Global deposition of speciated atmospheric mercury
to terrestrial surfaces: an overview

Lei Zhang¹,²,*, Peisheng Zhou¹, Shuzhen Cao¹, and Yu Zhao¹,²

¹ School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
² State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China

Correspondence to: Lei Zhang (lzhang12@nju.edu.cn)

Abstract. One of the most important processes in the global mercury biogeochemical cycling is the deposition of atmospheric mercury, including gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM), to terrestrial surfaces. In this paper, methods for the observation of wet, dry, litterfall, throughfall, and cloud/fog deposition and models for mercury dry deposition are reviewed. Surrogate surface methods with cation exchange membranes are widely used for GOM dry deposition measurements, while observation methods for GEM dry deposition are more diverse. The methodology for Hg wet deposition is more mature, but the influence of cloud/fog scavenging is easy to neglect. Dry deposition models for speciated mercury have high uncertainties owing to the presence of sensitive parameters related to GOM chemical forms. Observation networks for mercury wet deposition have been developed worldwide, with the Global Mercury Observation System (GMOS) covering the northern hemisphere, the tropics, and the southern hemisphere. Wet deposition implies the spatial distribution of atmospheric mercury pollution, while GOM dry deposition depends highly on the elevation. Litterfall Hg deposition is crucial to forests. Urban areas have high wet deposition and PBM dry deposition because of high reactive mercury levels. Grasslands and forests have significant GOM and GEM dry deposition, respectively. Evergreen broadleaf forests bear high litterfall Hg deposition. Future research needs have been proposed based on the current knowledge of global mercury deposition to terrestrial surfaces.
1 Introduction

Mercury (Hg) is a global pollutant, characterized by its neurotoxicity, persistency and bioaccumulation effect. It undergoes regional or global long-range transport via atmospheric circulation, deposition to local or remote areas, methylation in ecosystems, and accumulation through food chain, posing high risks to human health and the environment (Obrist et al., 2018). Hg in the atmosphere has three major forms: gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM). The sum of the three Hg forms is named total mercury (TM). GOM and PBM are also known as reactive mercury (RM). GEM is the predominant form of atmospheric Hg (>90%) with a long residence time of several months to over one year due to its chemical inertness and low solubility. GOM accounts for less than 1% of atmospheric Hg, which is easily scavenged by wet deposition, resulting in a short residence time of hours to days. However, recent studies (Lyman et al., 2010; Gustin et al., 2013; McClure et al., 2014; Gustin et al., 2015) show that there could be a significant underestimation of GOM due to the low capture efficiency of the KCl denuder method adopted by most observation sites in the presence of ozone or moisture. PBM (<10% of atmospheric Hg) stays in the air for tens of hours to several weeks depending on particle size before scavenged by dry or wet deposition (Schroeder and Munthe, 1998; Lindberg et al., 2007; Ci et al., 2012; Fu et al., 2012; Zhang et al., 2016a).

Deposition is one of the most important processes in global Hg cycling, leading to the sink of atmospheric Hg (Obrist et al., 2018). Atmospheric Hg deposition can be broadly divided into wet and dry deposition. Hg wet deposition is associated with precipitation, cloud or fog, while Hg dry deposition is highly related to the underlying surfaces, including forest canopies, grasslands, wetlands, agricultural fields, deserts, background non-vegetated soils, contaminated sites, etc. (Zhang et al., 2009). Forest canopy is regarded as an important sink of atmospheric Hg for its special forms of deposition, litterfall and throughfall (Gustin et al., 2008). Litterfall is a form of indirect Hg dry deposition through foliar uptake of atmospheric Hg, and throughfall includes wet-deposited Hg above the canopy and a portion of dry-deposited Hg washed off from the canopy (Wright et al., 2016). Hg deposition through litterfall has recently been drawn much attention to by the study of Wang et al. (2016a). The sum of litterfall and throughfall represents the total Hg deposition on the forest canopy.
Significant efforts have been made in the past decade for quantifying atmospheric Hg deposition through both direct measurements and numerical models, especially on dry deposition (Lyman et al., 2009; Zhang et al., 2009; Holmes et al., 2011; Lai et al., 2011; Castro et al., 2012; Gustin et al., 2012; Peterson et al., 2012; Zhang et al., 2012; Fang et al., 2013; Sather et al., 2013; Lyman et al., 2014; Sather et al., 2014; Huang and Gustin, 2015a; Weiss-Penzias et al., 2016; Zhang et al., 2016b; Hall et al., 2017; Sprovieri et al., 2017). Yet large uncertainties still exist due to limitations of current methods for Hg deposition measurements and models (Gustin et al., 2015). The purpose of this paper is to give an overview of current understanding on the global deposition of speciated atmospheric Hg to terrestrial surfaces. In this paper, we reviewed methods adopted for Hg deposition measurements and modeling, results of Hg deposition observations from all over the world, and a summary of speciated atmospheric Hg deposition on different underlying surfaces.

2 Methods for Hg deposition measurements

2.1 Methods for Hg dry deposition

Three major categories of methods for direct Hg dry deposition measurements are the surrogate surface methods, the enclosure methods, and the micrometeorological methods (Zhang et al., 2009; Huang et al., 2014). Hg dry deposition can also be calculated based on Hg concentration measurements (Zhang et al., 2009; Wright and Zhang, 2015), which will be reviewed in Section 3.

2.1.1 Surrogate surface methods

Passive samplers are deployed in the surrogate surface methods to quantify the dry deposition flux of GEM, GOM and PBM (Huang et al., 2014; Wright et al., 2016). The Hg dry deposition flux is determined using the following equation:

\[F_{\text{dry,SS}} = \frac{M}{A \cdot t} \]

(1)

where \(F_{\text{dry,SS}} \) is the Hg dry deposition flux using the surrogate surface methods, \(M \) is the total Hg amount collected on the material during the sampling period, \(A \) is the surface area of the collection material, and \(t \) is the exposure time.

