandez et al., 2019).

(iv) The average cell mass depends on bacteria type and their growth stage. Sattler et al. (2001) estimated carbon mass of bacteria cells in cloud water as 17 fg carbon cell⁻¹ in agreement with values for marine and freshwater ecosystems. Approximating the total mass by doubling the carbon mass, results in 34 fg cell⁻¹, i.e. equivalent to spherical particles with diameters of ~0.4 μm. Carbon mass and the carbon-to-total mass ratio can greatly differ from these values; for example, total masses of prokaryotic cell of 200 fg cell⁻¹ in soil have been reported (Whitman et al., 1998). In their global study, Burrows et al. (2009b) assumed a mass of 520 fg cell⁻¹ (1 μm particle).

(v) While several studies have shown that liquid water is necessary for efficient microbial activity, it is not clear yet whether bacteria maintain activity in wet aerosols. Klein et al. (2016) found indications that bacteria metabolic activity exists in aerosols but no quantitative data is reported yet. Bacteria become dormant or have reduced viability at relative...
humidities of 86–97% (Haddrell and Thomas, 2017). In soil samples, it has been shown that cycles of drying and rewetting might enhance microbial activity compared to constantly moist samples (Meisner et al., 2017; Xiang et al., 2008); thus, it may be speculated that such effects also occur in rapidly changing humidity conditions in atmospheric deliquesced aerosols. Under those conditions, the time fraction of microbial activity would exceed F_{cloud}. On locally smaller scales, cloud processing time might be shorter than the average F_{cloud} (Table 2).

SBA mass formation calculated by Eq (3) and Eq (4) depends linearly on all parameters discussed in (i) to (v). Thus, the sensitivity of the predicted formation rates can be simply estimated by ranges given in Table 3. However, in the atmosphere, all parameters might continuously change over time and thus might affect SBA mass to different extents.

Table 3: Parameters used in the estimate of SBA mass formation and their possible minimum and maximum values based on literature data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value in Eq (3) and Eq (4)</th>
<th>Range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{cell} [m$^{-3}$]</td>
<td>10^4</td>
<td>100–109</td>
<td>$C_{\text{cell,min}}$: above desert during low RH and high radiation (Lighthart and Shaffer, 1994); ~10^6: in a highly polluted area (Xi’an, China) (Xie et al., 2018); $C_{\text{cell,max}}$ was measured near the ground (Paez-Rubio et al., 2005)</td>
</tr>
<tr>
<td>R_{cell} [h$^{-1}$]</td>
<td>0.3</td>
<td>0–3</td>
<td>R_{cell} ~ 0 might occur under stressful conditions when cells become dormant (e.g., low temperature, little water…); R_{cell} ~ 3 for E. coli under optimal conditions (37°C, appropriate culture medium).</td>
</tr>
<tr>
<td>F_{live}</td>
<td>1</td>
<td>0.0001–1</td>
<td>0.0001 – 0.2 based on global microbial diversity (Gandolfi et al., 2013); 0.22 above crop fields (Lindemann et al., 1982), 0.81 above desert (Lighthart and Shaffer, 1994). Some studies report concentrations of viable cells; in this case reported concentrations imply F_{live} = 1</td>
</tr>
<tr>
<td>m_{cell} [fg cell$^{-1}$]</td>
<td>52</td>
<td>34–520</td>
<td>$m_{\text{cell,min}}$ corresponds to cells in clouds assuming that they are composed of 50% carbon (Sattler et al., 2001); masses of other prokaryotic cells might be up to 200 fg cell$^{-1}$ (Whitman et al., 1998); $m_{\text{cell,max}}$ is for a spherical cell of a diameter 1 µm and density of 1 g cm$^{-3}$ (Burrows et al., 2009b).</td>
</tr>
<tr>
<td>F_{cloud}</td>
<td>0.15</td>
<td>> 0</td>
<td>The average global value might be higher than 0.15 if bacterial processes also occur outside of clouds. On small scales or above individual ecosystems, the value can be smaller than the average value.</td>
</tr>
</tbody>
</table>

