Interactive comment on “How should we aggregate data? Methods accounting for the numerical distributions, with an assessment of aerosol optical depth” by Andrew M. Sayer and Kirk D. Knobelspiesse

Adam Povey
adam.povey@physics.ox.ac.uk

Received and published: 13 August 2019

I wish to support the publication of this manuscript. As the authors outline, it has long been known that aerosol optical depth is not normally distributed, such that an arithmetic mean is not expected to represent real-world behaviour. This paper will hopefully remind the community of the implications of that fact and encourage greater use of geometric means in analysis and logarithmic scales in figures.

If I may comment on Figs. 2 and 3, it does not seem surprising that the majority of
the planet exhibits little difference between the daily arithmetic and geometric means. The plot below shows the difference between the geometric and arithmetic means if we generate random, lognormally distributed data for a range of medians and widths. Your threshold of -0.01 is not exceeded for distributions with a range of small widths and medians that are common in nature.

This begs the question why the difference does matter in Fig. 5. When observing complex aerosol environments, such as the Saharan outflow, the satellite likely samples a single population of aerosol on any given day, which is lognormally distributed. Over a month, several populations are sampled, giving a multimodal distribution. Geometric statistics are more appropriate for combining these samples and so the lognormal distribution is found to be superior. Conversely, over Australia, where MODIS retrieves a very narrow range of AODs, the difference is still found to be negligible.

Alternatively, the increased data volume highlights the failings of arithmetic statistics because too few very low AODs and too many very high AODs are observed for a normal distribution. When there are fewer observations, it is harder for the Shapiro-Wilk test to discriminate behaviour in the distribution’s wings.

In summary, I wonder if a single lognormal distribution may not sufficient in many circumstances or if the problem is more that AOD must be positive, rather than an intrinsic lognormality? I don’t believe these details affect the authors central point that geometric statistics should be used to evaluate AOD but am curious of their opinion.

I also include some technical comments and corrections. P1L2 means line 2 of page 1.

P2L17 in some cases they have also been
P2L21 a regular grid and so are often more
P2L24 observe every location at all the times.
and sometimes is not negligible
example application is to AOD
are most common in so-called
also relevant are the magnitude of the differences
The page number is 2.
The DOI is 10.1029/1999JD900923.
The page numbers are 2276-2295.
The page numbers are 4026-4053.
The page numbers are 13,404-13,408.
The page numbers are 672-676.
The page numbers are 13,965-13,989.
The page numbers are 429-439.

The following Python code was used to generate the figure above,

```python
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm, lognorm
from itertools import product

log_delta = []
for mean, unc in product(np.arange(0.01, 1.0, 0.01), np.arange(0.01, 0.5, 0.01)):
    C3
```
```python
sample = lognorm.rvs(unc, scale=mean, size=10000)
geometric_mean = np.exp(np.mean(np.log(sample)))
log_delta.append(geometric_mean - sample.mean())

log_delta = np.array(log_delta).reshape((99, 49))

yy, xx = np.meshgrid(np.arange(0.005, 0.5, 0.01), np.arange(0.005, 1.0, 0.01))

ax = plt.axes()
im = ax.pcolormesh(xx, yy, log_delta, vmin=-0.02, vmax=0, cmap="coolwarm")
ax.set_ylabel("Geometric width")
ax.set_xlabel("Distribution median")
ax.set_title("Lognormal distribution")
plt.colorbar(im, label="Geometric - arithmetic mean")
plt.show()
```

Fig. 1.