Filter-based surfaces are widely used in passive samplers for Hg dry deposition flux measurements, with cation-exchange membrane (CEM) for GOM dry deposition (Lyman et al., 2007; Lyman et al., 2009; Castro et al., 2012; Huang et al., 2012; Peterson et al., 2012; Sather et al., 2012) and with gold-coated quartz fiber filter
(GcQFF) for TM dry deposition (Lai et al., 2011; Huang et al., 2012). The CEM method is believed to capture part of fine PBM as well (Huang et al., 2014). The CEM mounts for GOM dry deposition flux measurements are increasingly designed into aerodynamic shapes to minimize the impact of turbulence (Lyman et al., 2009).

Water- or solution-based surfaces, e.g., static water surrogate surface (SWSS), collect GOM and PBM (Sakata and Marumoto, 2004; Marsik et al., 2007; Lai et al., 2011). GEM is not water soluble and hence unable to be captured by SWSS. Acidified solution captures part of GEM and has a higher measurement of Hg dry deposition than deionized (DI) water because in acidified solution GEM is oxidized to GOM which stabilizes the deposited Hg and decreases mass transfer resistance (Lai et al., 2011). SWSS was considered to measure TM dry deposition over ten years ago since RM (GOM and PBM) dry deposition was regarded as the dominance of TM dry deposition. In the recent decade, more and more studies found that GEM dry deposition accounts for a large proportion of TM dry deposition over grassland (Fritsche et al., 2008; Castro and Moore, 2016; Obrist et al., 2017). A newly developed artificial turf surrogate surface (ATSS) method has shown promising performance in measuring TM dry deposition and allows the interference of precipitation (Lynam et al., 2014; Hall et al., 2017). When Hg wet deposition is monitored simultaneously, the Hg dry deposition flux can be calculated as follows:

\[F_{\text{dry,ATSS}} = \frac{(M_{\text{turf}} + M_{\text{throughfall}}) - M_{\text{wet}}}{A \cdot t} \]

(2)

where \(F_{\text{dry,ATSS}} \) is the TM dry deposition flux estimated from the ATSS method, and \(M_{\text{turf}}, M_{\text{throughfall}} \) and \(M_{\text{wet}} \) are the Hg amounts in turf, throughfall and wet deposition, respectively.

Although surrogate surface methods have limitation in temporal resolution, they are still widely used in recent years due to their low costs, high accuracy and applicability to different Hg forms.

2.1.2 Enclosure methods

Enclosure methods rely on the conservation of mass and have been used for most GEM flux measurements due to their relatively low costs, portability, versatility and intuitive nature (Eckley et al., 2011; Sommar et al., 2013a; Sommar et al., 2013b; Agnan et al., 2016; Zhu et al., 2016; Ma et al., 2018). The dynamic flux chamber (DFC) method is the most commonly used enclosure method. A vacuum pump is
applied to draw air through a low Hg blank chamber at a constant flow, and the GEM concentrations at the inlet and outlet of the chamber are measured sequentially by a mercury analyzer coupled with a switchable valve. The GEM dry deposition flux is calculated according to the following equation:

\[F_{\text{dry,DFC}} = \frac{Q(C_{\text{inlet}} - C_{\text{outlet}})}{A} \]

where \(F_{\text{dry,DFC}} \) is the GEM dry deposition flux measured by the DFC method, \(Q \) is the flushing flow rate, \(C_{\text{inlet}} \) and \(C_{\text{outlet}} \) are the GEM concentrations at the chamber inlet and outlet, respectively, and \(A \) is the area of the chamber footprint.

Different flushing flow rates, chamber designs and materials, as well as the lack of standard operating protocol and blank correcting procedures, make it hard for comparison between different studies (Eckley et al., 2010; Agnan et al., 2016; Osterwalder et al., 2018). A novel aero-DFC was designed and utilized in recent studies (Lin et al., 2012; Zhu et al., 2015a; Zhu et al., 2015b; Osterwalder et al., 2018). The GEM dry deposition flux under atmospheric condition can be calculated based on the flux measured by the aero-DFC with the internal shear property precisely controlled and the surface shear property (Lin et al., 2012).

Enclosure methods have high temporal and spatial resolution, and are thus widely adopted for GEM dry deposition flux measurements. However, they are not applicable to RM dry deposition measurements.

2.1.3 Micrometeorological methods

Micrometeorological methods can be mainly divided into the direct flux measurement methods and the gradient methods. The most known one of the former is the relaxed eddy accumulation (REA) method, while the latter include the aerodynamic (AER) method and the modified Bowen-ratio (MBR) method (Zhang et al., 2009; Yu et al., 2018).

The REA method is based on sampling upward and downward moving eddies at constant flow rates, which relies on an ultrasonic anemometer to detect the vertical wind velocity and control the fast response valves. The GEM dry deposition flux based on the REA method is calculated as follows:

\[F_{\text{dry,REA}} = \beta \sigma_w (C_{\text{down}} - C_{\text{up}}) \]

where \(F_{\text{dry,REA}} \) is the GEM dry deposition flux measured by the REA method, \(\beta \) is the relaxation coefficient, \(\sigma_w \) is the standard deviation of the vertical wind speed, and
The REA method conducts upward and downward sampling at the same height, eliminating the footprint difference and potential GEM formation and loss (Zhu et al., 2016). Dual inlets were recommended and applied in recent studies due to advantages of synchronous concentration determination (Sommar et al., 2013b; Zhu et al., 2015b; Kamp et al., 2018; Osterwalder et al., 2018).

The gradient methods (AER and MBR) sample air at different height to get the vertical GEM concentration gradient. For the AER method, the GEM dry deposition flux is calculated using the following equation (Fritsche et al., 2008; Baya and Van Heyst, 2010; Yu et al., 2018):

\[
F_{\text{dry,AER}} = K \frac{\partial C}{\partial z}
\]

where \(F_{\text{dry,AER}}\) is the GEM dry deposition flux measured by the AER method, \(K\) is the turbulent transfer coefficient (Yu et al., 2018), and \(\partial C/\partial z\) is the gradient of the vertical GEM concentration.

For the MBR method, the GEM dry deposition flux is calculated based on the theory that the ratio of GEM and the reference scalar (e.g., H2O) fluxes is proportional to their concentration gradients (Obrist et al., 2006; Converse et al., 2010; Zhu et al., 2015a):

\[
F_{\text{dry,MBR}} = F_r \frac{\partial C_{\text{Hg}}}{\partial C_r}
\]

where \(F_{\text{dry,MBR}}\) is the GEM dry deposition flux measured by the MBR method, \(F_r\) is the flux of the reference scalar, and \(\partial C_{\text{Hg}}/\partial C_r\) is the concentration gradient ratio of GEM over the reference scalar.

