Assessing the impact of Clean Air Action on Air Quality Trends in Beijing Megacity using a machine learning technique

Tuan V. Vu1, Zongbo Shi1,3*, Jing Cheng2, Qiang Zhang2,

Kebin He4,5, Shuxiao Wang4, Roy M. Harrison1,6*

1 Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B1 52TT, United Kingdom.

2 Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China.

3 Institute of Earth Surface System Science, Tianjin University, Tianjin, 300072, China.

4 State Key Joint Laboratory of Environment, Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

5 State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.

6 Department of Environmental Sciences / Center of Excellence in Environmental Studies, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia.

* Correspondence to r.m.harrison@bham.ac.uk and z.shi@bham.ac.uk
ABSTRACT

A five-year Clean Air Action Plan was implemented in 2013 to reduce air pollutant emissions and improve ambient air quality in Beijing. Assessments of this Action Plan is an essential part of the decision-making process to review the efficacy of the Plan and to develop new policies. Both statistical and chemical transport modelling have been previously applied to assess the efficacy of this Action Plan. However, inherent uncertainties in these methods mean that new and independent methods are required to support the assessment process. Here, we applied a machine learning-based random forest technique to quantify the effectiveness of Beijing’s Action Plan by decoupling the impact of meteorology on ambient air quality. Our results demonstrate that meteorological conditions have an important impact on the year to year variations in ambient air quality. Further analysis show that the PM$_{2.5}$ mass concentration would have broken the target of the Plan (2017 annual PM$_{2.5}$ < 60 µg m$^{-3}$) were it not for the meteorological conditions in winter 2017 favouring the dispersion of air pollutants. However, over the whole period (2013 to 2017), the primary emission controls required by the Action Plan have led to significant reductions in PM$_{2.5}$, PM$_{10}$, NO$_2$, SO$_2$ and CO from 2013 to 2017 of approximately 34%, 24%, 17%, 68%, and 33%, respectively, after meteorological correction. The marked decrease in PM$_{2.5}$ and SO$_2$ is largely attributable to a reduction in coal combustion. Our results indicate that the Action Plan has been highly effective in reducing the primary pollution emissions and improving air quality in Beijing. The Action Plan offers a successful example for developing air quality policies in other regions of China and other developing countries.

Keywords: Clean air action plan, Beijing, air quality, emission control, coal combustion

1. INTRODUCTION
In recent decades, China has achieved rapid economic growth and become the world’s second largest economy. However, it has paid a high price in the form of serious air pollution problems caused by the rapid industrialization and urbanization associated with its fast economic growth (Lelieveld et al., 2015; Zhang et al., 2012; Guan et al., 2016). According to the World Bank, air pollution costs China’s economy $159 billion (~9.9 % of GDP equivalent) in welfare losses and was associated with 1.6 million deaths in China in 2013 (Xia et al., 2016; World Bank and IHME, 2016). Accordingly, air pollution has been receiving much attention from both the public and policymakers in China, especially in Beijing - the capital of China with around 22 million inhabitants- which has suffered extremely high levels of air pollutants (Rohde and Muller, 2015; Guo et al., 2013; Zhu et al., 2012; Cai et al., 2017). To tackle air pollution problems, China’s State Council released the action plan in 2013 which set new targets to reduce the concentration of air pollutants across China (CSC, 2013). Within the plan, a series of policies, control and action plans with a focus on Beijing-Tianjin-Heibei, the Yangtze River Delta and the Pearl River Delta regions were proposed. To implement the national Action Plan and further improve air quality, Beijing Municipal Government (BMG) formulated and released the “Beijing 2013-2017 Clean Air Action Plan” (the “Action Plan”), which set a target for the mean concentration of fine particles (PM$_{2.5}$, particulate matter with aerodynamic diameter less than 2.5 µm) to be below 60 µg m$^{-3}$ by 2017 (BMG, 2013). Since then, the five-year period of 2013-2017 has seen the implementation of numerous regulations and policies in Beijing.

It is of great interest to the government, policymakers and the general public to know whether the Action Plan is working to meet the set targets. Research in this area is often termed as an air quality accountability study (HEI, 2003; Henneman et al., 2017; Cheng et al., 2018). This is highly challenging because both the actions taken to reduce the air pollutants and the meteorological
conditions affect the air quality levels during a particular period (Henneman et al., 2017; Cheng et al., 2018; Liu et al., 2017; Grange et al., 2018; Chen et al., 2019). Therefore, it is essential to decouple the meteorological impact from ambient air quality data to see the real benefits in air quality by different actions.

Chemical transport models are used widely to evaluate the response of air quality to emission control policies (Wang et al., 2014; Daskalakis et al., 2016; Souri et al., 2016; Chen et al., 2019). However, there are major uncertainties in emission inventories and in the models themselves, which inevitably affect the outputs of chemical transport models (Li et al., 2017; Gao et al., 2018).

Statistical analysis of ambient air quality data is another commonly used method to decouple the meteorological effects on air quality (Henneman et al., 2017; Liang et al., 2015), including the Kolmogorov-Zurbenko (KZ) filter model and deep neural networks (Wise and Comrie, 2005; Comrie, 1997; Eskridge et al., 1997; Hogrefe et al., 2003; Gardner and Dorling, 2001). Among these models, the deep neural network models showed a better performance (i.e., higher correlation coefficient, lower root mean square error – RMSE) but did not allow us to investigate the effect of input variables (therefore it is referred as a “black-box” model) (Gardner and Dorling, 2001; Henneman et al., 2015). More recently, new approaches based on regression decision trees are being developed, which are suitable for air quality weather detrending, including the boosted regression trees (BRT) and random forest (RF) algorithms (Carslaw and Taylor, 2009; Grange et al., 2018). These machine learning based techniques have a better performance than the traditional statistical and air quality models by reducing variance/bias and error in high dimensional data sets (Grange et al., 2018). However, similar to the deep learning algorithms including neural networks, it is hard to interpret the working mechanism inside these models as well as the results. In addition, the decision trees models are prone to over-fitting, especially when the number of tree nodes is
large (Kotsiantis, 2013). An over-fitting problem of a random forest model is checked by its ability
to reproduce observations using an unseen training data set. Recently published R-packages can
partly explain and visualise random forest models including the importance of input variables and
their interactions (Liaw and Wiener, 2018; Paluszynska, 2017).

Here, we applied a machine learning technique based upon the random forest algorithm and the
latest R-packages to quantify the role of meteorological conditions in air quality and thus evaluate
the effectiveness of the Action Plan in reducing air pollution levels in Beijing. The results were
compared with the latest emission inventory as well as results from previous study which used a
chemical transport model - the Weather Research and Forecasting (WRF)-Community Multiscale
Air Quality (CMAQ) model (Wong et al., 2012; Xiu and Pleim, 2001).

2. MATERIALS AND METHODS

2.1 Data Sources Hourly air quality data for six key air pollutants (PM$_{2.5}$, PM$_{10}$, NO$_2$, SO$_2$, O$_3$,
and CO) was collected by 12 national air quality monitoring stations in Beijing by the China
National Environmental Monitoring Network (CNEM). Hourly air quality data were downloaded
from the CNEM website - http://106.37.208.233:20035. Since air quality data are removed from
the website on a daily basis, data were automatically downloaded to a local computer and
combined to form the whole dataset for this paper. All data are now available at
https://github.com/tuanvvu/Air_Quality_Trend_Analysis (last access 5 June 2019). These sites
were classified in three categories (urban, suburban, and rural areas). The map and categories of
the monitoring sites are given in Figure S1 and Table S1. Hourly meteorological data including
wind speed (ws), wind direction (wd), temperature , relative humidity (RH) and pressure recorded
at Beijing International Airport were downloaded using the “worldMet”- R package (Carslaw,
Monthly emissions of air pollutants were from the Multi-resolution Emission Inventory for China (http://www.meicmodel.org/), and for the whole Beijing region. Data was analyzed in R Studio with a series of packages, including the “openair”, “normalweather”, and “randomForestExplainer” (Liaw and Wiener, 2018; Carslaw and Ropkins, 2012; Carslaw, 2017a; Paluszynska, 2017).

2.2 Random forest modelling

Figure 1 shows a conceptual diagram of the data modelling and analysis which consists of three steps:

1) Building the random forest (RF) model

A decision tree-based random forest regression model describes the relationships between hourly concentrations of an air pollutant and their predictor features (including time variables: month 1 to 12, day of the year from 1 to 365, hour of a day from 0 to 23, and meteorological parameters: wind speed, wind direction, temperature, pressure, and relative humidity). The RF regression model is an ensemble-model which consists of hundreds of individual decision tree models. The RF model is described in detail in Breiman (1996 & 2001).

In the RF model, the bagging algorithm, which uses bootstrap aggregating, randomly samples observations and their predictor features with replacement from a training data set. In our study, a single regression decision tree is grown in different decision rules based on the best fitting between the observed concentrations of a pollutant (response variable) and their predictor features. The predictor features are selected randomly to gives the best split for each tree node. The hourly predicted concentrations of a pollutant are given by the final decision as the outcome of the
weighted average of all individual decision tree. By averaging all predictions from bootstrap samples, the bagging process decreases variance, thus helping the model to minimize over-fitting.

As shown in Figure 1, the whole data sets were randomly divided into: 1) a training data set to construct the random forest model and 2) a testing data set to test the model performance with unseen data sets. The training data set comprised of 70% of the whole data, with the rest as testing data. The RF model was constructed using R-“normalweather” packages by Grange et al. (2018).

The original data sets contain hourly concentrations of air pollutants (response) and their predictor features that include time variables (trend - Unix epoch time, the day of the year, week/weekend, hour) and meteorological parameters (wind speed, wind direction, pressure, temperature, and relative humidity). These time predictor features represent effects upon concentrations of air pollutants by diurnal, weekday/weekend day and seasonal cycles and trend (Unix epoch time) represents the trend in time which captures the long-term change of air pollutant due to changes in policies/regulations, which was calculated as:

\[t_{trend} = year_i + \frac{t_{JD}-1}{N_i} + \frac{t_H}{24N_i} \]

where, N_i is the number of days in a year i (the year ith from 2013 to 2017), t_H: diurnal hour time (0-23); t_{JD}: day of the year (1-365)) (Carslaw and Taylor, 2009).

Table S2, Figure S3-S4 and Section S3 provided information on the performance of our model to reproduce observations based on a number of statistical measures including mean square error (MSE)/ root mean square error (RMSE), correlation coefficients (r2), FAC2 (fraction of predictions with a factor of two), MB (mean bias), MGE (mean gross error), NMB (normalised mean bias),
NMGE (normalised mean gross error), COE (Coefficient of Efficiency), IOA (Index of Agreement) as suggested in a number of recent papers (Emery et al. 2017, Henneman et al., 2017, and Dennis et al., 2010. These results confirm that the model performs very well in comparison with traditional statistical methods and air quality models (Henneman at al., 2015).

2) Weather normalisation using the RF model

A weather normalisation technique predicts the concentration of an air pollutant at a specific measured time point (e.g., 09:00 on 01/01/2015) with randomly selected meteorological conditions. This technique was firstly introduced by Grange et al. (2018). In their method, a new dataset of input predictor features including time variables (day of the year, the day of the week, hour of the day, but not the Unix time variable) and meteorological parameters (wind speed, wind direction, temperature and RH) is firstly generated (i.e., re-sampled) randomly from the original observation dataset. For example, for a particular day (e.g., 01/01/2011), the model randomly selects the time variables (excluding Unix time) and weather parameters at any day from the data set of predictor features during the whole study period. This is repeated 1,000 times to provide the new input data set for a particular day. The input data set is then fed to the random forest model to predict the concentration of a pollutant at a particular day (Grange et al., 2018; Grange and Carslaw, 2019). This gives a total of 1,000 predicted concentrations for that day. The final concentration of that pollutant, referred hereafter as weather normalised concentration, is calculated by averaging the 1000 predicted concentrations. This method normalises the impact of both seasonal and weather variations. Therefore, it is unable to investigate the seasonal variation of trends for a comparison with the trend of primary emissions. For this reason, we enhanced the meteorological normalisation procedure.
In our algorithm, we firstly generated a new input data set of predictor features, which includes original time variables and re-sampled weather data (wind speed, wind direction, temperature, and relative humidity). Specifically, weather variables at a specific selected hour of a particular day in the input data sets were generated by randomly selecting from the observed weather data (i.e., 1988-2017 or 2013-2017) at that particular hour of different dates within a four-week period (i.e., 2 weeks before and 2 weeks after that selected date). For example, the new input weather data at 08:00 15/01/2015 are randomly selected from the observed data at 08:00 am on any date from 1st to 29th January of any year in 1988-2017 or 2013-2017. The selection process was repeated automatically 1,000 times to generate a final input data set. Each of the 1,000 data was then fed to the random forest model to predict the concentration of a pollutant. The 1,000 predicted concentrations were then averaged to calculate the final weather normalised concentration for that particular hour, day, and year. This way, unlike Grange et al., (2018), we only normalise the weather conditions but not the seasonal and diurnal variations. Furthermore, we are able to re-sample observed weather data for a longer period (for example, 1998-2017), rather than only the study period. This new approach enables us investigate the seasonality of weather normalised concentrations and compare them with primary emissions from inventories.

3) **Quantifying long-term trend using Theil-Sen estimator**

The Theil-Sen regression technique was performed on the concentrations of air pollutants after meteorological normalisation to investigate the long-term trend of pollutants. The Theil-Sen approach which computes the slopes of all possible pairs of pollutant concentrations and takes the median value, has been commonly used for long-term trend analysis over recent years. By
selecting the median of the slopes, the Theil-Sen estimator tends to give us accurate confidence intervals even with non-normal data and non-constant error variance (Sen, 1968). The Theil-Sen function is provided via the “openair” package in R.