3.1.3 Comparison of SBA formation to other aerosol sources

An estimate of aerosol emissions from the biosphere suggested a source strength of primary biological particles of 1000 Tg yr$^{-1}$ (Jaenicke, 2005). However, in this study, PBA was defined to include all cellular material, proteins, and
their fragments. A global model study predicted total PBA emissions (bacteria, fungal spores and pollen) of 123 Tg yr\(^{-1}\) of which bacteria comprised 0.79 Tg yr\(^{-1}\) (Myriokefalitakis et al., 2017). This number is similar to the range of 0.4 – 1.8 Tg bacteria yr\(^{-1}\) as given by Burrows et al (2009b). Fungal spores are considered a major fraction of PBA. Their global emissions (25 Tg yr\(^{-1}\)) was suggested to contribute 23% to total primary organic aerosol (Heald and Spracklen, 2009). An estimate of fungal spore emissions based on tracer compounds resulted in predicted 50 Tg yr\(^{-1}\) (Elbert et al., 2007)). None of these estimates include microbial activity as a source of biological mass. Our predicted SBA source of 3.7 Tg year\(^{-1}\) is on the same order of magnitude as the model predictions for primary bacteria emissions. The estimates of bacteria emissions are performed such that observed cell concentrations are matched by the models without considering another source of cells in the atmosphere. Our SBA estimates might be equally biased as they are based on the same ambient cell concentrations as used by Burrows et al. (2009a, b) and Myriokefalitakis et al. (2017). The absolute values and the ratio of primary to secondary bacteria mass need to be evaluated by more complex model studies as our simple framework can provide.

Total organic aerosol is composed of mostly secondary mass. Best estimates based on observational and model studies of the net production rate of secondary organic aerosol (SOA) mass are on the order of 136 – 280 Tg year\(^{-1}\) (Hodzic et al., 2016). These amounts are similar to the predicted global sulfate production of 117 Tg year\(^{-1}\) (39 Tg S year\(^{-1}\)) (Chin et al., 2000). Thus, SBA production can be estimated to be on the order of ~1% of the total aerosol sources. The net aerosol mass formation due to SBA production might be even smaller if bacteria metabolize substrates that are already in the particle phase. In this case, biotransformation processes lead to the conversion of non-biological into biological aerosol mass. The unique properties of biological aerosol material have been extensively discussed in the context of heterogeneous ice nucleation where it has been shown that even small amounts of biological material could have significant effects on clouds and precipitation (Möhler et al., 2008; Morris et al., 2004; Santl-Temkiv et al., 2015).

Given the low ambient concentrations of ice nucleating particles and their high sensitivity to the ice/liquid partitioning in mixed-phase clouds (e.g., Ervens et al., 2011), a small change in biological mass possibly translates into significant changes in the evolution of cold clouds.

3.2 Consumption of organic carbon in clouds

3.2.1 Calculation of microbial and chemical WSOC loss rates

Bacteria can be metabolically active in the aqueous phase of clouds (Delort et al., 2010) and on the surface or bulk phase of particles (Klein et al., 2016; Estillore et al., 2016). Such processes lead to a decrease of water-soluble organic carbon (WSOC) mass within cloud droplets as bacteria convert substrates into CO\(_2\) (Figure 1). Also processes of biological mass production from CO\(_2\) exist (autotrophy) and include photosynthesis (photoautotrophs). However, despite the fact that photosynthetic microorganisms were reported in the atmosphere (Tesson and Santl-Temkiv, 2018) there is neither a clear indication yet of photosynthetic activity in clouds, nor of other modes of autotrophy. The split between carbon uptake for biological mass production and mineralization is quantified by the bacterial growth efficiency BGE (Eq (2)). Studies have shown that generally metabolic processes produce mostly CO\(_2\) under atmospheric conditions and only a small fraction of the carbon is mineralized into organic products (< 1 – 10% of the
total C utilized). We introduce here the factor F_{CO2} as a measure of the loss of organics due to bacterial processes:

$$F_{CO2} = 1 - BGE$$

Using F_{CO2}, we can write the carbon balance as

$$WSOC_{Bact} \rightarrow F_{CO2} \cdot CO_2 + (1 - F_{CO2}) \cdot WSOC$$

The loss rate of carbon can be, thus, calculated as

$$R_{WSC, Bact} = -\frac{d(WSOC)}{dt} = \frac{dCO_2}{dt} = -F_{CO2} \cdot k_{Bact} \cdot \frac{L_{cell}}{cell_{aq}} \cdot C_{Cell, aq} \cdot \frac{cell}{L} \cdot F_C \cdot C_{WSC} \cdot \frac{g_C}{L} \cdot LWC \cdot \frac{g}{m^2} \cdot F_{cloud}$$

where $C_{Cell, aq}$ and C_{WSC} are the concentrations of bacteria and water-soluble organic carbon in cloud water, respectively. These concentrations are on average $\sim 10^7$ cells L$^{-1}$ (Vaitilingom et al., 2013) and 0.1 mM (Hercues et al., 2013) in cloud water whereas both values might differ over a few orders of magnitude locally and temporally (Section 3.2.2). Usually experimental loss rates of organics by bacteria in real and artificial cloud water are reported to be on the order of $\leq 10^{-14}$ mol cell$^{-1}$ s$^{-1}$ for organic substrates (e.g. formic, acetic, and succinic acids) (Vaitilingom et al., 2010, 2011). The cell activity is dependent on the bacteria type and the availability of the organic substrate. Thus, strictly, such rates [mol cell$^{-1}$ s$^{-1}$] are only valid for the substrate-to-cell ratio as applied in the experiments. In order to account for the ratio as encountered in cloud water, we use here k_{Bact} [L cell$^{-1}$ s$^{-1}$] (i.e. measured rate divided by the concentration of organic substrate in the experiments) that is applicable to the full range of conditions where the cells exhibit a similar microbial activity. Resulting rate constants for formic, acetic and succinate acids are on the order of $k_{Bact} \sim 10^{-13}$ L cell$^{-1}$ s$^{-1}$.

Bacteria are selective towards organic compounds and not all organics are metabolized by every bacteria type. For example, it has been shown in a single study that, upon laboratory incubation of cloud water oxalic acid is not affected by cloud borne microorganisms, formate is only consumed after a lag time of several hours, which is much longer than the lifetime of a cloud droplet, and, on the other hand, compounds such as acetate or succinate are readily degraded (Vaitilingom et al., 2011). Since these compounds comprise major constituents of WSOC in cloud water, it seems reasonable to introduce an additional factor F_C in Eq (5) that accounts for the microbial selectivity towards only some organics by each bacteria type (e.g. Šantl-Temkiv et al., 2013; Bianco et al., 2019). Obviously, this factor is highly uncertain and strongly depends on the microbial and chemical composition of cloud water. The calculated rates $R_{WSC, Bact}$ are summarized in Figure 4 for $0.8 \leq F_{CO2} \leq 0.99$ (Eiler et al., 2003) and $F_C = 0.5$ (based on the characterization of metabolic activity in cloud water towards predominant cloud-water organics).