Micrometeorological methods are relatively reliable with high temporal resolution and represent the ecosystem scale due to less interference from the microenvironment (Zhu et al., 2016). The direct flux measurement methods generally have more complex installation and high expenses than the gradient methods, but could reduce uncertainties due to the elimination of the sampling height difference (Sommar et al., 2013b; Pierce et al., 2015).

2.2 Methods for Hg wet deposition

Hg wet deposition through precipitation is easier to measure than dry deposition and usually more reliable. The Hg wet deposition flux is calculated as follows:
\[F_{\text{wet}} = \sum_{i=1}^{n} C_i \cdot D_i \]

(7)

where \(F_{\text{wet}} \) is the total Hg wet deposition flux, \(n \) is the number of precipitation events during a certain period, \(C_i \) is the total Hg concentration in precipitation water during Event \(i \), and \(D_i \) is the precipitation depth of Event \(i \).

Both manual and automatic precipitation sample collectors were used in previous studies (Fu et al., 2010a; Gratz and Keeler, 2011; Marumoto and Matsuyama, 2014; Zhu et al., 2014; Brunke et al., 2016; Chen et al., 2018). Automatic precipitation sample collectors cover the lid automatically when it is not raining to prevent potential contamination, while manual collectors require manually placing collectors before precipitation events and retrieving them after events. All collector sections exposed to rainwater should be made by teflon or borosilicate glass due to potential Hg adsorption (Fu et al., 2016). The collected samples need to be acidified and then preserved in a cool and dark environment before analysis. The total Hg concentration in precipitation water is analyzed by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry (CV AFS) following EPA Method 1631E. GOM and PBM are the main Hg forms removed by precipitation due to high solubility. Usually, GOM and PBM contribute equivalently to Hg wet deposition (Cheng et al., 2015).

2.3 Methods for Hg deposition in forests

In forest ecosystems, Hg dry and wet depositions are not able to be distinguished markedly. Litterfall and throughfall are commonly used to evaluate the Hg deposition in forests (Wang et al., 2016b; Wright et al., 2016). Cloud and fog are also important forms of Hg deposition in forest regions, especially at high-elevation sites (Blackwell and Driscoll, 2015).

2.3.1 Litterfall

Hg dry deposition in forests includes uptake of Hg by leaf stomata and cuticle, tree bark, and underlying soil. Some of the deposited Hg in the soil may emit back into the atmosphere and be captured by leaves, while some of the deposited Hg in leaves may be translocated to branches, stems and roots. Litterfall Hg deposition includes the remaining dry-deposited Hg in leaves and bark as well as the captured Hg emitted from the soil (Blackwell and Driscoll, 2015; Wright et al., 2016). Litterfall Hg deposition flux is calculated as follows:
where \(F_{\text{litterfall}} \) is the litterfall Hg deposition flux, \(E_A \) is the litterfall trap area expansion factor, \(C_l \) is the Hg mass concentration in litterfall, \(M_l \) is the total dry weight of litterfall, \(A \) is the litterfall trap area, and \(t \) is the sampling time (Fisher and Wolfe, 2012).

Litterfall is collected during the leaf-growing or -falling seasons with litterfall traps or collectors (Fisher and Wolfe, 2012). It should be noted that the Hg concentration in leaves has an approximately linear correlation with time during the growing season (Bushey et al., 2008; Fu et al., 2010a; Gong et al., 2014). Litterfall is collected on a regular basis to prevent potential weight loss and changes in chemical composition caused by rain leaching and decomposition. The litterfall samples collected are then air-dried, ground and stored under a low temperature and dark environment for analysis (Zhou et al., 2017). The Hg content in litterfall can be determined by thermal decomposition, amalgamation, and cold vapor atomic absorption spectrophotometry (CVAAS) following EPA Method 7473 (Richardson and Friedland, 2015; Fu et al., 2016; Zhou et al., 2017; Risch et al., 2017). Alternatively, the litterfall samples can be digested into solution, and the extracted Hg in the solution can be analyzed following EPA Method 1631E (Fu et al., 2010a; Fisher and Wolfe, 2012).

2.3.2 Throughfall

Throughfall Hg deposition includes wet-deposited Hg above the canopy and a portion of dry-deposited Hg washed off from the canopy (Blackwell and Driscoll, 2015; Wright et al., 2016). Throughfall Hg deposition flux is calculated as follows:

\[
F_{\text{throughfall}} = \frac{E_A \cdot C_t \cdot V_t}{A \cdot t}
\]

where \(F_{\text{throughfall}} \) is the throughfall Hg deposition flux, \(E_A \) is the throughfall funnel area expansion factor, \(C_t \) is the Hg mass concentration in throughfall, \(V_t \) is the total volume of throughfall, \(A \) is the throughfall funnel area, and \(t \) is the sampling time (Fisher and Wolfe, 2012).

Throughfall under canopy is usually collected using a passive bulk throughfall collector with a funnel connected a bottle for water storage (Wang et al., 2009; Fisher and Wolfe, 2012; Åkerblom et al., 2015) or collected as open-field rain collection if the environmental condition permits (Choi et al., 2008; Fu et al., 2010a; Fu et al., 2010b; Han et al., 2016). Attention should be paid to potential litterfall contamination
and cloud/fog deposition influence at high elevation sites if the collector is not sheathed (Fisher and Wolfe, 2012; Wright et al., 2016). Throughfall samples are usually analyzed following EPA Method 1631E (Fisher and Wolfe, 2012).