2.3. Notices, regulations and policies for air pollution control in Beijing

The five-year period of 2013-2017 saw the implementation of numerous regulations and policies. The “Beijing Clean Air Action Plan 2013-2017” proposed eight key regulations including: (1) Controlling the city development intensity, population size, vehicle ownership, and environmental resources, (2) Restructuring energy by reducing coal consumption, supplying clean and green energy, and improving energy efficiency, (3) promoting public transport, implementing stricter emission standards, eliminating old vehicles and encouraging new and clean energy vehicles, (4) Optimizing industrial structure by eliminating polluting capacities, closing small polluting enterprises, building eco-industrial parks and pursuing cleaner production, (5) Strengthening treatment of air pollutants and tightening environmental protection standards, (6) Strengthening urban management and regulation enforcement, (7) Preserving the ecological environment by enhancing green coverage and water area, and (8) Strengthening emergency response to heavy air pollution. We collected more than 70 major notices and policies on air pollution control from the Beijing government website (http://zhengce.beijing.gov.cn/library/). Most important regulations were related to energy system re-structuring and vehicle emissions (Section S2). These key measures include: 1) Reform and upgrade Action Plan for coal energy conservation and emission reduction (2014); 2) “no-coal zone” for Beijing-Tianjin-Hebei regions in October 2014; 3) Beijing implemented the fifth phase emission standards for new light-duty gasoline vehicles (LDVs) and
heavy-duty diesel vehicles (HDVs) for public transport in 2013; 4) traffic restrictions to yellow-
label and non-local vehicles to enter the city within the sixth ring road during daytime since 2015.

3. RESULTS AND DISCUSSIONS

3.1 Observed Levels of Air Pollution in Beijing During 2013-2017

The annual mean concentration of PM$_{2.5}$ and PM$_{10}$ in Beijing measured from the 12 national air
quality monitoring stations declined by 34 and 19 % from 88 and 110 µg m$^{-3}$ in 2013 to 58 and 89
µg m$^{-3}$ in 2017, respectively. Similarly, the annual mean levels of NO$_2$ and CO decreased by 16
and 33 % from 54 µg m$^{-3}$ and 1.4 mg m$^{-3}$ to 45 µg m$^{-3}$ and 0.9 mg m$^{-3}$ while the annual mean
concentration of SO$_2$ showed a dramatic drop by 68 % from 23 µg m$^{-3}$ in 2013 to 8.0 µg m$^{-3}$ in
2017. Along with the decrease of annual mean concentration, the number of haze days (defined as
PM$_{2.5}$ > 75 µg m$^{-3}$ here) also decreased (Figure S7). These results confirm a significant
improvement of air quality and that Beijing appeared to have achieved its PM$_{2.5}$ target under the
Action Plan (annual average PM$_{2.5}$ target for Beijing is 60 µg m$^{-3}$ in 2017). On the other hand, the
annual mean concentration of PM$_{2.5}$ is still substantially higher than China’s national ambient air
quality standard (NAAQS-II) of 35 µg m$^{-3}$ (Table S3) and the WHO Guideline of 10 µg m$^{-3}$. While
PM$_{10}$, PM$_{2.5}$, SO$_2$, NO$_2$ and CO showed a decreasing trend, the annual average concentration of
O$_3$ increased slightly by 4.9 % from 58 µg m$^{-3}$ in 2013 to 61 µg m$^{-3}$ in 2017. The number of days
exceeding NAAQS-II standards for O$_3$-8h averages (160 µg m$^{-3}$) during the period 2013-2017 was
329, accounting for 18 % of total days.

3.2 Air Quality Trends After Weather Normalisation
A key aspect in evaluating the effectiveness of air quality policies is to quantify separately the impact of emission reduction and meteorological conditions on air quality (Carslaw and Taylor, 2009; Henneman et al., 2017), as these are the key factors regulating air quality. By applying a random forest algorithm, we showed the normalised air quality parameters, under the 30-year average (1988-2017) meteorological conditions (Figure 2). The temporal variations of ambient concentrations of monthly average PM$_{2.5}$, PM$_{10}$, CO, and NO$_2$ do not show a smooth trend from 2013 to 2017 because of the spikes during pollution events. However, after the weather normalisation, we can clearly see the decreasing real trend (Figure 2). The trends of the normalised air quality parameters represent the effects of emission control and, in some cases, associated chemical processes (for example, for ozone, PM$_{2.5}$, PM$_{10}$). SO$_2$ showed a dramatic decrease while ozone increased year by year (Figure 2). The normalised annual average levels of PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, and CO decreased by 7.4, 7.6, 3.1, 2.5, and 94 µg m$^{-3}$ year$^{-1}$, respectively, whereas the level of O$_3$ increased by 1.0 µg m$^{-3}$ year$^{-1}$.

Table 1 compares the trends of air pollutants before and after normalisation, which are largely different depending on meteorological conditions. For example, the annual average concentration of fine particles (PM$_{2.5}$) after weather normalisation was 61 µg m$^{-3}$ in 2017, which was higher than their observed level of 58 µg m$^{-3}$ by 5.2%. This suggests that Beijing would have missed its PM$_{2.5}$ target of 60 µg m$^{-3}$ if not for the favorable meteorological conditions in winter 2017 and the emission reduction contributed to 10 µg m$^{-3}$ out of the 13 µg m$^{-3}$ (77%) PM$_{2.5}$ reduction (71 to 58 µg m$^{-3}$) from 2016 to 2017. Overall, the emission control led to a 34%, 24%, 17%, 68%, and 33% reduction in normalised mass concentration of PM$_{2.5}$, PM$_{10}$, NO$_2$, SO$_2$ and CO respectively from 2013 to 2017 (Table 1).
When meteorological conditions were randomly selected from 2013-2017 (instead of 1998-2017) in the RF model, the normalised level of PM$_{2.5}$ in 2017 was 60 µg m$^{-3}$, which is 1 µg m$^{-3}$ difference to that using 1998-2017 data. This difference is due to the variation of the long-term climatology (1998-2017) to the 5 year period (2013-2017).

The observed PM$_{2.5}$ mass concentration reduced by 30 µg m$^{-3}$ from 2013 to 2017, whereas the normalised values reduced by 32 µg m$^{-3}$. Similarly, the observed PM$_{10}$ and SO$_2$ mass concentration reduced by 30 and 15.5 µg m$^{-3}$ from 2013 to 2017, whereas the normalised values were 33 and 17.9 µg m$^{-3}$. These results suggest that the effect of emission reduction would have contributed to an even better improvement in air quality (except ozone) from 2013 to 2017 if not for meteorological variations year by year.

Figure 3 shows that the Action Plan has been led to a major improvement in the air quality of Beijing at both the urban, suburban and rural sites, particularly for SO$_2$ (16-18 % year$^{-1}$), CO (8-9 % year$^{-1}$), and PM$_{2.5}$ (6-8 % year$^{-1}$). The Action Plan also led to a decrease in PM$_{10}$ and NO$_2$ but to a lesser extent than that of CO, SO$_2$ and PM$_{2.5}$, indicating that PM$_{10}$ and NO$_2$ were affected by other less well controlled sources or different atmospheric processes. Urban sites showed a bigger decrease in PM$_{2.5}$, PM$_{10}$, and SO$_2$ concentrations in comparison to the rural and suburban sites (Figure 3).

3.3 Impact of Meteorological Conditions on PM$_{2.5}$ levels: A Comparison with Results from CMAQ-WRF Model

We compared our RF modelling results with those from an independent method by Cheng et al. (2018) who evaluated the de-weathered trend by simulating the monthly average PM$_{2.5}$ mass concentrations in 2017 by the CMAQ model with meteorological conditions of 2013, 2016 and
297 2017 from the WRF model. The WRF-CMAQ results predict that the annual average PM$_{2.5}$
298 concentration of Beijing in 2017 is 61.8 and 62.4 µg m$^{-3}$ under the 2013 and 2016 meteorological
299 conditions respectively, both of which are higher than the measured value – 58 µg m$^{-3}$. Thus, the
300 modelled results are similar to those from the machine learning technique, which gave a weather-
301 normalised PM$_{2.5}$ mass concentration of 61 µg m$^{-3}$ in 2017.
302
303 Figure 4 also shows that the PM$_{2.5}$ concentrations would have been significantly higher in
304 November and December 2017 if under the meteorological conditions of 2016. In contrast, the
305 PM$_{2.5}$ concentrations would have been lower in spring 2017 under the meteorological conditions
306 of 2016 or the 30-year normalised meteorological data. The more favourable meteorological
307 conditions in the two months contributed appreciably to the lower measured annual average PM$_{2.5}$
308 level in 2017. It also suggests that the monthly levels of PM$_{2.5}$ strongly depend upon the monthly
309 variation of weather.

310 **Comparison of model uncertainties from the two methods**

311 Figure 5 compares observation and prediction of monthly concentrations of PM$_{2.5}$ by the WRF-
312 CMAQ model and the RF model. The correlation coefficient r^2 between monthly values was 0.82,
313 whereas that from the random forest method is >0.99 for both the training and test data sets. The
314 difference between the monthly observed PM$_{2.5}$ values and those simulated by the WRF-CMAQ
315 model ranged from 3 to 33.6%, resulting in 7.8% difference in the yearly value. In contrast, the
316 deviation between observed and predicted PM$_{2.5}$ value from the RF model ranges from 0.4-7.9%
317 with an average of 1.5%. In the modelled concentration of PM$_{2.5}$ from the random forest technique,
318 Standard deviation of the 1,000 predicted concentration of PM$_{2.5}$ in 2017 is only 0.35 µg m$^{-3}$,
319 accounting for 0.6% of the observed PM$_{2.5}$ concentration.
3.4 Evaluating the Effectiveness of the Mitigation Measures in the Clean Air Action Plan

The weather normalised air quality trend (Figure 2) allows us to assess the effectiveness of various policy measures to improve air quality to some extent. In particular, the SO$_2$ normalised trend clearly shows that the peak monthly concentration in the winter months decreased from 60 µg m$^{-3}$ in January 2013 to less than 10 µg m$^{-3}$ in December 2017 (Figure 2). This indicates that the control of emissions from winter-specific sources was highly successful in reducing SO$_2$ concentrations. The Multi-resolution Emission Inventory for China (MEIC) shows a major decrease in SO$_2$ emissions from heating (both industrial and centralized heating) and residential sector (mainly coal combustion) (Figure S8), which is consistent with the trend analyses. On the other hand, the “baseline” SO$_2$ concentration –defined as the minimum monthly concentration in the summer (Figure 2)– also reduced somewhat during the same period. SO$_2$ in the summer mainly came from non-seasonal sources including power plants, industry, and transportation (Figure S9). Overall, the MEIC estimated that SO$_2$ emissions decreased by 71% from 2013 to 2017 (Figure S8), which is close to the 67% decrease in the weather normalised concentration of SO$_2$ (Table 1).

According to the Beijing Statistical Year Books (2012-2017), coal consumption in Beijing declined remarkably by 56% in 6 years as shown in Figure 6 (Karplus et al., 2018; BMBS, 2013-2017). The slightly faster decrease in SO$_2$ concentrations relative to coal consumption (Figure S9) was attributed to the adoption of clean coal technologies that were enforced by the “Action Plan for Transformation and Upgrading of Coal Energy Conservation and Emission Reduction (2014-2020)” (Karplus et al., 2018; Chang et al., 2016). In summary, energy re-structuring, e.g., replacement of coal with natural gas (Figure 6; Section S2), is a highly effective measure in reducing ambient SO$_2$ pollution in Beijing.
Coal combustion is not only a major source of \(\text{SO}_2 \), but also an important source of \(\text{NO}_x \) and primary particulate matter (PM) in Beijing (Streets and Waldhoff, 2000; Zíková et al., 2016; Lu et al., 2013; Huang et al., 2014). Precursor gases including \(\text{SO}_2 \) and \(\text{NO}_x \) from coal combustion also contribute to secondary aerosol formation (Lang et al., 2017). The MEIC emission inventory showed that 8.8-29 % of \(\text{NO}_x \) was emitted from heating, power and residential activities, primarily associated with coal combustion. As shown in Figure S9, the normalised \(\text{NO}_2 \) concentration is also decreasing, but much slower than that of \(\text{SO}_2 \). Most notably, the level of \(\text{SO}_2 \) dropped rapidly in 2014 but the level of \(\text{NO}_2 \) decrease by a small proportion. The different trends between \(\text{SO}_2 \) and \(\text{NO}_2 \) indicate that other sources (e.g. traffic emissions, Figure S9) or atmospheric processes have a greater influence on ambient concentration of \(\text{NO}_2 \) than coal combustion. For examples the chemistry of the \(\text{NO}/\text{NO}_2/\text{O}_3 \) system will tend to “buffer” changes in \(\text{NO}_2 \) causing non-linearity in \(\text{NO}_x/\text{NO}_2 \) relationships (Marr and Harley, 2002). \(\text{NO}_2 \) concentrations decreased more rapidly from January 2015, specifically by 17%, 18%, 10%, 15% (Figure 2) in the first six months of 2015, which suggests that emission control measures implemented in 2015 were effective. These measures include regulations on spark ignition light vehicles to meet the national fifth phase standard, and expanded traffic restrictions to certain vehicles, including banning entry of high polluting and non-local vehicles to the city within the sixth ring road during daytime, and phasing out of 1 million old vehicles (Yang et al., 2015) (Section S2).

