Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
  • CiteScore value: 6.13 CiteScore
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Discussion papers
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 11 Jul 2019

Submitted as: research article | 11 Jul 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Chemistry and Physics (ACP).

Characterization of aerosol particles at Cape Verde close to sea and cloud level heights – Part 1: particle number size distribution, cloud condensation nuclei and their origins

Xianda Gong, Heike Wex, Jens Voigtländer, Khanneh Wadinga Fomba, Kay Weinhold, Manuela van Pinxteren, Silvia Henning, Thomas Müller, Hartmut Herrmann, and Frank Stratmann Xianda Gong et al.
  • Leibniz Institute for Tropospheric Research, Leipzig, Germany

Abstract. In the framework of the MarParCloud (Marine biological production, organic aerosol particles and marine clouds: a Process Chain) project, measurements were carried out on the islands of Cape Verde, to investigate the abundance, properties, and sources of aerosol particles in general and cloud condensation nuclei (CCN) in particular, both close to sea and cloud level heights.

A thorough comparison of particle number concentration (PNC), particle number size distribution (PNSD) and CCN number concentration (NCCN) at the Cape Verde Atmospheric Observatory (CVAO, sea level station) and Monte Verde (MV, cloud level station) reveals that during times without clouds the aerosol at CVAO and MV are similar and the boundary layer is generally well mixed. Therefore, data obtained at CVAO can be used to describe the aerosol particles at cloud level. Cloud events were observed at MV during roughly 58 % of the time and during these, a large fraction of particles were activated to cloud droplets.

A trimodal parameterization method was deployed to characterize PNC at CVAO. Based on number concentrations in different aerosol modes, four well separable types of PNSDs were found, which were named the marine type, mixture type, dust type1 and dust type2. Aerosol particles differ depending on their origins. When the air masses came from the Atlantic Ocean, sea spray can be assumed to be one source for particles, besides for new particle formation. For these air masses, PNSDs featured the lowest number concentration in Aitken, accumulation and coarse mode. Particle number concentrations for the sea spray aerosol (SSA, i.e., the coarse mode for these air masses) accounted for about 3.7 % of NCCN,0.30 % (CCN number concentration at 0.30 % supersaturation) and about 1.1 % to 4.4 % of Ntotal (total particle number concentration). When the air masses came from the Saharan desert, we observed enhanced Aitken, accumulation and coarse mode particle number concentrations and overall increased NCCN. NCCN,0.30 % during the strongest observed dust periods is about 2.5 times higher than that during marine periods. However, the particle hygroscopicity parameter κ for these two most different periods shows no significant difference and is generally similar, independent of air mass.

Overall, κ averaged 0.28, suggesting the presence of organic material in particles. This is consistent with previous model work and field measurement. There is a slight increase of κ with increasing particle size, indicating the addition of soluble, likely inorganic material during cloud processing.

Xianda Gong et al.
Interactive discussion
Status: open (until 18 Sep 2019)
Status: open (until 18 Sep 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Xianda Gong et al.
Xianda Gong et al.
Total article views: 318 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
233 78 7 318 15 10 5
  • HTML: 233
  • PDF: 78
  • XML: 7
  • Total: 318
  • Supplement: 15
  • BibTeX: 10
  • EndNote: 5
Views and downloads (calculated since 11 Jul 2019)
Cumulative views and downloads (calculated since 11 Jul 2019)
Viewed (geographical distribution)  
Total article views: 204 (including HTML, PDF, and XML) Thereof 203 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
No saved metrics found.
No discussed metrics found.
Latest update: 16 Sep 2019
Publications Copernicus
Short summary
We characterized the aerosol particles in Cape Verde at sea and cloud levels. We found four well separable types of PNSDs, with the strongest differences between air masses coming from the ocean compared to from the African continent. During the strongest observed dust periods, CCN concentrations were 2.5 higher than during clean marine periods. The hygroscopicity of the particles did not vary much between different periods. Aerosol at sea level and on the mountaintop was well in agreement.
We characterized the aerosol particles in Cape Verde at sea and cloud levels. We found four well...