2.3.3 Cloud/fog

At high elevation sites, besides litterfall and throughfall deposition, cloud/fog Hg deposition could account for a large proportion of the total deposition (Lawson et al., 2003; Sheu and Lin, 2011; Stankwitz et al., 2012; Blackwell and Driscoll, 2015). Quantifying Hg in cloud/fog at high elevation helps better understand the impact of long-range transport and local sources on global Hg cycling (Malcolm et al., 2003). Both active and passive collectors are used to collect cloud/fog. The passive collector has two round disks with teflon wires strung in between. Cloud/fog water collides onto the teflon wires and slides down to a sampling bottle (Lawson et al., 2003; Malcolm et al., 2003; Sheu and Lin, 2011; Schwab et al., 2016). Active cloud/fog water samplers use a fan to blow cloud/fog to teflon strings which are used to gather cloud/fog droplets (Kim et al., 2006; Weiss-Penzias et al., 2018). The collected cloud/fog water samples are usually analyzed using EPA Method 1631E (Blackwell and Driscoll, 2015). Cloud/fog Hg deposition flux is calculated as follows:

\[F_{\text{cloud/fog}} = F_d \cdot C_{\text{Hg}} \]

(10)

where \(F_{\text{cloud/fog}} \) is the cloud/fog Hg deposition flux, \(F_d \) is the deposition flux of cloud/fog, and \(C_{\text{Hg}} \) is the Hg concentration in cloud/fog. \(F_d \) can be estimated using resistance models, analytical models or sophisticated atmosphere-soil-vegetation models (Katata, 2014).

3 Models for Hg dry deposition

Dry deposition fluxes of speciated Hg can also be estimated by coupling speciated Hg concentrations and dry deposition models (Wright et al., 2016). Here we summarize dry deposition models for different Hg forms.

3.1 Resistance model for GOM

It is assumed that GOM dry deposition flux is proportional to the GOM concentration (Seinfeld and Pandis, 2016):

\[F_{\text{dry,GOM}} = v_d \cdot C_z \]

(11)

where \(F_{\text{dry,GOM}} \) is the GOM dry deposition flux, \(C_z \) is the GOM concentration at reference height \(z \), and \(v_d \) is the dry deposition velocity which can be calculated using
the following equation:

\[\nu_d = \frac{1}{R_a + R_b + R_c} \]

(12)

where \(R_a \) is the aerodynamic resistance depending on the meteorological conditions and the land use category, \(R_b \) is the quasi-laminar resistance, a function of friction velocity and the molecular diffusivity of each chemical species (Zhang et al., 2002), and \(R_c \) is the canopy resistance which can be further parameterized as follows:

\[R_c = \left(\frac{1 - W_{st}}{R_{st}} + \frac{1}{R_{m}} + \frac{1}{R_{nr}} \right)^{-1} \]

(13)

where \(W_{st} \) is the fraction of stomatal blocking under wet conditions, \(R_{st} \) is the stomatal resistance, \(R_m \) is the mesophyll resistance, and \(R_{nr} \) is the non-stomatal resistance which is comprised of in-canopy, soil, and cuticle resistances. Cuticle and soil resistances for GOM can be scaled to those of \(\text{SO}_2 \) and \(\text{O}_3 \) using the following equation:

\[R_{s,GOM} = \left(\frac{\alpha_{GOM} \cdot \beta_{GOM}}{R_{s,\text{SO}_2} + \frac{1}{R_{s,\text{O}_3}}} \right)^{-1} \]

(14)

where \(R_s \) is the cuticle or soil resistance, \(\alpha \) and \(\beta \) are two scaling parameters (Zhang et al., 2003; Zhang et al., 2012). Among the numerous parameters in the resistance model the two scaling factors for the non-stomatal resistance components regarding the solubility and reactivity of the chemical species are the most sensitive ones. The values for \(\text{HNO}_3 \) (\(\alpha=\beta=10 \)) used to be applied in the model for GOM (Marsik et al., 2007; Castro et al., 2012; Zhang et al., 2012). However, some other studies found the values for \(\text{HONO} \) (\(\alpha=\beta=2 \)) are probably more suitable for GOM due to equivalent effective Henry’s Law constants (\(H^* \)) between \(\text{HONO} \) and \(\text{HgCl}_2 \) (Lyman et al., 2007). Huang and Gustin (2015) indicated that no single value could be used to calculate GOM dry deposition due to the unknown GOM compounds. Various values for the two scaling parameters (\(\alpha=\beta=2, 5, 7 \) and 10) were used in Huang et al. (2017) to identify dominant GOM deposition species.

3.2 Resistance model for PBM

For PBM dry deposition, a size-segregated resistance model is more and more widely applied, based on the theory that \(\nu_d \) for atmospheric particles strongly depend on particle size distributions (Dastoor and Larocque, 2004; Zhang et al., 2009; Zhang and He, 2014). Many independent studies (Fang et al., 2012; Zhu et al., 2014) showed that
Hg in coarse particles constitutes a large mass fraction of the total PBM, which was previously neglected. PBM measured by Tekran 2537/1130/1135 only considers fine particles. Based on available measurements of PBM size distributions and fine/coarse PBM mass ratios, Zhang et al. (2016b) assumed 30% of the total PBM mass to be coarse particles in order to estimate total PBM dry deposition flux based on the theory that PBM has the same proportion in both fine and course particles.

The total PBM dry deposition can be calculated as follows:

\[
F_{\text{dry,PBM}} = C_f \left(v_f + \frac{f}{1-f} v_c \right)
\]

(15)

where \(F_{\text{dry,PBM}}\) is the total PBM dry deposition flux, \(C_f\) is the mass concentration of PBM in fine particles, \(v_f\) and \(v_c\) are the dry deposition velocities of PBM for fine and coarse particles, respectively, and \(f\) is the mass fraction of PBM in coarse particles. \(v_f\) and \(v_c\) can be calculated using the following equation:

\[
v_x = v_g + \frac{1}{R_a + R_s}
\]

(16)

where \(v_x\) is \(v_f\) or \(v_c\), \(v_g\) is the gravitational settling velocity, \(R_a\) is the aerodynamic resistance, and \(R_s\) is the surface resistance which can be parameterized as a function of collection efficiencies from Brownian diffusion, impaction, and interception mechanisms (Zhang et al., 2012; Zhang et al., 2016b). Zhang and He (2014) have developed an easier bulk algorithm based on the \(v_x\) scheme of Zhang et al. (2001) to make this model more widely applicable in monitoring networks.

3.3 Bidirectional air-surface exchange model for GEM

GEM dry deposition can also be calculated using the resistance model with different parameters. However, the re-emission and natural emission of GEM must be taken into consideration. Net GEM dry deposition is estimated from the difference between the estimated unidirectional deposition flux and the modeled total re-emission plus natural emission in the resistance model (Zhang et al., 2012).