Normalised \(\text{PM}_{2.5} \) decreased faster than \(\text{NO}_2 \), but slower than \(\text{SO}_2 \) (Figure S9). Yearly peak normalised \(\text{PM}_{2.5} \) concentrations decreased from 2013-14 to 2015-2016 but slighted rebounded in 2016-2017. The monthly normalised peak \(\text{PM}_{2.5} \) concentration reduced from 115 µg m\(^{-3}\) in Jan
2013 to 60 µg m$^{-3}$ in Dec 2017. The biggest drop is seen in winter 2017, which decreased by more than half from the peak value in winter 2016, suggesting that the “no coal zone” policy (Section S2) to reduce pollutant emissions from winter specific sources (i.e., heating and residential sectors) was highly effective in reducing PM$_{2.5}$. The normalised “baseline” concentration – minimum monthly average concentration in the summer – also decreased from 71 µg m$^{-3}$ in summer 2013 to 42 µg m$^{-3}$ in summer 2017. This suggests that non-heating emission sources, including industry, industrial heating and power plants also contributed to the decrease in PM$_{2.5}$ from 2013 to 2017. These are broadly consistent with the PM$_{2.5}$ and SO$_2$ emission trends in MEIC (Figure S8). A small peak in both PM$_{2.5}$ and CO in June/July seen in Figure 2 from 2013 to 2016 attributed to agricultural burning almost disappeared over the period of the measurements and simulations in 2017, suggesting the ban on open burning is effective.

The normalised trend of PM$_{10}$ is similar to that of PM$_{2.5}$, except that the rate of decrease is slower. The trend agrees well with PM$_{10}$ primary emissions for the summer (Figure S8). The biggest drop in peak monthly PM$_{10}$ concentration is seen in winter 2017, which decreased by more than half from the peak value in winter 2016, suggesting that “no coal zone” policy (Section S2) to reduce pollutant emission from winter specific sources (i.e., heating and residential sectors) were highly effective in reducing PM$_{10}$, as with PM$_{2.5}$. The rate of decrease of peak monthly PM$_{10}$ emission is slower than that of weather normalised PM$_{10}$ concentrations, which may suggest an underestimation of the decrease by the MEIC. The normalised “baseline” concentration (minimum monthly average concentration, Figure 2)– also decreased substantially from 2013 to 2017. This indicates that non-heating emission sources, including industry, industrial heating and power
plants also contributed to the decrease in PM$_{10}$. This is consistent with the trends in MEIC (Figure S8). The peaks in the spring are attributed to Asian dust events.

The normalised CO trend shows that the peak CO concentration reduced by approximately 50% from 2013 to 2017 with the largest drop from 2016 to 2017 (Figure 2). The decreasing trend in total emission of CO in the MEIC is slower from 2015 to 2017, suggesting that CO emission in the MEIC may be overestimated in these two years. During 2013-2016, the CO level decreased by 26% and 34% for winter and summer. Similar to the normalised PM$_{2.5}$ trend, a small peak of CO concentration occurred in Jun-July during 2013-2016, which is likely associated with open biomass burning around the Beijing region. This peak disappeared in 2017. A major decrease in normalised CO levels in winter 2017 is attributed to the “no-coal zone” policy (see below Section S2; Figure S8).

3.5 Implications and Future Perspectives

We have applied a machine learning based model to identify the key mitigation measures contributing to the reduction of air pollutant concentrations in Beijing. However, three challenges remain. Firstly, it is not always straightforward to link a specific mitigation measure to improvement in air quality quantitatively. This is because often more than two measures were implemented on a similar timescale, making it difficult to disentangle the impacts. Secondly, we were not able to compare the calculated benefit for each mitigation measure with that intended by the government due to a lack of information about the implemented policies, for example, the start/end date of air pollution control actions. If data on the intended benefits are known, this will
further enhance the value of this type of study. Thirdly, the ozone level increased slightly during 2013-2017, especially for the summer periods (Table 1). Because ozone is a secondary pollutant, interpretation of the effects of emission changes of precursor pollutants is complex and beyond the scope of this study.

Our results confirm that the “Action Plan” has been led to a major improvement in the real (normalised) air quality of Beijing (Figure 3). However, it would have failed to meet the target for annual average PM$_{2.5}$ concentrations if not for better than average air pollutant dispersion (meteorological) conditions in 2017. This suggests that future target setting should consider meteorological conditions. Major challenges remain in reducing the PM$_{2.5}$ levels to below Beijing’s own targets, as well as China’s national air quality standard and WHO guidelines. Another challenge is to reduce the NO$_2$ and O$_3$ levels, which show little decrease or even an increase from 2013 to 2017. The lessons learned in Beijing thus far may prove beneficial to other cities as they develop their own clean air strategies.

ACKNOWLEDGMENTS

Funding: This research is supported by the NERC funding though AIRPOLL-Beijing project within the APHH programme (NE/N007190/1), Met Office CSSP-China (Scoping Study on Air Quality Climate Service) and National Natural Science Foundation of China (41571130032 and 4151130035).

Author contributions: This study was conceived by Z.S. and T.V.. Statistical modelling was performed by T.V. and CMAQ modelling was performed by J.C, Q.Z., S.W. and K.H. T.V, Z.S,
and R.M.H drafted the manuscript. All authors revised the manuscript and approved the final version for publication.

Competing interests: The authors declare no competing interests.
REFERENCES

Li, M., Liu, H., Geng, G., Hong, C., Tong, D., Geng, G., Cui, H., Zhang, Q., Li, M., Zheng, B.,
Liu, F., Man, H., Liu, H., He, K., and Song, Y.: Anthropogenic emission inventories in China: a

Beijing's PM2.5 pollution: severity, weather impact, APEC and winter heating, Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 471, 20150257,

Liu, T., Gong, S., He, J., Yu, M., Wang, Q., Li, H., Liu, W., Zhang, J., Li, L., Wang, X., Li, S.,
emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area,

characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009,

Marr, L. C., and Harley, R. A.: Modeling the Effect of Weekday−Weekend Differences in Motor
Vehicle Emissions on Photochemical Air Pollution in Central California, Environmental Science

of Variable Importance, Available on: https://github.com/MI2DataLab/randomForestExplainer,
2017.

Rohde, R. A., and Muller, R. A.: Air Pollution in China: Mapping of Concentrations and Sources,
PLOS ONE, 10, e0135749, 10.1371/journal.pone.0135749, 2015.

Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau AU - Sen, Pranab
Kumar, Journal of the American Statistical Association, 63, 1379-1389,

Souri, A. H., Choi, Y., Jeon, W., Li, X., Pan, S., Diao, L., and Westenbarger, D. A.: Constraining
NOx emissions using satellite NO2 measurements during 2013 DISCOVER-AQ Texas campaign,

Streets, D. G., and Waldhoff, S. T.: Present and future emissions of air pollutants in China:: SO2,
NOx, and CO, Atmospheric Environment, 34, 363-374, https://doi.org/10.1016/S1352-

TABLE LEGENDS:

Table 1: A comparison of the annual average concentrations of air pollutants before and after weather normalisation

FIGURE LEGENDS:

Figure 1: A diagram of long-term trend analysis model

Figure 2: Air quality and primary emissions trends

Figure 3: Yearly change of air quality in different area of Beijing

Figure 4: Relative change in monthly PM$_{2.5}$ levels in 2017 under different weather conditions

Figure 5: Comparison of MRF-CMAQ and RF models’ performance

Figure 6: Primary energy consumption in Beijing
Table 1. A comparison of the annual average concentrations of air pollutants before and after weather normalisation.

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>PM$_{2.5}$</th>
<th>PM$_{10}$</th>
<th>NO$_2$</th>
<th>SO$_2$</th>
<th>CO</th>
<th>O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>Obs.</td>
<td>Model</td>
<td>Obs.</td>
<td>Model</td>
<td>Obs.</td>
<td>Model</td>
</tr>
<tr>
<td>2013</td>
<td>88</td>
<td>93</td>
<td>110</td>
<td>123</td>
<td>54</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>88</td>
<td>93</td>
<td>110</td>
<td>123</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>80</td>
<td>75</td>
<td>107</td>
<td>106</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>71</td>
<td>71</td>
<td>98</td>
<td>101</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>58</td>
<td>61</td>
<td>90</td>
<td>93</td>
<td>45</td>
</tr>
</tbody>
</table>

Note: Obs: observed concentration. Model.: Modelled concentration of a pollutant after weather normalisation. Unit: µg m$^{-3}$ for all pollutants, except CO (mg m$^{-3}$)
Figure 1: A diagram of long-term trend analysis model
Figure 2. Air quality and primary emissions trends. Trends of monthly average air quality parameters before and after normalisation of weather conditions (first vertical axis), and the primary emissions from the MEIC inventory (secondary vertical axis). “Model” in the figure means the modelled concentration of a pollutant after weather normalisation. The red line shows the Theil-Sen trend after weather normalisation. The black and blue dot lines represent weather normalised and ambient (observed) concentration of air pollutants. The red dot line represents total primary emissions. The levels of air pollutants after removing the weather’s effects decreased significantly with median slopes of 7.2, 5.0, 3.5, 2.4, and 120 µg m$^{-3}$ year$^{-1}$ for PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, and CO, respectively, while the level of O$_3$ slightly increased by 1.5 µg m$^{-3}$ year$^{-1}$.
Figure 3. Yearly change of air quality in different area of Beijing. This figure presents yearly average changes of weather normalised air pollutant concentrations at rural, suburban and urban sites (see Figure S1 for classification) of Beijing from 2013 to 2017. Specifically, average yearly changes are for SO$_2$ (-14%, -15%, -16 % year$^{-1}$ for rural, suburban, and urban areas, respectively), CO (-9%, -9%, -8% year$^{-1}$), PM$_{2.5}$ (-7%, -8%, -9% year$^{-1}$), PM$_{10}$ (-6%, -5%, -7% year$^{-1}$), NO$_2$ (-2%, -6%, -5% year$^{-1}$) and O$_3$ (1%, 0.3%, 2% year$^{-1}$). The error on the bar shows the minimum and maximum yearly change.
This figure presents relative changes (%) in monthly average modelled PM$_{2.5}$ concentrations in 2017 if under the 2016 (red) and 2013 (green) meteorological condition using CMAQ model and under averaged 30 years of meteorological condition using the machine learning technique. A positive value indicates PM$_{2.5}$ concentration would have been higher in 2017 if under the 2013 or 2016 meteorological conditions. Under the meteorological condition of 2016, monthly PM$_{2.5}$ concentration in 2017 would have been approximately 28% lower in January but 53% to 82% higher in November and December. This suggests that 2017 meteorological conditions were very favourable for better air quality comparing to those in 2016. If under the meteorological condition of 2013, monthly PM$_{2.5}$ concentration in 2017 would have been higher in January (22%) and February (36%) but only slightly higher in November (12%) and December (14%).
Figure 5. Comparison of predicted monthly average PM$_{2.5}$ mass concentrations by the WRF-CMAQ (Cheng et al., 2018) and RF model against observations in Beijing. WRF-CMAQ results are averaged over the whole Beijing region and the observed values refer to the average concentration of PM$_{2.5}$ over the 12 sites.
Figure 6. Primary energy consumption in Beijing. Petroleum consumption remained stable (21-23 million tonnes coal equivalent (Mtce)) over the years while natural gas and primary electric power increased significantly by 1.8 times and reached 23 Mtce in 2016. Coal consumption declined remarkably by 56.4% from 15.7 Mtce in 2013 to 6.8 Mtce in 2016. The proportion of coal in primary energy consumption in 2016 was 9.8%, within its target of 10% set by the Beijing government.
SUPPORTING INFORMATION

CLEAN AIR ACTION AND AIR QUALITY TRENDS IN BEIJING MEGACITY

Number of pages: 11
Number of tables: 3
Number of figures: 5

CONTENTS

Methods
Section S1. Data collection and overview of air quality
Section S2. Notices, regulation and policies for air pollution control in Beijing
Section S3. Model performance and explanation

Figures: Figure S1 to Figure S5
Figure S1. The map of 12 monitoring station in Beijing
Figure S2. The influence of number of trees on the model performance for PM$_{2.5}$
Figure S3. Correlations between hourly observed and predicted data from testing data sets
Figure S4. Correlations between weekly observed and predicted data from both training and testing data sets
Figure S5. Importance of variables in the random forest model
Figure S6. Variable interactions between in a random forest model for PM$_{2.5}$
Figure S7. Probability density of urban air pollutant concentrations during 2013-2017
Figure S8. Monthly emission inventories of air pollutants in Beijing during 2013-2017
Figure S9. Normalized levels of air pollutants and energy consumption

Tables
Table S1. Locations and categorie of monitoring site
Table S2. RF performance metrics for testing data sets
Table S2. Air Quality Standards
Section S1. Data collection and overview of air quality

Hourly air quality data for six air pollutants was collected in Beijing from 17/01/2013 to 31/12/2017 across 12 national air quality monitoring stations which were classified in three categories (urban, suburban, and rural areas) based on hierarchical clustering (Figure S1, Table 1). Specifically, PM$_{2.5}$ levels at urban, suburban and rural sites decreased from 89.8, 78.3, and 67.8 µg m$^{-3}$ in 2013 to 59.6, 54.6, and 47.8 µg m$^{-3}$ in 2017, respectively. In 2017, 23 % of days still exceeded the NAAQS-II. A higher decrease in PM$_{10}$ levels by 20.2 % was found at urban sites compared to those at suburban sites (17.2 %). PM$_{10}$ also shows exceedances of NAAQS-II standards both for daily averages (150 µg m$^{-3}$) and annual averages (70 µg m$^{-3}$). It suggests that particulate matter, especially PM$_{2.5}$ is still a critical air pollutant in Beijing. In 2017, SO$_2$ does not show exceedance of the NAAQS-II standards either for daily averages (150 µg m$^{-3}$) and annual averages (60 µg m$^{-3}$). For CO, only 12 days do not meet NAAQS-II standards of 4 µg m$^{-3}$. In contrast, the annual average concentration of NO$_2$ in 2017 was slightly higher than the NAAQS-II standard of 40 µg m$^{-3}$, with 18 days exceeding the NAAQS-II standard for daily averages (80 µg m$^{-3}$).

Figure S1. Map of 12 monitoring stations
Section S2. Notices, regulation and policies for air pollution control in Beijing

Regulation and policies on energy system re-structuring:

- In October 2013, the government of Huairou district enforced a policy to replace anthracite stoves from 3000 rural households, change coal heating to electricity for 1170 households, supply liquefied petroleum to the countryside for 20,000 households, construct energy-saving residential housing and implement district heating; this reduced the consumption of 47,000 tons of poor quality coal.

