Supplement of

Significant contribution of organics to aerosol liquid water content in winter in Beijing, China

Xiaoai Jin1, Yuying Wang1,2, Zhanqing Li3, Fang Zhang1, Weiqi Xu4,5, Yele Sun4,5, Xinxin Fan1, Guangyu Chen6, Hao Wu1, Qiuyan Wang2, Jingye Ren1, and Maureen Cribb3

1State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
2School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
3Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
4State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
5College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
6Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Correspondence to: Zhanqing Li (zli@atmos.umd.edu), Yuying Wang (wyy_bnu@126.com)
Figure S1. The time series of ALWC calculated from the measured growth factor and simulated from ISORROPIA II model.

Figure S2. The contribution of particles of different modes to ALWC\textsubscript{HTDMA}.