Several studies have discussed the competition of microbial and chemical processes in cloud water as a sink of specific organic compounds (Ariya et al., 2002; Husárová et al., 2011; Vaitilingom et al., 2010, 2013). The most efficient loss reactions for organics in cloud water are initiated by OH radicals. The general rate constant of the OH radical with water-soluble organic carbon is $k_{OH} = 3.8 \cdot 10^{9}$ M$^{-1}$ s$^{-1}$ (Arakaki et al., 2013). The reactions of WSOC with OH lead to
volatile and non-volatile oxidation products. Radicals are much less selective towards organics than bacteria are; thus, the assumption of a factor equivalent to \(F_C \) in Eq (6) is not necessary as all water-soluble organics react with OH whereas the chemical reactivity mostly depends on the structure of the organic compound. The yield of volatile products \((Y_{\text{vol}}) \) includes CO\(_2\) but also formaldehyde and other volatile compounds that do not remain in the particle phase after cloud evaporation and thus do not contribute to the aerosol loading. We assume \(0.2 \leq Y_{\text{vol}} \leq 0.5 \) (cf. Section 3.2 and Table 4 for the discussion of the assumptions and uncertainties of this parameter). In general, \(Y_{\text{vol}} \) depends on the WSOC composition, with higher values for more aged organics that are more readily oxidized to volatile products.

Equivalent to reaction \((R\,1) \), we express the carbon loss by the OH radical in clouds as

\[
\text{WSOC} + \text{OH} \rightarrow Y_{\text{vol}} \text{Volatile Products} + (1 - Y_{\text{vol}}) \text{WSOC}_{\text{aer}} \tag{R2}
\]

With \(\text{WSOC}_{\text{aer}} \) being the WSOC fraction that remains in the aerosol phase after drop evaporation. We calculate the loss rate accordingly:

\[
R_{\text{OH,WSOC}} = - \frac{d(\text{WSOC})_{\text{OH}}}{dt} = k_{\text{OH}} [L\,mol^{-1}\,s^{-1}] [\text{OH}]_{aq} [mol\,L^{-1}] \cdot Y_{\text{vol}} C_{\text{WSOC}} \left(\frac{m^2}{L} \right) \cdot LWC \left(\frac{g}{m^3} \right) \cdot F_{\text{cloud}} \tag{7}
\]

OH concentrations in cloud water are in the range of \(10^{-16} \text{ M} < [OH]_{aq} < 10^{-14} \text{ M} \) (Arakaki et al., 2013; Bianco et al., 2015; Ervens et al., 2014) and an average cloud liquid water content (LWC) of 0.15 g m\(^{-3}\) is assumed. The results in Figure 4 show that the predicted rates \(R_{\text{OH,WSOC}} \) \((8 - 20 \text{ Tg}\,\text{yr}^{-1})\) and \(R_{\text{Bact,WSOC}} \) \((8 - 11 \text{ Tg}\,\text{yr}^{-1})\) are for most parameter sets on a similar order of magnitude with possibly a slightly higher contribution of chemical reactions to WSOC loss. This trend is in agreement with several previous studies that focused on the comparison of microbial versus chemical processes as sinks for specific organic substrates (Amato et al., 2007a; Vaitilingom et al., 2010). These loss fluxes are

![Figure 4: Predicted loss of WSOC by bacterial utilization and by chemical (OH) processing in cloud water for different assumption on \(F_{\text{CO2}} \) and \(Y_{\text{vol}} \).](https://doi.org/10.5194/acp-2019-619)
relatively large as compared to the predicted SBA formation (Figure 3).

In a previous study, it was estimated that microbial processes in clouds lead to a total carbon loss of \(~10 - 50\) Tg yr\(^{-1}\) and to a production of \(~100\) Tg yr\(^{-1}\) CO\(_2\) with the assumptions of complete respiration \((F_{CO2} = 1)\), microbial non-selectivity towards WSOC \((F_C = 1)\) and applying the same loss rates as observed in lab experiments without correcting for differences in the ratio of bacteria cell to WSOC concentrations (Vaitilingom et al., 2013). Thus, this former estimate can be considered an upper limit whereas the one in the current study \((\sim 50\) Tg yr\(^{-1}\)) is more conservative, both suggesting that the respiration of bacteria is a negligible CO\(_2\) source as compared to the sum of anthropogenic sources \((\sim 50,000\) Tg CO\(_2\) yr\(^{-1}\) (IPCC, 2014)).