- In Oct 2013, the government of Shijingshan, an urban district of Beijing, planned to cut 2800 tons of coal usage from coal-fired boilers in 2013, and reduce coal usage by more than 4500 tons in 2014, and eliminate coal-fired boilers in 2015.

- In November 2013, Miyun government issued an action plan to “Reduce coal for clean air” with a focus on urban transformation, conversion to natural gas, replacement with high quality coal, relocation of mountain communities, conservation of household energy, and removal of illegal constructions.

- In September 2014, the China State government released an important regulation on the “Reform and upgrade Action Plan for coal energy conservation and emission reduction (2014-2020)” that requires Beijing to place strict controls upon energy efficiency. Following that Action Plan, stack gas emissions of SO$_2$, NO$_x$, and PM from coal-fired power plants must be limited to below 10, 35, and 50 mg m$^{-3}$ respectively.

- In March 2017, the Ministry of Environmental Protection issued the “2017 Air Pollution Prevention and Control Work Plan for Beijing-Tianjin-Hebei”. According to this plan, before the end of October 2017, Beijing, Tianjin, Langfang and Baoding City of Hebei will become the “no-coal zone”.

Regulations and policies on vehicle emission control: In order to control air pollution from vehicle emissions, during 2013-2017 the city announced a series of policies and regulations focusing on the
implementation of stricter standards for new vehicles and vehicle fuels, elimination of yellow-label vehicles (which do not meet basic emission standards), and promotion of public transport. Consequently, Beijing led the nation in improving the fuel quality standards by adopting the desulfurization of gasoline and diesel fuels (sulfur content <10 ppm) in 2012, three years ahead of the surrounding regions (Tianjin and Hebei) and five years before the national deadline. Major policies for air pollution from transportation management:

- In February 2013, Beijing implemented the fifth phase emission standards for new light-duty gasoline vehicles (LDVs) and heavy-duty diesel vehicles (HDVs) for public transport.
- In June 2013, another notice from the Beijing government emphasized that all heavy-duty vehicles sold and registered in Beijing must meet the national fourth-phase emission standards.
- In August 2014, a notice from Beijing’s government declared that all spark ignition light vehicles must meet the national five phase standard from 1st January 2015.
- In 2014, Beijing Municipal Commission of Transport (BMCT) expanded traffic restrictions to certain vehicles, particularly yellow-label and non-local vehicles to enter the city within the sixth ring road during daytime since 2015.
- In November 2014, the governments of Yanquing and Miyun, two rural districts of Beijing, released regulations to prohibit yellow-label gasoline vehicles entering certain roads.
- In February 2015, the Beijing Municipal government issued a notice to promote elimination and replacement of old motor vehicles with an expectation of 1 million old vehicles/year phased out.
- Other policies which may have contributed to the enhancement of air quality during 2013-2017 included a ban of outdoor biomass burning and improved suppression of dust discharges from construction sites.
Section S3. Model performance and explanation

Variables and hyperparameters: The input variables contain time and MET variables.

Time variables: day_unix (or t_{trend}) represents the emission trend of a pollutant; Julian_day (t_{JD}: the day of the years) represents for the seasonal variation; weekday/weekend represents the difference of pollution between the week and weekend days.

MET variables: wind speed (m s$^{-1}$), wind direction ($^\circ$), temperature ($^\circ$C), relative humidity (%), and atmospheric pressure (mbar). The back-trajectories can be used as a predictor feature, but it does not increase the performance of the model in this case.

Selected parameters in a random forest:

- $M_{\text{try}}=4$: variables randomly sampled for splitting the decision tree
- $N_{\text{nodesize}}=3$: minimum size of terminal nodes for model
- $N_{\text{tree}}=200$, the number of trees to grow. Figure S2 shows the dependence of model performance on the number of trees.

Figure S2. The influence of number of trees on the model performance for PM$_{2.5}$.
Model performance’s evaluation

A random forest shows a good performance with the correlation (r^2) between hourly predicted and observed data for both training and testing data sets. In particular, r^2 value ranged 0.81-0.83, 0.75-0.79, 0.80-0.83, 0.88-0.90, 0.85-0.87, and 0.89-0.90 for PM$_{2.5}$, PM$_{10}$, NO$_2$, SO$_2$, CO and O$_3$, respectively. Figure S3 shows the hourly correlation between observed and predicted data for a testing data. Other model evaluation metrics are shown in Table S2.

As shown in Figure S3, it is likely that the model underestimates hourly concentration of air pollutants at the extremely high levels. These errors are reduced when we compare the weekly averaged concentration as shown in Figure S4.
Figure S4. The correlation between observed and modelled concentrations is approximately 0.9-0.99 for weekly averaged data. In our study, a RF forest model was trained using a fraction of 0.7 from the datasets.

Variable importance and interactions:

As shown in Figure S4, seasonal variations (day_julian) play the most important variable in the model, except for ozone when temperature and diurnal pattern (hour) mainly control the predicted values. The trend (day_unix) shows more important role in the model of SO$_2$ and CO, indicating emission control shows most effectiveness on the decrease of SO$_2$ and CO. Regarding MET variables, humidity and temperature play a more important role in the model of PM while wind speed has a larger impact in the model of NO$_2$. The variable interaction is shown in Figure S5.
Figuer S4. Importance of predictor features: date_unix, day of the year (day_julian), hour of day (hour), week/weekend, temperature (temp), RH, pressure (press), wind speed (ws), wind direction (wd) in the random forest model. Figure 4 shows the day of the year (seasonal variable) is the most important variable controlling the concentration of the pollutant (except for ozone: the most important is the temperature variable). The trend (date_unix) has a larger effect on SO\textsubscript{2}, than CO and PM, less effect on the NO\textsubscript{2} and no significant effect on O\textsubscript{3} concentration.
Figure S6. Features interactions in a random forest model for PM$_{2.5}$. This figure shows the co-occurrence of a pair of variables in a similar tree. For example, in the first node of the tree, RH and date_unix is the most frequent occurrence.
Figure S7. Probability density of urban air pollutant concentrations during 2013-2017. Number of heavy polluted events decreases from 2013 to 2017 for all pollutants, except ozone.
Figure S8. Monthly emission inventories of air pollutants in Beijing during 2013-2017. The emissions of PM$_{2.5}$, PM$_{10}$, NO$_x$, SO$_2$, CO in Beijing dropped by 35 %, 44 %, 11 %, 71 %, 17% from 76, 109, 260, 93, 1.7 Gg in 2013 to 49, 61, 231, 27, 1.4 Gg in 2017, respectively. Power sector represents the coal-fired, gas-fired and oil-fired power plants; industry sector includes two subsectors as industrial process and industrial boilers (to offer the mechanical energy); heating includes both industrial heating (to offer the thermal energy) and domestic heating (refers to centralized heating); residential sources are the urban and rural burning with traditional stoves with coal or biomass fuels; transportation includes both on-road and off-road traffic; solvent use contains all the subsectors which would use solvent during production processes, such as paint, ink, pharmaceutical production and household solvent use.
Figure S9. Normalized levels of air pollutants and energy consumption. The trend of SO$_2$ was very close to the normalized trend of coal consumption, but showed a faster decrease than trends of PM$_{2.5}$ and NO$_2$.

[Graph showing normalized levels of air pollutants and energy consumption over years from 2013 to 2017.]
Table S1. Locations and categories of monitoring site

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Name</th>
<th>Category</th>
<th>Longitude</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Wangshouxigong</td>
<td>Urban</td>
<td>116.37</td>
<td>39.87</td>
</tr>
<tr>
<td>02</td>
<td>Dingling</td>
<td>Rural</td>
<td>116.17</td>
<td>40.29</td>
</tr>
<tr>
<td>03</td>
<td>Dongsi</td>
<td>Urban</td>
<td>116.43</td>
<td>39.95</td>
</tr>
<tr>
<td>04</td>
<td>Tiantan</td>
<td>Urban</td>
<td>116.43</td>
<td>39.87</td>
</tr>
<tr>
<td>05</td>
<td>Nongzhanguan</td>
<td>Urban</td>
<td>116.47</td>
<td>39.97</td>
</tr>
<tr>
<td>06</td>
<td>Guanyuan</td>
<td>Urban</td>
<td>116.36</td>
<td>39.94</td>
</tr>
<tr>
<td>07</td>
<td>Haidianquwanli</td>
<td>Urban</td>
<td>116.32</td>
<td>39.99</td>
</tr>
<tr>
<td>08</td>
<td>Shunyixincheng</td>
<td>Urban</td>
<td>116.72</td>
<td>40.14</td>
</tr>
<tr>
<td>09</td>
<td>Huairouzhen</td>
<td>Suburban</td>
<td>116.64</td>
<td>40.40</td>
</tr>
<tr>
<td>10</td>
<td>Changpingzhen</td>
<td>Suburban</td>
<td>116.23</td>
<td>40.20</td>
</tr>
<tr>
<td>11</td>
<td>Aotizhongxin</td>
<td>Urban</td>
<td>116.40</td>
<td>39.98</td>
</tr>
<tr>
<td>12</td>
<td>Gucheng</td>
<td>Suburban</td>
<td>116.26</td>
<td>39.93</td>
</tr>
</tbody>
</table>

Table S2: RF model performance for testing data set (in hourly time resolution).

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>RMSE</th>
<th>r²</th>
<th>FAC2</th>
<th>MB</th>
<th>MGE</th>
<th>NMB</th>
<th>NMGE</th>
<th>COE</th>
<th>IOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5</td>
<td>17.9</td>
<td>0.95</td>
<td>0.94</td>
<td>0.62</td>
<td>10.00</td>
<td>0.01</td>
<td>0.14</td>
<td>0.81</td>
<td>0.91</td>
</tr>
<tr>
<td>PM10</td>
<td>43.1</td>
<td>0.79</td>
<td>0.87</td>
<td>1.46</td>
<td>27.10</td>
<td>0.01</td>
<td>0.26</td>
<td>0.57</td>
<td>0.79</td>
</tr>
<tr>
<td>NO2</td>
<td>14.3</td>
<td>0.78</td>
<td>0.95</td>
<td>-0.01</td>
<td>10.16</td>
<td>0.00</td>
<td>0.20</td>
<td>0.59</td>
<td>0.79</td>
</tr>
<tr>
<td>SO2</td>
<td>7.0</td>
<td>0.89</td>
<td>0.89</td>
<td>0.22</td>
<td>3.70</td>
<td>0.02</td>
<td>0.25</td>
<td>0.73</td>
<td>0.87</td>
</tr>
<tr>
<td>CO</td>
<td>0.4</td>
<td>0.86</td>
<td>0.96</td>
<td>0.01</td>
<td>0.24</td>
<td>0.01</td>
<td>0.21</td>
<td>0.67</td>
<td>0.84</td>
</tr>
<tr>
<td>O3</td>
<td>18.4</td>
<td>0.89</td>
<td>0.82</td>
<td>0.50</td>
<td>12.90</td>
<td>0.01</td>
<td>0.21</td>
<td>0.70</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Note: FAC2 (fraction of predictions with a factor of two), MB (mean bias), MGE (mean gross error), NMB (normalised mean bias), NMGE (normalised mean gross error), COE (Coefficient of Efficiency), IOA (Index of Agreement) (Emery et al. 2017).

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Averaging time</th>
<th>China standards</th>
<th>WHO</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Class 1</td>
<td>Class 2</td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td>annual</td>
<td>15</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>35</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>PM10</td>
<td>annual</td>
<td>40</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>50</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>NO2</td>
<td>annual</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>80</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>hourly</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>SO2</td>
<td>annual</td>
<td>20</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>50</td>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>hourly</td>
<td>150</td>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10 min</td>
<td>-</td>
<td>-</td>
<td>500</td>
</tr>
<tr>
<td>CO</td>
<td>annual</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>10</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>O3</td>
<td>8-hour mean, daily max</td>
<td>100</td>
<td>160</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>hour</td>
<td>160</td>
<td>200</td>
<td>-</td>
</tr>
</tbody>
</table>
Assessing the impact of Clean Air Action on Air Quality Trends in Beijing Megacity using a machine learning technique

Tuan V. Vu¹, Zongbo Shi¹,³*, Jing Cheng², Qiang Zhang²,
Kebin He⁴,⁵, Shuxiao Wang⁴, Roy M. Harrison¹,⁶*

¹ Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B1 52TT, United Kingdom.

² Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China.

³ Institute of Earth Surface System Science, Tianjin University, Tianjin, 300072, China.

⁴ State Key Joint Laboratory of Environment, Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

⁵ State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.

⁶ Department of Environmental Sciences / Center of Excellence in Environmental Studies, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia.

* Correspondence to r.m.harrison@bham.ac.uk and z.shi@bham.ac.uk
ABSTRACT

A five-year Clean Air Action Plan was implemented in 2013 to reduce air pollutant emissions and improve ambient air quality in Beijing. Assessments of this Action Plan is an essential part of the decision-making process to review the efficacy of the Plan and to develop new policies. Both statistical and chemical transport modelling were previously applied to assess the efficacy of this Action Plan. However, inherent uncertainties in these methods mean that a new and independent methods are required to support the assessment process. Here, we applied a machine learning-based random forest technique to quantify the effectiveness of Beijing’s Action Plan by decoupling the impact of meteorology on ambient air quality. Our results demonstrate that meteorological conditions have an important impact on the year to year variations in ambient air quality. Further analysis show that the favorable meteorological conditions in winter 2017 contributed to a lower PM$_{2.5}$ mass concentration (58 µg m$^{-3}$) would have broken the target of the Plan (2017 annual PM$_{2.5}$ < 60 µg m$^{-3}$) were it not for the meteorological conditions in winter 2017 favouring the dispersion of air pollutants than predicted from the random forest model (61 µg m$^{-3}$), which is higher than the target of the Plan (2017 annual PM$_{2.5}$ < 60 µg m$^{-3}$). However, over the whole period (2013 to 2017), impact of meteorological conditions on the trend of ambient air quality are small. It is the primary emission controls, because of required by the Action Plan, that has led to the significant reductions in PM$_{2.5}$, PM$_{10}$, NO$_2$, SO$_2$ and CO from 2013 to 2017, which are of approximately 34%, 24%, 17%, 68%, and 33%, respectively, after meteorological correction. The marked decrease in PM$_{2.5}$ and SO$_2$ is largely attributable to a reduction in coal combustion. Our results indicate that the Action Plan is highly effective in reducing the primary pollution emissions and improving air quality in Beijing. The Action Plan offers a
successful example for developing air quality policies in other regions of China and other developing countries.