A bidirectional air-surface exchange model modified from the resistance model is more and more recommended in recent years (Zhang et al., 2009; Bash, 2010; Wang et al., 2014; Zhang et al., 2016b; Zhu et al., 2016). In the bidirectional scheme, the GEM dry deposition flux can be calculated as follows:

\[
F_{\text{dry,GEM}} = \frac{X_a - X_c}{R_a + R_b}
\]

(17)
where $F_{\text{dry,GEM}}$ is the net GEM dry deposition flux; χ_a is the GEM concentration at a reference height; R_a, R_b, R_{st}, R_{m}, R_{ac}, R_g and R_{cut} are aerodynamic, quasi-laminar, stomatal, mesophyll, in-canopy aerodynamic, ground surface and cuticle resistances, respectively (Zhang et al., 2016b); and χ_{st} and χ_g are canopy, stomatal and ground surface compensation points, respectively. Based on observations on different land use categories, Wright and Zhang (2015) have proposed a range of χ_{st} and χ_g.

4 Global observation network of Hg deposition

There have been several observation networks of Hg wet deposition. The Global Mercury Observation System (GMOS) is so far the only global scale network covering the northern hemisphere, the tropics, and the southern hemisphere (Sprovieri et al., 2017). The Mercury Deposition Network (MDN) of the National Atmospheric Deposition Program (NADP) in North America is the earliest continental scale network specifically for Hg deposition (Prestbo and Gay, 2009; Weiss-Penzias et al., 2016). Hg wet deposition is also monitored in the European Monitoring and Evaluation Programme (EMEP) for Europe (Tørseth et al., 2012; Bieser et al., 2014). A new Asia–Pacific Mercury Monitoring Network has recently been established (Obrist et al., 2018). Since the methods of measurements still have high uncertainties, there is not yet any tangible monitoring network for Hg dry deposition.

4.1 Wet deposition

Sprovieri et al. (2017) reported a 5-year record (2011–2015) of Hg wet deposition at 17 selected GMOS monitoring sites, which provided a global baseline of the Hg wet deposition flux including regions in the southern hemisphere and tropical areas where Hg wet deposition had never been investigated before. The average Hg wet deposition fluxes in the northern hemisphere, the tropics, and the southern hemisphere were 2.9 (0.2–6.7), 4.7 (2.4–7.0), and 1.9 (0.3–3.3) μg m$^{-2}$ yr$^{-1}$, respectively. Precipitation volume was found to be the key factor for the inter-annual differences in total Hg wet deposition. The MDN network has a much longer history which dates back to the 1990s. Weiss-Penzias et al. (2016) analyzed records from 19 sites in the United States (U.S.) and Canada between 1997 and 2013, and discovered trends of Hg concentration in wet deposition, with the early time period (1998–2007) producing a significantly
negative trend (−1.5±0.2% yr⁻¹) and the late time period (2008–2013) a flat slope (not
significant). Therefore, the MDN data of 136 sites (http://nadp.slh.wisc.edu/mdn) for
the time period of 2008–2015 was summarized in this study to represent the recent
background Hg wet deposition level in North America. Fu et al. (2016) summarized
wet deposition measurements from 7 monitoring sites in China. Hg wet deposition
fluxes at rural sites in forest and grassland were averagely 6.2 and 2.0 μg m⁻² yr⁻¹,
respectively, while the flux at an urban site was as high as 12.6±6.5 μg m⁻² yr⁻¹.

Figure 1 summarizes the global distribution of Hg wet deposition based on existing
studies. Hg wet deposition flux is not significantly related to elevation. Overall, East
Asia has the highest wet deposition flux (averagely 16.1 μg m⁻² yr⁻¹), especially in the
southern part of China where the GEM concentration level is relatively high (Fu et al.,
2008; Guo et al., 2008; Wang et al., 2009; Fu et al., 2010; Ahn et al., 2011; Huang et
al., 2012; Seo et al., 2012; Huang et al., 2013; Sheu and Lin, 2013; Marumoto and
Matsuyama, 2014; Xu et al., 2014; Zhu et al., 2014; Huang et al., 2015; Zhao et al.,
2015; Han et al., 2016; Fu et al., 2016; Ma et al., 2016; Nguyen et al., 2016; Qin et al.,
2016; Sommar et al., 2016; Cheng et al., 2017; Chen et al., 2018; Lu and Liu, 2018).
North America has the most complete deposition observation network with an average
Hg wet deposition flux of 9.1 μg m⁻² yr⁻¹, and exhibits a decreasing spatial profile
from the southeastern part to the northwestern part, which is consistent with the
distribution of the atmospheric Hg concentration (Zhang et al., 2012; Gichuki and
Mason, 2014; Lynam et al., 2017). Europe has the lowest Hg wet deposition flux
(averagely 3.4 μg m⁻² yr⁻¹) according to the available dataset (Connan et al., 2013;
Bieser et al., 2014; Siudek et al., 2016). Observation sites in the tropics and the
southern hemisphere are scarce with large variation in Hg wet deposition flux
(Wetang'ula, 2011; Gichuki and Manson, 2013; Sprovieri et al., 2017). Precipitation
could be the main cause of the differences.

The relationship between the annual precipitation and the Hg wet deposition flux is
shown in Fig. 2. The wet deposition flux is basically positively related to the annual
precipitation, except for 8 sites in southwestern China which are close to former Hg
mining area and 3 urban or suburban sites in southeastern China. These 11 sites have
an average Hg wet deposition flux of 34.5 μg m⁻² yr⁻¹. The one exceptional tropical
site with a wet deposition flux of 16.8 μg m⁻² yr⁻¹ is in Kenya while the other sites in
the tropics are all in Mexico (Wetang'ula, 2011; Hansen and Gay, 2013). The two sites
in the southern hemisphere with annual precipitation of over 4000 mm are in Australia and have wet deposition fluxes of 29.1 and 18.2 μg m⁻² yr⁻¹, respectively (Dutt et al., 2009). The slope of the relationship implies the Hg concentration in precipitation. Europe has the flattest slope among all regions, indicating its lowest Hg pollution level around the world.