The WSOC loss rates calculated here are also much smaller than those estimated for the loss of total SOA due to heterogeneous reactions and photolysis on particle surfaces \((\leq 50.3\) Tg yr\(^{-1}\)) and by wet deposition \((\leq 50\) Tg yr\(^{-1}\), (Hodzic et al., 2016)). They are also smaller than the predicted production rates of aqSOA in clouds of 13.1 - 46.8 Tg yr\(^{-1}\) (Lin et al., 2014) or 20 – 30 Tg yr\(^{-1}\) (Liu et al., 2012). These predictions strongly depend on the representation of clouds, and particularly on the liquid water content (He et al., 2013) but overall emphasize that clouds can be considered a net source rather than a sink for organic aerosol.

3.2.2 Discussion of uncertainties of microbial and chemical WSOC loss

The calculation of microbial and chemical WSOC loss should be regarded an approximation using a set of parameters that are all associated with considerable uncertainties. Similar to the discussion in Section 3.1.2, we compile all parameters and minimum and maximum values based on literature data in Table 4:

(i) There are not as many measurements of \(C_{Bact,aq}\) as for cell concentrations \(C_{cell}\) in cloud-free regions. The assumption that all particles that contain bacteria cells are activated into cloud droplets does likely not lead to a large overestimate. The sizes of bacteria-containing particles usually exceed several hundred nanometers and thus can all be considered CCN. Differences in LWC as the conversion factor from gas to aqueous phase concentrations are relatively small, within a factor of 2 – 3, within the categories of common cloud types (Pruppacher and Klett, 2003).

(ii) The activity of microorganisms towards organic substrates is often reported in units of ‘mol(substrate) cell\(^{-1}\) s\(^{-1}\)’ which expresses the amount of substrate that is consumed per cell and time. For several compounds (e.g., formate, acetate, succinate) these rates differ by approximately one order of magnitude (Vaitilingom et al., 2011). However, the resulting \(k_{Bact}\) (i.e. rate divided by substrate concentration) are all on the order of \(k_{Bact} \sim 10^{-13}\) L cell\(^{-1}\) s\(^{-1}\) which appears to represent an upper limit for the organics that have been investigated for metabolic activity in clouds. A much lower constant was derived from experiments with less oxygenated compounds such as phenol (Lallement, 2017).

While we only consider the direct interaction of bacteria and organics, additional processes might lead to more complex chemical and microbial interactions. For example, siderophores form iron complexes (Passananti et al., 2016) and, thus, suppress Fenton reactions that affect oxidant levels in cloud droplets (e.g., Deguillaume et al., 2004). Such indirect feedbacks of microbial processes on chemical budgets require more comprehensive data sets that are currently not available for models.

(iii) The respiration of bacteria depends on many different factors such as stress due harsh conditions. It can be expected that at higher stress levels (nutritional of thermal), \(F_{CO2}\) increases to supply elevated energy needs (Amato and
Values of BGE as low as < 0.4% ($F_{CO2} = 0.996$) were observed (Eiler et al., 2003 and references therein), indicating that nearly all the carbon used was mineralized into CO$_2$.