Keywords: Clean air action plan, Beijing, air quality, emission control, coal combustion

1. **INTRODUCTION**

In recent decades, China has achieved rapid economic growth and become the world’s second largest economy. However, it has paid a high price in the form of serious air pollution problems caused by the rapid industrialization and urbanization associated with its fast economic growth (Lelieveld et al., 2015; Zhang et al., 2012; Guan et al., 2016). According to the World Bank, air pollution costs China’s economy $159 billion (~9.9 % of GDP equivalent) in welfare losses and was associated with 1.6 million deaths in China in 2013 (Xia et al., 2016; World Bank and IHME, 2016). Accordingly, air pollution has been receiving much attention from both the public and policymakers in China, especially in Beijing - the capital of China with around 22 million inhabitants- which has suffered extremely high levels of air pollutants (Rohde and Muller, 2015; Guo et al., 2013; Zhu et al., 2012; Cai et al., 2017). To tackle air pollution problems, China’s State Council released the action plan in 2013 which set new targets to reduce the concentration of air pollutants across China (CSC, 2013). Within the plan, a series of policies, control and action plans with a focus on Beijing-Tianjin-Heibeii, the Yangtze River Delta and the Pearl River Delta regions were proposed. To implement the national Action Plan and further improve air quality, Beijing Municipal Government (BMG) formulated and released the “Beijing 2013-2017 Clean Air Action Plan” (the “Action Plan”), which set a target for the mean concentration of fine particles (PM$_{2.5}$, particulate matter with aerodynamic diameter less than 2.5 µm) to be below 60 µg m$^{-3}$ by 2017.
(BMG, 2013). Since then, the five-year period of 2013-2017 has seen the implementation of numerous regulations and policies in Beijing.

It is of great interest to the government, policymakers and the general public to know whether the Action Plan is working to meet the set targets. Research in this area is often termed as an air quality accountability study (HEI, 2003; Henneman et al., 2017; Cheng et al., 2018). This is highly challenging because both the actions taken to reduce the air pollutants as well as and the meteorological conditions affect the air quality levels during a particular period (Henneman et al., 2017; Cheng et al., 2018; Liu et al., 2017; Grange et al., 2018; Chen et al., 2019). Therefore, it is essential to decouple the meteorological impact from ambient air quality data to see the real benefits in air quality by different actions.

Chemical transport models are used widely to evaluate the response of air quality to emission control policies (Wang et al., 2014; Daskalakis et al., 2016; Souri et al., 2016; Chen et al., 2019). However, there are major uncertainties in emission inventories and in the models themselves, which inevitably affect the outputs of chemical transport models (Li et al., 2017; Gao et al., 2018). Statistical analysis of ambient air quality data is another commonly used method to decouple the meteorological effects on air quality (Henneman et al., 2017; Liang et al., 2015), including the Kolmogorov-Zurbenko (KZ) filter model and deep neural networks (Wise and Comrie, 2005; Comrie, 1997; Eskridge et al., 1997; Hogrefe et al., 2003; Gardner and Dorling, 2001). Among these models, the deep neural network models showed a better performance (i.e., higher correlation coefficient, lower root mean square error – RMSE) but they usually gave a poor
fitting, suggesting a poor performance of the KZ filter model, or did not allow us to investigate the effect of input variables in neural network models (therefore it is referred as a “black-box” model) (Gardner and Dorling, 2001; Henneman et al., 2015). More recently, new approaches based on regression decision classification trees are being developed, which are suitable for air quality weather detrending, including the boosted regression trees (BRT) and random forest (RF) algorithms (Carslaw and Taylor, 2009; Grange et al., 2018). These machine learning based techniques have a better performance compared to than the traditional statistical and air quality models by reducing variance/bias and error in high dimensional data sets (Grange et al., 2018). However, similar to the deep learning algorithms such as including neural networks, it is hard to interpret the working mechanism inside these models and as well as the results. Also In addition, the decision trees models are prone to over-fitting, especially when the number of tree nodes is large (Kotsiantis, 2013). An over-fitting problem of a random forest model is checked by its performance ability to reproduce observations using an unseen training data set. Recently published R-packages can partly explain and visualise random forest models such as including the importance of input variables and their interactions (Liaw and Wiener, 2018; Paluszynska, 2017).

Here, we applied developed a novel machine learning technique based upon the random forest algorithm and the latest R-packages to quantify the role of meteorological conditions in air quality and thus evaluate the effectiveness of the Action Plan in reducing air pollution levels in Beijing. The results were compared with the latest emission inventory as well as results from previous study which used a chemical transport model - the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model (Wong et al., 2012; Xiu and Pleim, 2001).
2. MATERIALS AND METHODS

2.1 Data Sources

Hourly air quality data for six key air pollutants (PM$_{2.5}$, PM$_{10}$, NO$_2$, SO$_2$, O$_3$, and CO) was collected across 12 national air quality monitoring stations in Beijing by the China National Environmental Monitoring Network (CNEM). Hourly air quality data were downloaded from the CNEM website - http://106.37.208.233:20035. Since air quality data are removed from the website on a daily basis, data were automatically downloaded to a local computer and combined to form the whole dataset for this paper. All data are now available at https://github.com/tuanvvu/Air_Quality_Trend_Analysis (last access 5 June 2019). These sites were classified in three categories (urban, suburban, and rural areas). The map and categories of these monitoring sites are given in Figure S1, and Table S1). Hourly meteorological data including wind speed (ws), wind direction (wd), temperature (temp), relative humidity (RH) and pressure (press.) recorded at Beijing International Airport were downloaded using the “worldMet”-R package (Carslaw, 2017b). Monthly emission inventories of air pollutants were from the Multi-resolution Emission Inventory for China (http://www.meicmodel.org/), and for the whole Beijing region. Data was analyzed in R Studio with a series of packages, including the “openair”, “normalweather”, and “randomForestExplainer” (Liaw and Wiener, 2018; Carslaw and Ropkins, 2012; Carslaw, 2017a; Paluszynska, 2017).

2.2 Random forest Modelling

Figure 1 shows a conceptual diagram of the data modelling and analysis which consists of three steps:

1) Building the Random forest (RF) model development:
A decision tree-based random forest regression model describes the relationships between hourly concentrations of an air pollutant and its predictor variables (including time variation: such as month 1 to 12, day of the year from 1 to 365, hour of a day from 0 to 23, and meteorological parameters: wind speed, wind direction, such as temperature, pressure, and relative humidity). The RF regression model is an ensemble-model which consists of hundreds of individual decision tree models. The RF model was described in detail in Breiman (1996 & 2001).

In the RF model, the bagging algorithm, (which uses bootstrap aggregating), randomly samples observations and their predictor features with replacement from a training data set. In our study, a single regression decision tree is grown in different decision rules based on the best fitting between the observed concentrations of a pollutant (response variable) and their predictor features. The predictor features are selected randomly to gives the best split for each tree node. The hourly predicted concentrations of a pollutant are given by the final decision as the outcome of the weighted average of all individual decision tree. By averaging all predictions from bootstrap samples, the bagging process decreases variance, thus helping the model to minimize over-fitting.

As shown in Figure 1, The whole data sets were randomly divided into two with a fraction of 0.7: 1) a training data set to construct the random forest model and 2) a testing data set to test the model performance with unseen data sets. The training data set comprised of 70% of the whole data, with the rest as testing data. We firstly construct the RF model from a training data sets (70% of the all data available) of observed concentrations of a pollutant and its predictor variables.
and then evaluate validate the model by unseen data sets (testing data sets). The RF model was constructed using R-“normalweatherr” packages by Grange et al. (2018).

The original data sets contain hourly concentrations of air pollutants (response) and their predictor features variables that include time variables (\(t_{\text{trend}}\), Unix epoch time, the day of the year, week/weekend, hour) and meteorological parameters (wind speed, wind direction, pressure, temperature, and relative humidity). These time predictor features variables represent effects upon concentrations of air pollution pollutants by diurnal, weekday/weekend day and seasonal cycles and \(t_{\text{trend}}\) (Unix epoch time) represents the trend in time which captures the long-term change of air pollutant due to changes in policies/regulations, which was calculated as:

\[
t_{\text{trend}} = \text{year}_i + \frac{\text{JD}_i - 1}{N_i} + \frac{t_H}{24N_i}
\]

where, \(N_i\) is the number of days in a year \(i\) (the year \(i\)th from 2013 to 2017), \(t_H\): diurnal hour time (0-23); \(\text{JD}_i\): day of the year (1-365) (Carslaw and Taylor, 2009).

Table S2, Figure S3-S4 and Section S3 provided information on the performance of our model to reproduce observations was evaluated based on a number of statistical measures including mean square error (MSE)/ root mean square error (RMSE), correlation coefficients (\(r^2\)), FAC2 (fraction of predictions with a factor of two), MB (mean bias), MGE (mean gross error), NMB (normalised mean bias), NMGE (normalised mean gross error), COE (Coefficient of Efficiency), IOA (Index of Agreement) for a linear regression between observed and modelled values for both training and testing data sets as suggested in a number of recent papers (Emery et al. 2017, Henneman et al., 2017, and Dennis et al., 2010). Furthermore, other model evaluation metrics (FAC2 fraction of predictions with a factor of two, MB mean bias, MGE mean gross
error, NMB-normalised mean bias, NMGE-normalised mean gross error, COE-Coefficient of Efficiency, IOA-Index of Agreement) were also calculated (Table S3, Figure S3-S4, Section S2).

These results confirm that the model performs very well in comparison with traditional statistical methods and air quality models (Henneman at al., 2015).

2) Weather normalisation using the RF model

A weather normalisation technique predicts the concentration of an air pollutant at a specific measured time point (e.g., 09:00 on 01/01/2015) with various randomly selected meteorological conditions (term as “weather normalised concentration”). Meteorological normalisation—This technique was firstly introduced by Grange et al. (2018). In their method, a new dataset of input predictor features (including both time variables: (month, day of the year, the day of the week, hour of the day, except but not the Unix time variable) and meteorological parameters: (wind speed, wind direction, temperature and RH) is firstly generated (i.e., re-sampled) randomly based on from the original input observation dataset. For example, for a particular day (e.g., 01/01/2011), the model randomly selects the time variables (excluding Unix time) and weather parameters conditions at any day from the data set of predictor features during the whole study period. This is repeated 1,000 times to provide the new input data set for a particular day. And then, the input data set is then fed to, except the trend variable were re-sampled randomly and was added into, the random forest model will as input variables to predict the concentration of a pollutant at a particular day based on the new input data sets (Grange et al., 2018; Grange and Carslaw, 2019). This gives a total of 1,000 predicted concentrations for that day. The final concentration of that pollutant, referred hereafter as meteorological weather normalised concentration, is calculated by averaging the 1000 predicted concentrations predictions from the RF model. By this way, the model
results in a predicted concentration of pollutant by normalization. This method normalises of the impact of both seasonal and weather variations. However, it is unable to investigate the seasonal variation of trends for a comparison with the trend of primary emissions. Therefore, we enhanced the meteorological normalisation procedure.

In our algorithm, we firstly generated a new input data set of predictor features, which contains original time variables and re-sampled weather data (wind speed, wind direction, temperature, and relative humidity). Unix time, day of the year, week/weekend day, hour of the day variables, wind speed, wind direction, temperature, and relative humidity during 2013-2017). With new only weather data (MET data) sets were re-sampled from thirty year data sets (1988-2017) of weather in Beijing. We also enhanced modified the code to re-sample the MET data for a long term period rather than MET data during the conducted study from 2013-2017. In particular, thirty-year MET in Beijing (1988-2017) Specifically, weather variables at a specific selected hour of a particular day in the input data sets were generated by randomly selecting from the observed weather data (i.e., 1988-2017 or 2013-2017) at that particular hour of different dates within a four-week period (i.e., 2 weeks before and 2 weeks after that selected date). For example, the new input weather data at 08:00 15/01/2015 are randomly selected from the observed data at 08:00 am on any date from 1st to 29th January of any year in 1988-2017 or 2013-2017. The selection process was repeated automatically 1,000 times to generate a final input data set. Each of the 1,000 data was then fed to the random forest model to predict the concentration of a pollutant. The 1,000 predicted concentrations were then averaged to calculate the final weather normalised concentration for that particular hour, day, and year. This way, unlike Grange et al. (2018), we only normalise the weather conditions but not the seasonal and diurnal variations.
Furthermore, we are able to re-sample observed weather data for a longer period (for example, 1998-2017), rather than only the study period. This new approach enables us to investigate the seasonality of weather normalised concentrations and compare them with primary emissions from inventories.

MET data variables at a specific selected hour of a particular day in the input data sets was replaced randomly by the MET data at that hour for a period of 2 weeks before and after that selected data in the 30 year MET data set (1988-2017). For example, the MET data at 8:00 15/01/2015 could be randomly replaced by the MET data at 8:00 am in any date from 1st to 30th January of any year in 1988-2017. Similar to Grange’s approach, with each a new input dataset we generated the concentration of a pollutant based on a random forest model which was built in the step one. We repeated this generation process by a thousand times, and the final concentration of a pollutant (weather normalised concentration) was calculated as an average of all values from each generation process.