4.2 Dry deposition

The Hg dry deposition network is immature compared to the wet deposition network due to the inconsistency in methods of measurements. GOM dry deposition fluxes were either measured by the surrogate surface method using CEMs or estimated from measurements of GOM concentrations. PBM dry deposition fluxes were mainly estimated from the measurements of total or size-resolved PBM concentrations. GEM dry deposition fluxes were measured by different types of methods, the surrogate surface methods, the enclosure methods, and the micrometeorological methods. Figure 3 shows the global distribution of the GOM, PBM and GEM dry deposition fluxes. Although large uncertainties still exist in the methods for Hg dry deposition measurements, it should be noted that GEM dry deposition is non-negligible compared to GOM and PBM.

The data of GOM dry deposition fluxes concentrate in North America and Europe, among which direct observations of GOM dry deposition are mainly from North America (Lyman et al., 2007; Lyman et al., 2009; Weiss-Penzias et al., 2011; Lombard et al., 2011; Castro et al., 2012; Gustin et al., 2012; Peterson et al., 2012; Zhang et al., 2012; Sather et al., 2013; Bieser et al., 2014; Huang et al., 2014; Sather et al., 2014; Wright et al., 2014; Huang and Guatin, 2015; Enrico et al., 2016; Han et al., 2016; Zhang et al., 2016; Huang et al., 2017). Regardless of the evaluating methods, the mean GOM dry deposition flux in North America (6.4 μg m⁻² yr⁻¹) is higher than in Europe (3.0 μg m⁻² yr⁻¹). Han et al. (2016) used knife-edge surrogate surface (KSS) samplers with quartz filters to measure GOM dry deposition at a remote site in Korea, and found an average GOM dry deposition flux of 4.78 μg m⁻² yr⁻¹. Huang et al. (2012a) used KSS samplers with CEMs in several polluted areas and got a much higher average (52.9 μg m⁻² yr⁻¹). A significant correlation (R²=0.532, p<0.01) was found between the elevation and the GOM dry deposition flux (Fig. 4). Huang and Gustin (2014) found that measured dry deposition of GOM was significantly high at sites over 2000 m above sea level, and attributed it to high GOM concentrations at
Due to the severe particulate matter (PM) pollution in East Asia, many independent size-resolved PM measurements were conducted in recent years with analysis of Hg in PM accordingly. Results from size-resolved PBM analysis and PBM dry deposition models show that East Asia has a much higher average of PBM dry deposition flux (45.3 $\mu g m^{-2} yr^{-1}$) than North America (1.1 $\mu g m^{-2} yr^{-1}$) with coarse-particle PBM dry deposition not considered (Fang et al., 2012a; Fang et al., 2012b; Zhu et al., 2014; Zhang et al., 2015; Huang et al., 2016; Guo et al., 2017).

The mean GEM dry deposition is lower in Europe (4.3±8.1 $\mu g m^{-2} yr^{-1}$) while higher and more variable in North America (5.2±15.5 $\mu g m^{-2} yr^{-1}$) (Castelle et al., 2009; Baya and Heyst, 2010; Converse et al., 2010; Miller et al., 2011). The four Asian sites using micrometeorological methods all show negative values (−36.3±19.6 $\mu g m^{-2} yr^{-1}$) (Luo et al., 2015; Luo et al., 2016; Ci et al., 2016; Sommar et al., 2016), indicating natural GEM emission sources rather than GEM deposition sinks, but the GEM dry deposition data in Asia is very limited. No GEM, GOM or PBM dry deposition data were found for the tropics or the southern hemisphere.

Large uncertainties still exist in the evaluating methods. Significant discrepancies were found between observed and simulated GOM dry deposition fluxes (Fig. 5). Some recent studies used a scaling factor of 3 to adjust GOM concentrations (Huang and Gustin, 2014; Huang et al., 2017), trying to offset the underestimation due to the low capture efficiency of the widely adopted KCl denuder method for measurements of GOM concentrations (Huang and Gustin, 2015).

4.3 Forest deposition

Hg deposition in forests is mainly in the form of litterfall and throughfall. Wang et al. (2016) made a comprehensive assessment of the global Hg deposition through litterfall, and found litterfall Hg deposition an important input to terrestrial forest ecosystems (1180±710 Mg yr$^{-1}$). South America was estimated to bear the highest litterfall Hg deposition (65.8±57.5 $\mu g m^{-2} yr^{-1}$) around the world. This was partially because some studies were conducted in the Amazonian rainforest (Fostier et al., 2015), mainly semi-deciduous or evergreen tropical forest, which account for over 40% litterfall deposition globally (Shen et al., 2019). Another reason was that some sampling sites were very close to large cities or polluted areas, which could lead to more Hg accumulation (Teixeira et al., 2012; Buch et al., 2015; Teixeira et al., 2017;
Fragoso et al., 2018). There have been numerous forest Hg deposition studies in the recent decade in East Asia with the second highest average litterfall Hg deposition flux (35.5±27.7 μg m$^{-2}$ yr$^{-1}$). The forest type varies among different studies, but East Asia has much higher Hg concentrations in litterfall (42.9–62.8 ng/g) compared to other regions (Wan et al., 2009; Wang et al., 2009; Fu et al., 2010a; Fu et al., 2010b; Gong et al., 2014; Luo et al., 2015; Ma et al., 2015; Han et al., 2016; Fu et al., 2016; Ma et al., 2016; Wang et al., 2016; Zhou et al., 2016; Zhou et al., 2017). Lower levels of litterfall Hg deposition fluxes were found in North America (12.3±4.9 μg m$^{-2}$ yr$^{-1}$) and Europe (14.4±5.8 μg m$^{-2}$ yr$^{-1}$) (Larssen et al., 2008; Obrist et al., 2009; Fisher and Wolfe, 2012; Juillerat et al., 2012; Obrist et al., 2012; Benoit et al., 2013; Navrátil et al., 2014; Gerson et al., 2017; Risch et al., 2017; Risch and Kenski, 2018). According to Risch et al. (2017), the litterfall Hg deposition flux in the eastern U.S. decreased year by year during 2007–2014 with a decline rate of 0.8 μg m$^{-2}$ yr$^{-1}$. From 2007 to 2009 the decrease occurred more rapidly due to the Hg emission control strategies during this period of time.