Table 4: Values for parameters in Eq (6) and Eq (7) used in the estimate of WSOC loss by microbial and chemical processes and their likely minimum and maximum values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value in Eq (6) and Eq (7)</th>
<th>Range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{Bact,aq}$ [cells L$^{-1}$]</td>
<td>10^7</td>
<td>10^6 to 10^8</td>
<td>Range of total bacteria concentration observed in cloud water samples collected from a mid-altitude mountain site over several years (31 samples) (Vaitilingom et al., 2012)</td>
</tr>
<tr>
<td>LWC [g m$^{-3}$]</td>
<td>0.15</td>
<td>0.1 to 1</td>
<td>The minimum and maximum value describe a range for a wide variety of cloud types. The assumption of LWC is not needed if it is assumed that all bacteria-containing particles act as CCN.</td>
</tr>
<tr>
<td>k_{Bact} [L cell$^{-1}$ s$^{-1}$]</td>
<td>10^{-13}</td>
<td>10^{-15} to 10^{-13}</td>
<td>$k_{Bact,min}$ was derived for microbial activity towards phenol (Lallement, 2017). $k_{Bact,max}$ was derived from experiments using cloud water and is valid for the microbial activity of various highly oxygenated compounds.</td>
</tr>
<tr>
<td>F_{CO2}</td>
<td>0.8 – 0.99</td>
<td>0.2 to 1</td>
<td>Even though BGE ranging from < 0.4% to 80% ($0.996 > F_{CO2} > 0.2$) were estimated in natural environments (Eiler et al. 2003 and references therein), at low nutrient concentrations, as encountered in clouds, high F_{CO2} can be expected.</td>
</tr>
<tr>
<td>F_C</td>
<td>0.5</td>
<td>0.2 to < 1</td>
<td>Herckes et al. (2013) report that ~20% of total organic carbon in clouds is composed of speciated carboxylic acids. $F_C = 1$ seems unlikely due to variation in microbial and chemical cloud water composition.</td>
</tr>
<tr>
<td>k_{OH} [L mol$^{-1}$ s$^{-1}$]</td>
<td>3.8×10^8</td>
<td>10^6 to 10^{10}</td>
<td>Typically, undissociated acids (low pH) and polyfunctional compounds have k_{OH} at the lower end of this range whereas the upper limit is constrained by diffusion limitation (Herrmann, 2003; Monod and Doussin, 2008)</td>
</tr>
<tr>
<td>$[OH]_{aq}$ [M]</td>
<td>10^{-15}</td>
<td>10^{-17} to 10^{-14}</td>
<td>The suggested range includes concentrations that were inferred for night-time conditions (minimum) to day-time conditions in clean air masses (low OH sinks).</td>
</tr>
<tr>
<td>Y_{volC}</td>
<td>0.3 – 0.5</td>
<td>0.2 to 0.8</td>
<td>This value has not been comprehensively quantified yet; largest values can be likely expected in aged WSOC with high O/C ratios</td>
</tr>
</tbody>
</table>

(iv) The fraction of organic material metabolized by bacteria in clouds (F_C) is likely not unity for a single bacteria type (Bianco et al., 2019; Vaitilingom et al., 2011). Carboxylic acids that are preferentially metabolized by several common bacteria types often comprise a major fraction (~20%) of the cloud-water organics that can be speciated on a molecular
level (Herckes et al., 2013). This fraction might be regarded a lower limit of F_C since the reactivity of the large fraction of unspeciated organics (often ~70%) towards bacteria is not known. Our comparison implies the same spatial accessibility of bacteria and OH, respectively, to WSOC. This might be an oversimplification as bacteria are unevenly distributed among cloud drop populations as statistically only one in ~10,000 droplets may contain a single bacteria cell. OH can be expected to be present in all cloud droplets as the direct phase transfer from the gas phase represents one of the major OH sources in cloud water.

(v) While the absolute importance of microbial loss depends on the parameters discussed in (i) to (iv), the relative importance compared to chemical processes might be of interest in studies where the fate of individual organics in the cloud droplets or in the atmospheric multiphase system is explored. $[\text{OH}]_{aq}$ depends mostly on photochemical processes as source processes and on the concentrations of WSOC as the main sinks; it ranges from 10^{17} M (night-time) to 10^{14} M (day time, clean air masses) (Arakaki et al., 2013).

(vi) Given that formate and acetate comprise major contributors to cloud water organics (Herckes et al., 2013), some fraction of WSOC will be converted into highly volatile products, such as CO$_2$ and CH$_3$CHO that will not remain in the particle phase after cloud evaporation. However, Y_{volC} likely does not approach unity since several studies have suggested that radical reactions in cloud water lead to the successive decay of dicarboxylic acids into their next smaller homologue which will remain in the aqueous phase. Within these limits, we conservatively suggest a range of 0.2 to 0.8 for Y_{volC} but point out the need for studies to refine this parameter.