3) **Quantifying long-term trend using Theil-Sen estimator:**

The Theil-Sen regression technique was performed on estimates the concentrations of air pollutants after meteorological normalisation to investigate the long-term trend of pollutants to calculate their long-term trends. The Theil-Sen approach which computes the slopes of all possible pairs of pollutant concentrations and takes the median value, has been commonly used for long-term trend analysis over recent years. By selecting the median of the slopes, the Theil-Sen estimator tends to give us accurate confidence intervals even with non-normal data and non-constant error variance (Sen, 1968). The Theil-Sen function is provided via the “openair” package in R.
2.3. Notices, regulations and policies for air pollution control in Beijing

The five-year period of 2013-2017 saw the implementation of numerous regulations and policies. The “Beijing Clean Air Action Plan 2013-2017” proposed eight key regulations including: (1) Controlling the city development intensity, population size, vehicle ownership, and environmental resources, (2) Restructuring energy by reducing coal consumption, supplying clean and green energy, and improving energy efficiency, (3) promoting public transport, implementing stricter emission standards, eliminating old vehicles and encouraging new and clean energy vehicles, (4) Optimizing industrial structure by eliminating polluting capacities, closing small polluting enterprises, building eco-industrial parks and pursuing cleaner production, (5) Strengthening treatment of air pollutants and tightening environmental protection standards, (6) Strengthening urban management and regulation enforcement, (7) Preserving the ecological environment by enhancing green coverage and water area, and (8) Strengthening emergency response to heavy air pollution. We collected more than 70 major notices and policies on air pollution control during from the Beijing government website (http://zhengce.beijing.gov.cn/library/). Most important regulations were related to energy system re-structuring and vehicle emissions (Section S2). These key measures include: 1) Reform and upgrade Action Plan for coal energy conservation and emission reduction (2014); 2) “no-coal zone” for Beijing-Tianjin-Hebei regions in October 2014; 3) Beijing implemented the fifth phase emission standards for new light-duty gasoline vehicles (LDVs) and heavy-duty diesel vehicles (HDVs) for public transport in 2013; 4) traffic restrictions to yellow-label and non-local vehicles to enter the city within the sixth ring road during daytime since 2015.
3. RESULTS AND DISCUSSIONS

3.1 Observed Levels of Air Pollution in Beijing During 2013-2017

The annual mean concentration of PM$_{2.5}$ and PM$_{10}$ in Beijing measured from the 12 national air quality monitoring stations declined by 34 and 19 % from 88 and 110 µg m$^{-3}$ in 2013 to 58 and 89 µg m$^{-3}$ in 2017, respectively. Similarly, the annual mean levels of NO$_2$ and CO decreased by 16 and 33 % from 54 µg m$^{-3}$ and 1.4 mg m$^{-3}$ to 45 µg m$^{-3}$ and 0.9 mg m$^{-3}$ while the annual mean concentration of SO$_2$ showed a dramatic drop by 68 % from 23 µg m$^{-3}$ in 2013 to 8.0 µg m$^{-3}$ in 2017. Along with the decrease of annual mean concentration, the number of haze days (defined as PM$_{2.5} > 75$ µg m$^{-3}$ here) also decreased (Figure S76). These results confirm a significant improvement of air quality and that Beijing seem-appeared to have achieved its PM$_{2.5}$ target under the Action Plan (annual average PM$_{2.5}$ target for Beijing is 60 µg m$^{-3}$ in 2017). On the other hand, the annual mean concentration of PM$_{2.5}$ is still substantially higher than the China’s national ambient air quality standard (NAAQS-II) of 35 µg m$^{-3}$ (Table S32+) and the WHO Guideline of 10 µg m$^{-3}$. While PM$_{10}$, PM$_{2.5}$, SO$_2$, NO$_2$ and CO showed a decreasing trend, the annual average concentration of O$_3$ increased slightly by 4.9 % from 58 µg m$^{-3}$ in 2013 to 61 µg m$^{-3}$ in 2017. The number of days exceeding NAAQS-II standards for O$_3$-8h averages (160 µg m$^{-3}$) during the period 2013-2017 was 329, accounting for 18 % of total days.

3.2 Air Quality Trends After Weather Normalization

A key aspect in evaluating the effectiveness of air quality policies is to quantify separately the impact of emission reduction and meteorological conditions on air quality (Carslaw and Taylor, 2009; Henneman et al., 2017), as these are the key factors regulating air quality. By applying a random forest algorithm, we decoupled the effect of meteorological condition to showed the
normalized air quality parameters—under the condition of the 30-year average (1988-2017) meteorological conditions (Figure 2). The temporal variations of ambient concentrations of monthly average PM$_{2.5}$, PM$_{10}$, CO, and NO$_2$ do not offer a clear trend from 2013 to 2017 because of the spikes in the winters during pollution events. However, after the weather normalization, we can clearly see the decreasing trend (Figure 2). The trends of the normalized air quality parameters represent the effects of emission control and, in some cases, associated chemical processes (for example, for ozone, PM$_{2.5}$, PM$_{10}$). SO$_2$ showed a dramatic decrease while ozone increased year by year (Figure 2). The normalized annual average levels of PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, and CO decreased by 7.4, 7.6, 3.1, 2.5, and 94 µg m$^{-3}$ year$^{-1}$, respectively, whereas the level of O$_3$ increased by 1.0 µg m$^{-3}$ year$^{-1}$.

Table 1 compares the trends of air pollutants before and after normalization, which are largely different depending on meteorological conditions. For example, the annual average concentration of fine particles (PM$_{2.5}$) after weather normalization was 61 µg m$^{-3}$ in 2017, which was higher than their observed level of 58 µg m$^{-3}$ by about 5.2%. This suggests that Beijing would have missed its PM$_{2.5}$ target of 60 µg m$^{-3}$ if not for the favorable meteorological conditions in winter 2017 and the emission reduction contributed to 10 µg m$^{-3}$ out of the 13 µg m$^{-3}$ (77%) PM$_{2.5}$ reduction (71 to 58 µg m$^{-3}$) from 2016 to 2017. Overall, the emission control led to a 34%, 24%, 17%, 68%, and 33% reduction in normalized mass concentration of PM$_{2.5}$, PM$_{10}$, NO$_2$, SO$_2$ and CO respectively from 2013 to 2017 (Table 1).

When meteorological conditions were randomly selected from 2013-2017 (instead of 1998-2017) in the RF model, the normalized level of PM$_{2.5}$ in 2017 was 60 µg m$^{-3}$, which is 1 µg m$^{-3}$ difference to that using 1998-2017 data. This difference is due to the variation of the long-term climatology.
Additional uncertainty in the meteorological normalised levels of PM$_{2.5}$ obtained from a random forest model is discussed later in Section 3.3.

The observed PM$_{2.5}$ mass concentration reduced by 30 µg m$^{-3}$ from 2013 to 2017, whereas the normalised values reduced by 32 µg m$^{-3}$. Similarly, the observed PM$_{10}$ and SO$_2$ mass concentration reduced by 30 and 15.5 µg m$^{-3}$ from 2013 to 2017, whereas the normalised values by were 33 and 17.9 µg m$^{-3}$. These results suggest that the effect of emission reduction would have contributed to an even better improvement in air quality (except ozone) from 2013 to 2017 if not for meteorological variations year by year.

Figure 3 shows that the Action Plan has been highly effective led to a major improvement in improving in the air quality of Beijing at both the urban, suburban and rural sites, particularly for SO$_2$ (16-18 % year$^{-1}$), CO (8-9 % year$^{-1}$), and PM$_{2.5}$ (6-8 % year$^{-1}$). The Action Plan also led to a decrease in PM$_{10}$ and NO$_2$ but to a lesser extent than that of CO, SO$_2$ and PM$_{2.5}$, indicating that PM$_{10}$ and NO$_2$ were significantly affected by other less well controlled sources or they are affected differently than the other pollutants due to their different atmospheric processes. For example, Figure 2 suggested that the high levels of PM$_{10}$ in spring were mostly affected by the frequent Asian dust events. Urban sites showed a bigger decrease in PM$_{2.5}$, PM$_{10}$, and SO$_2$ concentrations in comparison to the rural and suburban sites (Figure 3).

3.3 Impact of Meteorological Conditions on PM$_{2.5}$ levels: A Comparison with Results from CMAQ-WRF Model

We compared our RF modelling results with those from an independent method by Cheng et al. (2018) who evaluated the de-weathered trend by simulating the monthly average PM$_{2.5}$ mass.
concentrations in 2017 by the CMAQ model with meteorological conditions of 2013, 2016 and 2017 from the WRF model. The WRF-CMAQ results show predict that the annual average PM$_{2.5}$ concentration of Beijing in 2017 is 61.8 and 62.4 µg m$^{-3}$ if under the 2013 and 2016 meteorological conditions respectively, both of which are higher than the measured value – 58 µg m$^{-3}$. Thus, the modelled results are similar to those from the machine learning techniques, which gave a weather-normalized PM$_{2.5}$ mass concentration of 61 µg m$^{-3}$ in 2017.

Figure 4 also shows that the PM$_{2.5}$ concentrations would have been significantly higher in November and December in 2017 if under the meteorological conditions of 2016. In contrast, the PM$_{2.5}$ concentrations would have been lower in spring 2017 of under the MET meteorological conditions data of 2016 or the 30-year normalised MET meteorological data. Since severe PM$_{2.5}$ pollution and haze events frequently almost always occur in winter in Northern China (Cai et al., 2017), the more favourable meteorological conditions in the two months contributed appreciably to the lower measured annual average PM$_{2.5}$ level in 2017. It also suggests that the monthly levels of PM$_{2.5}$ strongly depend upon the monthly variation of weather.

Comparison of model uncertainties from the two methods

Figure 5 compares observation and prediction of monthly concentrations of PM$_{2.5}$ by the WRF-CMAQ model and the RF model. The correlation coefficient r^2 between monthly values was 0.82, whereas that from the random forest method is >0.99 for both the training and test data sets. The difference between the monthly observed PM$_{2.5}$ values and those simulated by the WRF-CMAQ model ranged from 3 to 33.6%, resulting in 7.8% difference in the yearly value. By In contrast, the deviation between observed and predicted PM$_{2.5}$ value from the RF model ranges from 0.4-7.9% with an average of 1.5%. In the modelled concentration of PM$_{2.5}$ from the random forest technique,
the standard deviation of the 1,000 predicted concentration of PM$_{2.5}$ in 2017, those 1,000 predictions by a random forest is only 0.35 μg m$^{-3}$, accounting for 0.6% of the observed PM$_{2.5}$ concentrations in 2017.

3.4 Evaluating the Effectiveness of the Mitigation Measures in the Clean Air Action

Plan

The weather normalised air quality trend (Figure 2) allows us to assess the effectiveness of various policy measures to improve air quality to some extent. In particular, the SO$_2$ normalised trend clearly shows that the peak monthly concentrations in the winter months decreased from 60 μg m$^{-3}$ in January 2013 to less than 10 μg m$^{-3}$ in December 2017 (Figure 2). This indicates that the control of emissions from winter-specific sources was highly successful in reducing SO$_2$ concentrations. The Multi-resolution Emission Inventory for China (MEIC) shows a major decrease in SO$_2$ emissions from heating (both industrial and centralized heating) and residential sector (mainly coal combustion) (Figure S87), which is consistent with the trend analyses. On the other hand, the “baseline” SO$_2$ concentration — defined as the minimum monthly concentration the lowest ones in the summer (Figure 2) — also reduced somewhat during the same period. The “baseline” SO$_2$ in the summer mainly came from non-seasonal (winter) sources including power plants, industry, and transportation (Figure S87). Overall, the MEIC estimated that SO$_2$ emissions decreased by 71% from 2013 to 2017 (Figure S82), which is close to the 67% decrease in the weather normalised concentration of SO$_2$ (Table 1). According to the Beijing Statistical Year Books (2012-2017), coal consumption in Beijing declined remarkably by 56% in 6 years as shown in Figure 6 (Karplus et al., 2018; BMBS, 2013-2017). The slightly faster decrease in SO$_2$ concentrations relative to coal consumption (Figure S98) was attributed to the adoption of
clean coal technologies that were enforced by the “Action Plan for Transformation and Upgrading of Coal Energy Conservation and Emission Reduction (2014-2020)” (Karplus et al., 2018; Chang et al., 2016). In summary, energy re-structuring, e.g., replacement of coal with natural gas (Figure 6; Section S2), is the most effective measure in reducing ambient SO$_2$ pollution in Beijing.

Coal combustion is not only a major source of SO$_2$, but also an important source of NO$_x$ and primary particulate matter (PM) in Beijing (Streets and Waldhoff, 2000; Zíková et al., 2016; Lu et al., 2013; Huang et al., 2014). Precursor gases such as SO$_2$ and NO$_x$ from coal combustion also contribute to secondary aerosol formation (Lang et al., 2017). The MEIC emission inventory showed that 8.8-29% of NO$_x$ was emitted from heating, power and residential activities, primarily associated with coal combustion. As shown in Figure S98, the normalized NO$_2$ concentration is also decreasing, but much slower than that of SO$_2$. Most notably, the level of SO$_2$ dropped rapidly in 2014 but the level of NO$_2$ decreased by a small proportion. The different trends between SO$_2$ and NO$_2$ indicate that other sources (e.g. traffic emissions, Figure S98) or atmospheric processes have a greater influence on ambient concentration of NO$_2$ than coal combustion. For examples, although the chemistry of the NO/NO$_2$/O$_3$ system will tend to “buffer” changes in NO$_2$ causing non-linearity in NO$_x$-NO$_2$ relationships (Marr and Harley, 2002). NO$_2$ concentrations decreased more rapidly from January 2015, particularly specifically by 17%, 18%, 10%, 15% (Figure 2) in the first six months of 2015, which suggests that emission control measures implemented in 2015 were effective. These measures, including regulations on spark ignition light vehicles to meet the national fifth phase standard, and expanded traffic restrictions to certain vehicles, including banning entry of high polluting and non-local vehicles to the city...
within the sixth ring road during daytime, and phasing out of 1 million old vehicles (Yang et al., 2015) (Section S2).

