Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year
    5.689
  • CiteScore value: 5.44 CiteScore
    5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 161 Scimago H
    index 161
Discussion papers
https://doi.org/10.5194/acp-2019-140
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2019-140
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Apr 2019

Research article | 05 Apr 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Chemistry and Physics (ACP).

The mechanisms and meteorological drivers of the ozone–temperature relationship

William C. Porter1 and Colette L. Heald2 William C. Porter and Colette L. Heald
  • 1Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
  • 2Department of Civil and Environmental Engineering, MIT, Cambridge, MA 02139, USA

Abstract. Surface ozone (O3) pollution levels are strongly correlated with daytime surface temperatures, especially in highly polluted regions. This correlation is nonlinear and occurs through a variety of temperature dependent mechanisms related to O3 precursor emissions, lifetimes, and reaction rates, making the reproduction of temperature sensitivities – and the projection of associated human health risks – a complex problem. Here we explore the summertime O3–temperature relationship in the United States and Europe using the chemical transport model GEOS-Chem. We remove the temperature dependence of several mechanisms most frequently cited as causes of the O3–temperature climate penalty, including: PAN decomposition, soil NOx emissions, biogenic VOC emissions, and dry deposition. We quantify the contribution of each mechanism to the overall correlation between O3 and temperature both individually and collectively. Through this analysis we find that the thermal decomposition of PAN can explain, on average, 20 % of the overall O3–temperature correlation in the United States. The effect is weaker in Europe, explaining 9 % of the overall O3–temperature relationship. The temperature dependence of biogenic emissions contributes 3 % and 9 % of the total O3–temperature correlation in the United States and Europe on average, while temperature dependent deposition (6 % and 1 %) and soil NOx emissions (10 % and 7 %) also contribute. Even considered collectively these mechanisms explain less than 46 % of the modeled O3–temperature correlation in the United States and 36 % in Europe. We use commonality analysis to demonstrate that covariance with other meteorological phenomena such as stagnancy and humidity can explain the bulk of the remainder of the O3–temperature correlation. Thus, we demonstrate that the statistical correlation between O3 and temperature alone may greatly overestimate the direct impacts of temperature on O3, with implications for the interpretation of policy-relevant metrics such as climate penalty.

William C. Porter and Colette L. Heald
Interactive discussion
Status: open (until 31 May 2019)
Status: open (until 31 May 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
William C. Porter and Colette L. Heald
William C. Porter and Colette L. Heald
Viewed  
Total article views: 414 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
285 129 0 414 0 1
  • HTML: 285
  • PDF: 129
  • XML: 0
  • Total: 414
  • BibTeX: 0
  • EndNote: 1
Views and downloads (calculated since 05 Apr 2019)
Cumulative views and downloads (calculated since 05 Apr 2019)
Viewed (geographical distribution)  
Total article views: 304 (including HTML, PDF, and XML) Thereof 303 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 22 Apr 2019
Publications Copernicus
Download
Short summary
In this paper we explore the connection between changes in surface temperature and changes in ozone pollution. While explanations for this connection have been proposed in the past, we attempt to better quantify and compare them using models and statistics. We find that several of the most commonly cited mechanisms, including emissions from plants, and chemical processes, can explain less than half of the correlation. Other weather effects are identified as the most likely driver for the rest.
In this paper we explore the connection between changes in surface temperature and changes in...
Citation