Most studies on Hg deposition in forests in North America use rainfall instead of throughfall since dry deposition in North American forests has limited contribution (Risch et al., 2017), while Asian studies found large discrepancy between throughfall and rainfall Hg deposition fluxes (32.9±18.9 and 13.3±8.6 μg m$^{-2}$ yr$^{-1}$, respectively), indicating a high dry deposition level in Asian forests (Wan et al., 2009; Wang et al., 2009; Fu et al., 2010a; Fu et al., 2010b; Luo et al., 2015; Ma et al., 2015; Han et al., 2016; Fu et al., 2016; Ma et al., 2016; Wang et al., 2016; Zhou et al., 2016). Litterfall and throughfall Hg deposition fluxes are equivalent. Wright et al. (2016) summarized previous studies and reported the mean litterfall and throughfall Hg deposition, respectively, 42.8 and 43.5 μg m$^{-2}$ yr$^{-1}$ in Asia, 14.2 and 19.0 μg m$^{-2}$ yr$^{-1}$ in Europe, and 12.9 and 9.3 μg m$^{-2}$ yr$^{-1}$ in North America.

Studies of cloud/fog Hg deposition are very limited so far. Stankwitz et al. (2012) and Gerson et al. (2017) found the average cloud/fog Hg deposition fluxes of two North American forests to be 7.4 and 4.3 μg m$^{-2}$ yr$^{-1}$, respectively. In California coastline, fog Hg deposition, with only 2% volume proportion, accounts for 13% of the total wet deposition (Weiss-Penzias et al., 2016). At high-elevation observatories the contribution of cloud/fog Hg deposition is non-negligible. Converse et al. (2014) found the annual Hg deposition to dew/frost at a high-elevation site in the U.S. to be
about 0.12 \mu g m^{-2} yr^{-1}, 2–3 orders of magnitude smaller than wet deposition. More studies and a more standardized method for cloud/fog water sampling are needed.

5 Global Hg deposition on different terrestrial surfaces

Terrestrial surface type is a key factor for global Hg deposition. We summarized existing studies to make comparisons for Hg deposition on different terrestrial surfaces. Figures 6–8 exhibit wet, dry, and litterfall Hg deposition fluxes for different terrestrial surface types.

As shown in Fig. 6a, the average Hg wet deposition flux follows the ascending sequence of grasslands, croplands, savannas, and urban areas, which is mainly linked to the precipitation levels on these surfaces. Barren areas have the lowest Hg wet deposition flux due to their lowest precipitation. Water surfaces, e.g., coastal, offshore, and lakeside sites, have a lower wet deposition level than the surfaces with a similar amount of precipitation. This is possibly related to fog deposition. The relatively low Hg concentration in precipitation on water surfaces could be caused by fog scavenging, not only in high-elevation regions, but also in the near water areas.

Fog deposition is not considered in Hg wet deposition. Forests have a similar precipitation level as urban areas, but exhibit much lower wet deposition fluxes. This is probably because most forests are in remote areas with low total atmospheric Hg concentration levels. It is the reactive Hg (GOM and PBM) that determines the Hg concentration in precipitation. Hg wet deposition fluxes for different forest types are shown in Fig. 6b. Forests have a similar precipitation level. The high wet deposition fluxes for deciduous needle leaf and evergreen broadleaf forests are both induced by samples from Chongqing, a city with a relatively high atmospheric Hg concentration in China (Wang et al., 2009; Qin et al., 2016). In general, the Hg wet deposition flux does not vary significantly among the five forest types.

The distribution of Hg dry deposition on various terrestrial surfaces is quite different among the three atmospheric Hg forms (Fig. 7). GEM dry deposition is equivalent to GOM and PBM dry deposition, even significantly higher than in forests. As shown in Fig. 7a, the Hg oxidation process plays a more important role at sites with higher elevations (more halogen free radicals) or more intensive solar radiations, resulting in high GOM dry deposition levels for grasslands (including alpine meadow) and savannas, respectively. Urban areas with high GOM concentrations also have relatively high GOM dry deposition fluxes. The low GOM dry deposition fluxes on
moist surfaces (water and croplands) might be partially because of dew/fog scavenging (Malcolm and Keeler, 2002; Zhang et al., 2009). The PBM dry deposition flux is high on surfaces with high human activities (urban areas and croplands) and low in vegetative areas implying the heavier PM pollution in urban and rural areas than in remote areas (Fig. 7b). Agnan et al. (2015) and Zhu et al. (2016) made detailed summaries of campaign-based GEM dry deposition observations, and addressed the importance of natural Hg emission sources. Due to the lack of long-term observations (no less than one year), we summarized model evaluations and one annual observation dataset (Zhang et al., 2012; Bieser et al., 2014; Zhang et al., 2016; Enrico et al., 2016), and found that the GEM dry deposition does not only depend on GEM concentration, but also on the air–soil Hg exchange compensation point. Regarding the annual air–surface Hg exchange, instead of an important natural source, forests tend to be a net sink of atmospheric Hg (Fig. 7c). Therefore, long-term studies of GEM dry deposition are of urgent need.

The litterfall Hg deposition flux and the Hg concentration in litterfall are shown in Fig. 8. In general, evergreen forests have higher litterfall Hg concentrations than deciduous forests due to longer accumulation time (Wright et al., 2016). Evergreen broadleaf forests have not only high litterfall Hg concentrations but also high litterfall rates (Shen et al., 2019), and consequently exhibit significantly high litterfall Hg deposition fluxes. Comparing the levels of wet, dry, and litterfall Hg depositions in forests, litterfall markedly takes the lead, especially for evergreen broadleaf forests. This is consistent with the budget of global litterfall Hg deposition developed by Wang et al. (2016a).