Normalized PM$_{2.5}$ decreased faster than NO$_2$, but slower than SO$_2$ (Figure S98). Yearly peak normalized PM$_{2.5}$ concentrations decreased from 2013-14 to 2015-2016 but slightly rebounded in 2016-2017. The monthly normalized peak PM$_{2.5}$ concentration reduced from 115 µg m$^{-3}$ in Jan 2013 to 60 µg m$^{-3}$ in Dec 2017. The biggest drop is seen in winter 2017, which decreased by more than half from the peak value in winter 2016, suggesting that the “no coal zone” policy (Section S2) to reduce pollutant emissions from winter specific sources (i.e., heating and residential sectors) were highly effective in reducing PM$_{2.5}$. The normalized “based line” concentration – lowest minimum monthly average concentration values in each year (summer) – also decreased from 71 µg m$^{-3}$ in summer 2013 to 42 µg m$^{-3}$ in summer 2017. This suggests that non-heating emission sources, such as industry, industrial heating and power plants also contributed to the decrease in PM$_{2.5}$ from 2013 to 2017. These are broadly consistent with the PM$_{2.5}$ and SO$_2$ emission trends in MEIC (Figure S87). A small peak in both PM$_{2.5}$ and CO in June/July seen in Figure 2 from 2013 to 2016 attributed to agricultural burning almost disappeared over the period of the measurements and simulations in 2017, suggesting the ban on open burning is effective.

The normalized trend of PM$_{10}$ is similar to that of PM$_{2.5}$, except that the rate of decrease is slower. The trend agrees well with PM$_{10}$ primary emissions for the summer (Figure S87). The biggest drop in peak monthly PM$_{10}$ concentration is seen in winter 2017, which decreased by more than half from the peak value in winter 2016, suggesting that “no coal zone” policy (Section S2)
to reduce pollutant emission from winter specific sources (i.e., heating and residential sectors) were highly effective in reducing PM$_{10}$, similar to that of PM$_{2.5}$. The rate of decrease of peak monthly PM$_{10}$ emission is slower than that of weather normalised PM$_{10}$ concentrations, which may suggest an underestimation of the decrease in PM$_{10}$ concentrations—also decreased from substantially from 2013 to 2017. This indicates that non-heating emission sources, such as industry, industrial heating and power plants also contributed to the decrease in PM$_{10}$. This is consistent with those trends in MEIC (Figure S87). The peaks in the spring are attributed to Asian dust events.

The normalised CO trend shows that the peak CO concentration reduced by approximately 50% from 2013 to 2017 with the largest drop from 2016 to 2017 (Figure 2). The decreasing trend in total emission of CO in the MEIC is slower from 2015 to 2017, suggesting that CO emission in the MEIC may be overestimated in these two years. During 2013-2016, the CO level decreased by 26% and 34% for both winter and summer ("baseline"). Similar to the normalised PM$_{2.5}$ trend, a small peak of CO concentration occurred in Jun-July during 2013-2016, which is likely associated with open biomass burning around the Beijing region. This peak disappeared in 2017. A major decrease in normalised CO levels in winter 2017 is attributed to the “no-coal zone” policy (see below Section S2; Figure S87).
3.5 Implications and Future Perspectives

We have applied a machine learning based model to identify the key mitigation measures contributing to the reduction of air pollutant concentrations in Beijing. However, three challenges remain. Firstly, it is not always straightforward to link a specific mitigation measure to improvement in air quality quantitatively. This is because often more than two measures were implemented at-on-a similar timescale, making it difficult to disentangle the impacts. Secondly, we were not able to compare the calculated benefit for each mitigation measure with the intended one designed by the government due to a lack of information about the implemented policies, for example, such as the start/end date of air pollution control actions. If data on the intended benefits are known, this will further enhance the value of this type of study. Thirdly, the ozone level increased slightly during 2013-2017, especially for the summer periods (Table 1). Because ozone is a secondary pollutant, it is not possible to directly compare the trend with emission of precursor pollutants. The mechanisms of this increase are complex and out of beyond the scope of this study.

Our results confirmed that the “Action Plan” has been led to a major highly effective improvement in real (normalized) air quality of Beijing (Figure 3). However, it would have failed to meet the target for annual average PM$_{2.5}$ concentrations if not for better than average air pollutant dispersion (meteorological) conditions in 2017. This suggests that future target setting should consider meteorological conditions. Major challenges remain in reducing the PM$_{2.5}$ levels to below Beijing’s own targets, as well as China’s national air quality standard and WHO guidelines. Another challenge is to reduce the NO$_2$ and O$_3$ levels, which show little decrease
or even an increase from 2013 to 2017. The lessons learned in Beijing thus far may prove beneficial to other cities as they develop their own clean air strategies.

ACKNOWLEDGMENTS

Funding: This research is supported by the NERC funding though AIRPOLL-Beijing project within the APHH programme (NE/N007190/1), Met Office CSSP-China (Scoping Study on Air Quality Climate Service) and National Natural Science Foundation of China (41571130032 and 4151130035).

Author contributions: This study was conceived by Z.S. and T.V. Statistical modelling was performed by T.V. and CMAQ modelling was performed by J.C, Q.Z., S.W. and K.H. T.V, Z.S, and R.M.H drafted the manuscript. All authors revised the manuscript and approved the final version for publication.

Competing interests: The authors declare no competing interests.

Li, M., Liu, H., Geng, G., Hong, C., Tong, D., Geng, G., Cui, H., Zhang, Q., Li, M., Zheng, B.,
Liu, F., Man, H., Liu, H., He, K., and Song, Y.: Anthropogenic emission inventories in China: a

Beijing's PM2.5 pollution: severity, weather impact, APEC and winter heating, Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 471, 20150257,

Liu, T., Gong, S., He, J., Yu, M., Wang, Q., Li, H., Liu, W., Zhang, J., Li, L., Wang, X., Li, S.,
emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area,

characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009,

Marr, L. C., and Harley, R. A.: Modeling the Effect of Weekday−Weekend Differences in Motor
Vehicle Emissions on Photochemical Air Pollution in Central California, Environmental Science

of Variable Importance, Available on: https://github.com/MI2DataLab/randomForestExplainer,
2017.

Rohde, R. A., and Muller, R. A.: Air Pollution in China: Mapping of Concentrations and Sources,
PLOS ONE, 10, e0135749, 10.1371/journal.pone.0135749, 2015.

Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau AU - Sen, Pranab
Kumar, Journal of the American Statistical Association, 63, 1379-1389,

Souri, A. H., Choi, Y., Jeon, W., Li, X., Pan, S., Diao, L., and Westenbarger, D. A.: Constraining
NOx emissions using satellite NO2 measurements during 2013 DISCOVER-AQ Texas campaign,

Streets, D. G., and Waldhoff, S. T.: Present and future emissions of air pollutants in China:: SO2,
NOx, and CO, Atmospheric Environment, 34, 363-374, https://doi.org/10.1016/S1352-

TABLE LEGENDS:

Table 1: A comparison of the annual average concentrations of air pollutants before and after weather normalization

FIGURE LEGENDS:

Figure 1: A diagram of long-term trend analysis model

Figure 2: Air quality and primary emissions trends

Figure 3: Yearly change of air quality in different area of Beijing

Figure 4: Relative change in monthly PM$_{2.5}$ levels in 2017 under different weather conditions

Figure 5: Comparison of MRF-CMAQ and RF models’ performance

Figure 6: Primary energy consumption in Beijing
Table 1. A comparison of the annual average concentrations of air pollutants before and after weather normalization.

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>PM$_{2.5}$</th>
<th>PM$_{10}$</th>
<th>NO$_2$</th>
<th>SO$_2$</th>
<th>CO</th>
<th>O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>Obs.</td>
<td>Model</td>
<td>Obs.</td>
<td>Model</td>
<td>Obs.</td>
<td>Model</td>
</tr>
<tr>
<td>2013</td>
<td>88</td>
<td>93</td>
<td>110</td>
<td>123</td>
<td>54</td>
<td>58</td>
</tr>
<tr>
<td>2014</td>
<td>84</td>
<td>85</td>
<td>119</td>
<td>121</td>
<td>57</td>
<td>56</td>
</tr>
<tr>
<td>2015</td>
<td>80</td>
<td>75</td>
<td>107</td>
<td>106</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2016</td>
<td>71</td>
<td>71</td>
<td>98</td>
<td>101</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>2017</td>
<td>58</td>
<td>61</td>
<td>90</td>
<td>93</td>
<td>45</td>
<td>48</td>
</tr>
</tbody>
</table>

Note: Obs: observed concentration. Model: Modelled concentration of a pollutant after weather normalization. Unit: µg m$^{-3}$ for all pollutants, except CO (mg m$^{-3}$).
Figure 1: A diagram of long-term trend analysis model
Figure 2. Air quality and primary emissions trends. Trends of monthly average air quality parameters before and after normalization of weather conditions (first vertical axis), and the primary emissions from the MEIC inventory (secondary vertical axis). “Model” in the figure means the modelled concentration of a pollutant after weather normalisation. The red line shows the Theil-Sen trend after weather normalisation. The black and blue dot lines represent weather normalised and ambient (observed) concentration of air pollutants. The red dot line represents total primary emissions. The levels of air pollutants after removing the weather’s effects decreased significantly with median slopes of 7.2, 5.0, 3.5, 2.4, and 120 µg m$^{-3}$ year$^{-1}$ for PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, and CO, respectively, while the level of O$_3$ slightly increased by 1.5 µg m$^{-3}$ year$^{-1}$.
Figure 3. Yearly change of air quality in different area of Beijing. This figure presents yearly average changes of weather normalised air pollutant concentrations at rural, suburban and urban sites (see Figure S1 for classification) of Beijing from 2013 to 2017. Specifically, average yearly changes are for SO$_2$ (-14%, -15%, -16% year$^{-1}$ for rural, suburban, and urban areas, respectively), CO (-9%, -9%, -8% year$^{-1}$), PM$_{2.5}$ (-7%, -8%, -9% year$^{-1}$), PM$_{10}$ (-6%, -5%, -7% year$^{-1}$), NO$_2$ (-2%, -6%, -5% year$^{-1}$) and O$_3$ (1%, 0.3%, 2% year$^{-1}$). The error on the bar shows the minimum and maximum yearly change.
Figure 4. Relative change in monthly PM$_{2.5}$ levels in 2017 under different weather conditions. This figure presents relative changes (%) in monthly average modelled PM$_{2.5}$ concentrations in 2017 if under the 2016 (red) and 2013 (green) meteorological condition using CMAQ model and under averaged 30 years of meteorological condition using the machine learning technique. A positive value indicates PM$_{2.5}$ concentration would have been higher in 2017 if under the 2013 or 2016 meteorological conditions. Under the meteorological condition of 2016, monthly PM$_{2.5}$ concentration in 2017 would have been approximately 28% lower in January but 53% to 82% higher in November and December. This suggests that 2017 meteorological conditions were very favourable for better air quality compared to those in 2016. If under the meteorological condition of 2013, monthly PM$_{2.5}$ concentration in 2017 would have been higher in January (22%) and February (36%) but only slightly higher in November (12%) and December (14%).
Figure 5. Comparison of predicted monthly average PM$_{2.5}$ mass concentrations by the MRF-WRF-CMAQ (Cheng et al., 2018) and RF model against observations in Beijing. WRF-CMAQ results are averaged over the whole Beijing region and the observed values refer to the average concentration of PM$_{2.5}$ over the 12 sites.
Figure 6. Primary energy consumption in Beijing. Petroleum consumption remained stable (21-23 million tonnes coal equivalent (Mtce)) over the years while natural gas and primary electric power increased significantly by 1.8 times and reached 23 Mtce in 2016. Coal consumption declined remarkably by 56.4% from 15.7 Mtce in 2013 to 6.8 Mtce in 2016. The proportion of coal in primary energy consumption in 2016 was 9.8 %, within its target of 10 % set by the Beijing government.
SUPPORTING INFORMATION

CLEAN AIR ACTION AND AIR QUALITY TRENDS IN BEIJING MEGACITY

Number of pages : 11
Number of tables : 31
Number of figures : 5

CONTENTS

Methods
Section S1. Data collection and overview of air quality
Section S2. Notices, regulation and policies for air pollution control in Beijing
Section S3. Model performance and explanation

Figures:
Figure S1. The map of 12 monitoring station in Beijing
Figure S2. The influence of number of trees on the model performance for PM$_{2.5}$
Figure S3. Correlations between hourly observed and predicted data from testing data sets
Figure S4. Correlations between weekly observed and predicted data from both training and testing data sets
Figure S5. Importance of variables in the random forest model
Figure S6. Variable interactions between in a random forest model for PM$_{2.5}$
Figure S7. Probability density of urban air pollutant concentrations during 2013-2017
Figure S8. Monthly emission inventories of air pollutants in Beijing during 2013-2017
Figure S9. Normalized levels of air pollutants and energy consumption

Tables
Table S1. Locations and categories of monitoring site
Table S2. RF performance metrics for testing data sets
Table S3. Air Quality Standards
Table S4. Air Quality Standards
Section S1. Data collection and overview of air quality

Hourly air quality data for six air pollutants was collected in Beijing from 17/01/2013 to 31/12/2017 across 12 national air quality monitoring stations which were classified in three categories (urban, suburban, and rural areas) based on hierarchical clustering (Figure S1, Table 1). Specifically, PM$_{2.5}$ levels at urban, suburban and rural sites decreased from 89.8, 78.3, and 67.8 µg m$^{-3}$ in 2013 to 59.6, 54.6, and 47.8 µg m$^{-3}$ in 2017, respectively. In 2017, 23 % of days still exceeded the NAAQS-II. A higher decrease in PM$_{10}$ levels by 20.2 % was found at urban sites compared to those at suburban sites (17.2 %). PM$_{10}$ also shows exceedances of NAAQS-II standards both for daily averages (150 µg m$^{-3}$) and annual averages (70 µg m$^{-3}$). It suggests that particulate matter, especially PM$_{2.5}$ is still a critical air pollutant in Beijing. In 2017, SO$_2$ does not show exceedance of the NAAQS-II standards either for daily averages (150 µg m$^{-3}$) and annual averages (60 µg m$^{-3}$). For CO, only 12 days do not meet NAAQS-II standards of 4 µg m$^{-3}$. In contrast, the annual average concentration of NO$_2$ in 2017 was slightly higher than the NAAQS-II standard of 40 µg m$^{-3}$, with 18 days exceeding the NAAQS-II standard for daily averages (80 µg m$^{-3}$).