4. Summary and conclusions

We have estimated the amount of biological mass that is formed in the atmosphere by growth and multiplication of bacteria cells (‘secondary biological aerosol’, SBA). Data for representative bacteria strains and their generation rates have been compiled for major ecosystems. Using average values for cloudiness above the various ecosystems, we estimate that 0.7 Tg yr$^{-1}$ SBA mass is formed globally which is comparable to current estimates of direct bacteria emissions ($0.4 – 0.7$ Tg yr$^{-1}$ (Burrows et al., 2009b; Myriokefalitakis et al., 2017)) which comprise a small fraction of total biological aerosol mass. While these production rates make up ~1% of formation rates of other major secondary aerosol components (secondary organics or sulfate), their importance might differ on spatial or temporal scales. In addition, SBA production leads to an increase in biological aerosol mass which might sensitively affect physicochemical particle properties (e.g. ice nucleation ability). SBA formation linearly depends on several parameters, such as the number concentration of metabolically active bacteria cells, their generation rates and the time scales during which they are assumed to grow or multiply – all of which are associated with considerable uncertainties. Our detailed discussion of the parameters and their uncertainties in our simplified approach highlight the likely variability of SBA formation on smaller scales and the need of future studies to refine these parameters. Similar approaches as ours may be applied to yeast growth. Yeast cells are generally larger (~2 – 10 μm) than bacteria cells (Fröhlich-Nowoisky et al., 2009) and, thus, their residence time in the atmosphere is likely shorter. Detailed data on their activity in clouds are not available which currently prevents the assessment of their potential contribution to SBA.

We also quantify the role of clouds as sinks of total WSOC by microbial and chemical processes, unlike previous studies that focused on microbial activity towards individual organic compounds. It is estimated that microbial
processes lead to an organic mass loss of 8 – 11 Tg yr\(^{-1}\) whereas chemical processes by the OH radical in clouds lead to a loss of 8 – 20 Tg yr\(^{-1}\). These numbers are small compared to other sinks such as aerosol removal by deposition. Not all of the organic mass even contributes to organic aerosol loading as water-soluble, volatile organics are dissolved in cloud water but evaporate during drop evaporation. Thus, the loss of organic aerosol mass due to direct microbial activity in clouds is smaller than the predicted loss of organic carbon. Large uncertainties in these estimates represent the assumptions on the fraction of carbon that is converted into volatile products. For bacteria, this fraction is quantified by the bacteria growth efficiency that depends on numerous factors, such as bacteria type, substrate availability and physical conditions in the condensed phase.

In current atmospheric models, when considered, bacteria cells are inert, i.e. they neither change their mass or number concentrations during their residence time in the atmosphere nor do they interact with other aerosol constituents. The approach presented in our study is provides a first simplified estimate of SBA formation and WSOC loss due to bacteria that could be easily adapted in models. Given the current great activities in the field of atmospheric bioaerosols, it can be expected that the discussed parameters in the estimates can and should be refined in the future in order to quantify the role of bacterial processes as source of biological mass and net source or sink of organic aerosol in the atmosphere.

Data availability. All data are available upon request from the authors.

Author contributions. BE and PA planned and carried out the study and wrote the manuscript together.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgement. This work has been funded by the French National Research Agency (ANR) in the framework of the ‘Investment for the Future’ program, ANR-17-MPGA-0013.

References

Amato, P., Doyle, S. M., Battista, J. R. and Christner, B. C.: Implications of Subzero Metabolic Activity on Long-

Monteil, C. L., Bardin, M. and Morris, C. E.: Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall, ISME J., 8(11), 2290–2304, doi:10.1038/ismej.2014.55, 2014.

