Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Discussion papers
https://doi.org/10.5194/acp-2019-1102
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2019-1102
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 18 Dec 2019

Submitted as: research article | 18 Dec 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Chemistry and Physics (ACP).

OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines

Stefan Noll1,2, Holger Winkler3, Oleg Goussev2, and Bastian Proxauf4 Stefan Noll et al.
  • 1Institut für Physik, Universität Augsburg, Augsburg, Germany
  • 2Deutsches Fernerkundungsdatenzentrum, Deutsches Zentrum für Luft- und Raumfahrt, Weßling-Oberpfaffenhofen, Germany
  • 3Institut für Umweltphysik, Universität Bremen, Bremen, Germany
  • 4Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany

Abstract. OH airglow is an important nocturnal emission of the Earth's mesopause region. As it is chemiluminescent radiation in a thin medium, the population distribution over the various roto-vibrational OH energy levels of the electronic ground state is not in local thermodynamic equilibrium (LTE). In order to better understand these non-LTE effects, we studied hundreds of OH lines in a high-quality mean spectrum based on observations with the high-resolution Ultraviolet and Visual Echelle Spectrograph at Cerro Paranal in Chile. Our derived populations cover vibrational levels between v = 3 and 9, rotational levels up to N = 24, and individual Λ-doublet components when resolved. As the reliability of these results critically depends on the Einstein-A coefficients used, we tested six different sets and found clear systematic errors in all of them, especially for Q-branch lines and individual Λ-doublet components. In order to minimise the deviations in the populations for the same upper level, we used the most promising coefficients from Brooke et al. (2016, JQSRT 168, 142) and further improved them with an empirical correction approach. The resulting rotational level populations show a clear bimodality for each v, which is characterised by a probably fully thermalised cold component and a hot population where the rotational temperature increases between v = 9 and 4 from about 700 to about 7,000 K and the corresponding contribution to the total population at the lowest N decreases by an order of magnitude. The presence of the hot populations causes non-LTE contributions to rotational temperatures at low N, which can be estimated quite robustly based on the two-temperature model. The bimodality is also clearly indicated by the dependence of the populations on changes in the effective emission height of the OH emission layer. The degree of thermalisation decreases with increasing layer height due to a higher fraction of the hot component. Our high-quality population data are promising with respect to a better understanding of the OH thermalisation process.

Stefan Noll et al.
Interactive discussion
Status: open (until 12 Feb 2020)
Status: open (until 12 Feb 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Stefan Noll et al.
Stefan Noll et al.
Viewed  
Total article views: 213 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
176 36 1 213 10 2 1
  • HTML: 176
  • PDF: 36
  • XML: 1
  • Total: 213
  • Supplement: 10
  • BibTeX: 2
  • EndNote: 1
Views and downloads (calculated since 18 Dec 2019)
Cumulative views and downloads (calculated since 18 Dec 2019)
Viewed (geographical distribution)  
Total article views: 158 (including HTML, PDF, and XML) Thereof 157 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 24 Jan 2020
Publications Copernicus
Download
Short summary
Line emission from hydroxyl (OH) molecules at altitudes of about 90 km strongly contributes to the Earth's night-sky brightness and is therefore used as an important indicator of atmospheric chemistry and dynamics. However, interpreting the measurements can be ambiguous since necessary molecular parameters and the internal state of OH are not well known. Based on high-quality spectral data, we investigated these issues and found solutions for a better understanding of the OH line intensities.
Line emission from hydroxyl (OH) molecules at altitudes of about 90 km strongly contributes to...
Citation