Figure S1. Map of 12 monitoring stations
Section S2. Notices, regulation and policies for air pollution control in Beijing

Regulation and policies on energy system re-structuring:

- In October 2013, the government of Huairou district enforced a policy to replace anthracite stoves from 3000 rural households, change coal heating to electricity for 1170 households, supply liquefied petroleum to the countryside for 20,000 households, construct energy-saving residential housing and implement district heating; this reduced the consumption of 47,000 tons of poor quality coal.

- In Oct 2013, the government of Shijingshan, an urban district of Beijing, planned to cut 2800 tons of coal usage from coal-fired boilers in 2013, and reduce coal usage by more than 4500 tons in 2014, and eliminate coal-fired boilers in 2015.

- In November 2013, Miyun government issued an action plan to “Reduce coal for clean air” with a focus on urban transformation, conversion to natural gas, replacement with high quality coal, relocation of mountain communities, conservation of household energy, and removal of illegal constructions.

- In September 2014, the China State government released an important regulation on the “Reform and upgrade Action Plan for coal energy conservation and emission reduction (2014-2020)” that requires Beijing to place strict controls upon energy efficiency. Following that Action Plan, stack gas emissions of SO$_2$, NO$_x$, and PM from coal-fired power plants must be limited to below 10, 35, and 50 mg m$^{-3}$ respectively.

- In March 2017, the Ministry of Environmental Protection issued the “2017 Air Pollution Prevention and Control Work Plan for Beijing-Tianjin-Hebei”. According to this plan, before the end of October 2017, Beijing, Tianjin, Langfang and Baoding City of Hebei will become the “no-coal zone”.

S3
Regulations and policies on vehicle emission control: In order to control air pollution from vehicle emissions, during 2013-2017 the city announced a series of policies and regulations focusing on the implementation of stricter standards for new vehicles and vehicle fuels, elimination of yellow-label vehicles (which do not meet basic emission standards), and promotion of public transport. Consequently, Beijing led the nation in improving the fuel quality standards by adopting the desulfurization of gasoline and diesel fuels (sulfur content <10 ppm) in 2012, three years ahead of the surrounding regions (Tianjin and Hebei) and five years before the national deadline. Major policies for air pollution from transportation management:

- In February 2013, Beijing implemented the fifth phase emission standards for new light-duty gasoline vehicles (LDVs) and heavy-duty diesel vehicles (HDVs) for public transport.
- In June 2013, another notice from the Beijing government emphasized that all heavy-duty vehicles sold and registered in Beijing must meet the national fourth-phase emission standards.
- In August 2014, a notice from Beijing’s government declared that all spark ignition light vehicles must meet the national five phase standard from 1st January 2015.
- In 2014, Beijing Municipal Commission of Transport (BMCT) expanded traffic restrictions to certain vehicles, particularly yellow-label and non-local vehicles to enter the city within the sixth ring road during daytime since 2015.
- In November 2014, the governments of Yanqing and Miyun, two rural districts of Beijing, released regulations to prohibit yellow-label gasoline vehicles entering certain roads.
- In February 2015, the Beijing Municipal government issued a notice to promote elimination and replacement of old motor vehicles with an expectation of 1 million old vehicles/year phased out.
- Other policies which may have contributed to the enhancement of air quality during 2013-2017 included a ban of outdoor biomass burning and improved suppression of dust discharges from construction sites.
Section S3. Model performance and explanation

Variables and hyperparameters: The input variables contain time and MET variables.

Time variables: day_unix (or t\text{rend}) represents the emission trend of a pollutant; Julian_day (t\text{JD}: the day of the years) represents for the seasonal variation; weekday/weekend represents the difference of pollution between the week and weekend days.

MET variables: wind speed (m s\(^{-1}\)), wind direction (°), temperature (°C), relative humidity (%), and atmospheric pressure (mbar). The back-trajectories can be used as a predictor feature, but it does not increase the performance of the model in this case.

Selected parameters in a random forest:

- Mtry=4: variables randomly sampled for splitting the decision tree
- Nodesize=3: minimum size of terminal nodes for model
- Ntree=200, the number of trees to grow. Figure S21 shows the dependence of model performance on the number of trees.

Figure S21. The influence of number of trees on the model performance for PM\(_{2.5}\).
Model performance’s evaluation:

A random forest shows a good performance with the correlation (r^2) between hourly predicted and observed data for both training and testing data sets. In particular, r^2 value ranged 0.81-0.83, 0.75-0.79, 0.80-0.83, 0.88-0.90, 0.85-0.87, and 0.89-0.90 for PM$_{2.5}$, PM$_{10}$, NO$_2$, SO$_2$, CO and O$_3$, respectively. Figure S32 shows the hourly correlation between observed and predicted data for a testing data. Other model evaluation metrics are shown in Table S2.

Figure S32. Correlations between daily observed and predicted data from testing data sets

As shown in Figure S32, it is likely that the model underestimates hourly concentration of air pollutants at those extremely high levels. These errors are reduced when we compare the weekly averaged concentration as shown in Figure S43.
The correlation between observed and modelled concentrations is approximately 0.9-0.99 for weekly averaged data. In our study, a RF forest model was trained using a fraction of 0.7 from the datasets.

Variable importance and interactions:

As shown in Figure S43, seasonal variations (day_julian) play the most important variable in the model, except for ozone when temperature and diurnal pattern (hour) mainly control the predicted values. The trend (day_unix) shows more important role in the model of SO$_2$ and CO, indicating emission control shows most effectiveness on the decrease of SO$_2$ and CO. Regarding MET variables, humidity and temperature play a more important role in the model of PM while wind speed has a larger impact in the model of NO$_2$. The variable interaction is shown in Figure S5.
Figure S4. Importance of predictor features: date_unix, day of the year (day_julian), hour of day (hour), week/weekend, temperature (temp), RH, pressure (press), wind speed (ws), wind direction (wd). Figure 4 shows the day of the year (seasonal variable) is the most important variable controlling the concentration of the pollutant (except for ozone: the most important is the temperature variable). The trend (date_unix) has a larger effect on SO$_2$, than CO and PM, less effect on the NO$_2$ and no significant effect on O$_3$ concentration.
Figure S65. Features Variation interactions in a random forest model for PM$_{2.5}$. This figure shows the co-occurrence of a pair of variables in a similar tree. For example, in the first node of the tree, RH and date_unix is the most frequent occurrence.
Figure S76. Probability density of urban air pollutant concentrations during 2013-2017. Number of heavy polluted events decreases from 2013 to 2017 for all pollutants, except ozone.
Figure S87. Monthly emission inventories of air pollutants in Beijing during 2013-2017. The emissions of PM$_{2.5}$, PM$_{10}$, NO$_x$, SO$_2$, CO in Beijing dropped by 35 %, 44 %, 11 %, 71 %, 17% from 76, 109, 260, 93, 1.7 Gg in 2013 to 49, 61, 231, 27, 1.4 Gg in 2017, respectively. Power sector represents the coal-fired, gas-fired and oil-fired power plants; industry sector includes two subsectors as industrial process and industrial boilers (to offer the mechanical energy); heating includes both industrial heating (to offer the thermal energy) and domestic heating (refers to centralized heating); residential sources are the urban and rural burning with traditional stoves with coal or biomass fuels; transportation includes both on-road and off-road traffic; solvent use contains all the subsectors which would use solvent during production processes, such as paint, ink, pharmaceutical production and household solvent use.
Figure S98. Normalized levels of air pollutants and energy consumption. The trend of SO$_2$ was very close to the normalized trend of coal consumption, but showed a faster decrease than trends of PM$_{2.5}$ and NO$_2$.
Table S1. Locations and categories of monitoring site

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Name</th>
<th>Category</th>
<th>Longitude</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Wangshouxigong</td>
<td>Urban</td>
<td>116.37</td>
<td>39.87</td>
</tr>
<tr>
<td>02</td>
<td>Dingling</td>
<td>Rural</td>
<td>116.17</td>
<td>40.29</td>
</tr>
<tr>
<td>03</td>
<td>Dongsi</td>
<td>Urban</td>
<td>116.43</td>
<td>39.95</td>
</tr>
<tr>
<td>04</td>
<td>Tiantan</td>
<td>Urban</td>
<td>116.43</td>
<td>39.87</td>
</tr>
<tr>
<td>05</td>
<td>Nongzhanguan</td>
<td>Urban</td>
<td>116.47</td>
<td>39.97</td>
</tr>
<tr>
<td>06</td>
<td>Guanyuan</td>
<td>Urban</td>
<td>116.36</td>
<td>39.94</td>
</tr>
<tr>
<td>07</td>
<td>Haidianquwanli</td>
<td>Urban</td>
<td>116.32</td>
<td>39.99</td>
</tr>
<tr>
<td>08</td>
<td>Nongzhanguan</td>
<td>Urban</td>
<td>116.47</td>
<td>39.90</td>
</tr>
<tr>
<td>09</td>
<td>Huairouzhen</td>
<td>Suburban</td>
<td>116.64</td>
<td>40.40</td>
</tr>
<tr>
<td>10</td>
<td>Changpingzhen</td>
<td>Suburban</td>
<td>116.23</td>
<td>40.26</td>
</tr>
<tr>
<td>11</td>
<td>Aotizhongxin</td>
<td>Urban</td>
<td>116.40</td>
<td>39.98</td>
</tr>
<tr>
<td>12</td>
<td>Gucheng</td>
<td>Suburban</td>
<td>116.26</td>
<td>39.93</td>
</tr>
</tbody>
</table>

Table S2: RF model performance for testing data set (in hourly time resolution).

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>RMSE</th>
<th>r2</th>
<th>FAC2</th>
<th>MB</th>
<th>MGE</th>
<th>NMB</th>
<th>NMGE</th>
<th>COE</th>
<th>IOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5</td>
<td>17.9</td>
<td>0.95</td>
<td>0.94</td>
<td>0.62</td>
<td>10.00</td>
<td>0.01</td>
<td>0.14</td>
<td>0.81</td>
<td>0.91</td>
</tr>
<tr>
<td>PM10</td>
<td>43.1</td>
<td>0.79</td>
<td>0.87</td>
<td>1.46</td>
<td>27.10</td>
<td>0.01</td>
<td>0.26</td>
<td>0.57</td>
<td>0.79</td>
</tr>
<tr>
<td>NO2</td>
<td>14.3</td>
<td>0.78</td>
<td>0.95</td>
<td>-0.01</td>
<td>10.16</td>
<td>0.00</td>
<td>0.20</td>
<td>0.59</td>
<td>0.79</td>
</tr>
<tr>
<td>SO2</td>
<td>7.0</td>
<td>0.89</td>
<td>0.89</td>
<td>0.22</td>
<td>3.70</td>
<td>0.02</td>
<td>0.25</td>
<td>0.73</td>
<td>0.87</td>
</tr>
<tr>
<td>CO</td>
<td>0.4</td>
<td>0.86</td>
<td>0.96</td>
<td>0.01</td>
<td>0.24</td>
<td>0.01</td>
<td>0.21</td>
<td>0.67</td>
<td>0.84</td>
</tr>
<tr>
<td>O3</td>
<td>18.4</td>
<td>0.89</td>
<td>0.82</td>
<td>0.50</td>
<td>12.90</td>
<td>0.01</td>
<td>0.21</td>
<td>0.70</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Note: FAC2 (fraction of predictions with a factor of two), MB (mean bias), MGE (mean gross error), NMB (normalised mean bias), NMGE (normalised mean gross error), COE (Coefficient of Efficiency), IOA (Index of Agreement) (Emery et al. 2017).

Table S3. Air Quality Standards.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging time</th>
<th>China standards Class 1</th>
<th>China standards Class 2</th>
<th>WHO</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM1.0</td>
<td>annual</td>
<td>15</td>
<td>35</td>
<td>10</td>
<td>µg m⁻³</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>35</td>
<td>75</td>
<td>25</td>
<td>µg m⁻³</td>
</tr>
<tr>
<td>PM2.5</td>
<td>annual</td>
<td>40</td>
<td>70</td>
<td>20</td>
<td>µg m⁻³</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>50</td>
<td>150</td>
<td>50</td>
<td>µg m⁻³</td>
</tr>
<tr>
<td>NO₂</td>
<td>annual</td>
<td>40</td>
<td>80</td>
<td>80</td>
<td>µg m⁻³</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>200</td>
<td>290</td>
<td>200</td>
<td>µg m⁻³</td>
</tr>
<tr>
<td>SO₂</td>
<td>annual</td>
<td>20</td>
<td>60</td>
<td>60</td>
<td>µg m⁻³</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>150</td>
<td>300</td>
<td>20</td>
<td>µg m⁻³</td>
</tr>
<tr>
<td></td>
<td>hourly</td>
<td>150</td>
<td>500</td>
<td>500</td>
<td>µg m⁻³</td>
</tr>
<tr>
<td>CO</td>
<td>annual</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>µg m⁻³</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>µg m⁻³</td>
</tr>
<tr>
<td>O₃</td>
<td>3-hour mean, daily max</td>
<td>100</td>
<td>160</td>
<td>100</td>
<td>µg m⁻³</td>
</tr>
<tr>
<td></td>
<td>hour</td>
<td>160</td>
<td>200</td>
<td>200</td>
<td>µg m⁻³</td>
</tr>
</tbody>
</table>