6 Summary and recommendations

Hg wet and dry depositions to terrestrial surfaces, as well as litterfall, throughfall and cloud/fog depositions in forests, have been measured globally over the last two decades to improve our understanding on the sink of atmospheric Hg. Owing to the unified and reliable methodology, a global Hg wet deposition monitoring network has been established, especially the matured network in North America. Dry deposition of speciated atmospheric Hg (GEM, GOM and PBM), however, has diverse methods for measurements, including the surrogate surface methods, the enclosure methods, and the micrometeorological methods. For the Hg deposition forms in forests, litterfall and throughfall are easy to observe, while the measurements of cloud/fog deposition are
still preliminary. The Hg dry deposition flux can also be estimated based on speciated Hg concentrations in the atmosphere using resistance models or bidirectional air–surface exchange models. Key parameters (e.g., the two scaling factor, α and β, for cuticle or soil resistance) still generate large uncertainties. The land use category is an important factor in modeling Hg deposition. Therefore, we compared the data for different terrestrial surfaces. Water surfaces could affect Hg wet deposition through fog scavenging. Hg wet deposition is an indicator of the atmospheric Hg pollution level for a certain region. Altitude is a key factor for GOM dry deposition. GEM dry deposition is non-negligible compared to GOM and PBM dry deposition, especially for forests. Litterfall could be the dominant form of Hg deposition in forests.

Based on current understanding on global Hg deposition, we think future research needs lie in the following aspects:

1. Different chemical forms of GOM (e.g., HgCl$_2$, HgBr$_2$, HgSO$_4$, etc.) could have different dry deposition velocities. Quantification methods for concentrations of different GOM species need to be developed to improve the evaluation of the Hg dry deposition flux, which has much higher uncertainty than the wet, litterfall, and throughfall deposition fluxes.

2. The resistance model for GOM dry deposition requires better parameterization considering different GOM species. Moreover, the model should utilize more accurate GOM concentration data. The KCl denuder-based method for GOM measurements has significant underestimation caused by high humidity or ozone concentration.

3. The contribution GEM dry deposition has been underestimated previously. Inter-comparison between different methods for GEM dry deposition measurements needs to be conducted to determine a unified method for monitoring networks.

4. Cloud, fog or even dew Hg deposition needs careful investigation which requires more standardized sampling methods. At high-elevation sites cloud/fog Hg deposition should be included in the total wet deposition.

Author contribution. Dr. Lei Zhang designed the review framework. Dr. Lei Zhang and Peisheng Zhou did the most literature review work with contributions from Shuzhen Cao and Dr. Yu Zhao. Dr. Lei Zhang prepared the manuscript with contributions from all co-authors.
Acknowledgements. This review work was supported by the National Natural Science Foundation of China (No. 21876077) and the Fundamental Research Funds for the Central Universities (No. 14380080 and No. 14380092).

References

Blackwell, B. D., and Driscoll, C. T.: Deposition of mercury in forests along a

Enrico, M., Roux, G. L., Marusczak, N., Heimburger, L. E., Claustres, A., Fu, X., Sun, R., and Sonke, J. E.: Atmospheric mercury transfer to peat bogs dominated by...
Emission and Deposition of Mercury

Huang, J., Choi, H. D., Landis, M. S., and Holsen, T. M.: An application of passive
samplers to understand atmospheric mercury concentration and dry deposition spatial distributions, J Environ Monit, 14, 2976-2982, 10.1039/c2em30514c, 2012a.

Teixeira, D. C., Lacerda, L. D., and Silva-Filho, E. V.: Mercury sequestration by rainforests: The influence of microclimate and different successional stages,

Figure Captions

Figure 1. Global distribution of the Hg wet deposition flux (μg m⁻² yr⁻¹).

Figure 2. Relationships between the annual precipitation and the Hg wet deposition flux for different regions worldwide.

Figure 3. Global distribution of the (a) GOM, (b) PBM, and (c) GEM dry deposition fluxes (μg m⁻² yr⁻¹).

Figure 4. Relationship between the elevation and the GOM dry deposition flux.

Figure 5. Comparison between the GOM dry deposition fluxes from direct observations and model simulations. The numbers in brackets stand for the numbers of samples.

Figure 6. Total Hg wet deposition fluxes (blue columns with black bars as standard deviations) and precipitation levels (orange dots) for (a) different terrestrial surface types and (b) different forest types. The numbers in brackets stand for the numbers of samples. DB stands for deciduous broadleaf forests, DN stands for deciduous needle leaf forests, EB stands for evergreen broadleaf forests, and EN stands for evergreen needle leaf forests.

Figure 7. Dry deposition fluxes of (a) GOM, (b) PBM and (c) GEM for different terrestrial surface types. The numbers in brackets stand for the numbers of samples.

Figure 8. Litterfall Hg deposition fluxes (blue columns with black bars as standard deviations) and Hg concentrations in litterfall (orange dots) for different terrestrial surface types. The numbers in brackets stand for the numbers of samples. DB stands for deciduous broadleaf forests, DN stands for deciduous needle leaf forests, EB stands for evergreen broadleaf forests, and EN stands for evergreen needle leaf forests.
Figure 1. Global distribution of the Hg wet deposition flux (μg m⁻² yr⁻¹).
Figure 2. Relationships between the annual precipitation and the Hg wet deposition flux for different regions worldwide.
Figure 3. Global distribution of the (a) GOM, (b) PBM, and (c) GEM dry deposition fluxes (μg m⁻² yr⁻¹).
Figure 4. Relationship between the elevation and the GOM dry deposition flux.

$R^2 = 0.532$
Figure 5. Comparison between the GOM dry deposition fluxes from direct observations and model simulations. The numbers in brackets stand for the numbers of samples.
Figure 6. Total Hg wet deposition fluxes (blue columns with black bars as standard deviations) and precipitation levels (orange dots) for (a) different terrestrial surface types and (b) different forest types. The numbers in brackets stand for the numbers of samples. DB stands for deciduous broadleaf forests, DN stands for deciduous needle leaf forests, EB stands for evergreen broadleaf forests, and EN stands for evergreen needle leaf forests.
Figure 7. Dry deposition fluxes of (a) GOM, (b) PBM and (c) GEM for different terrestrial surface types. The numbers in brackets stand for the numbers of samples.
Figure 8. Litterfall Hg deposition fluxes (blue columns with black bars as standard deviations) and Hg concentrations in litterfall (orange dots) for different terrestrial surface types. The numbers in brackets stand for the numbers of samples. DB stands for deciduous broadleaf forests, DN stands for deciduous needle leaf forests, EB stands for evergreen broadleaf forests, and EN stands for evergreen needle leaf forests.