Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Discussion papers
https://doi.org/10.5194/acp-2019-1072
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2019-1072
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 22 Jan 2020

Submitted as: research article | 22 Jan 2020

Review status
This preprint is currently under review for the journal ACP.

Effect of deep convection on the TTL composition over the Southwest Indian Ocean during austral summer

Stephanie Evan1, Jerome Brioude1, Karen Rosenlof2, Sean M. Davis2, Hölger Vömel3, Damien Héron1, Françoise Posny1, Jean-Marc Metzger4, Valentin Duflot1,4, Guillaume Payen4, Hélène Vérèmes1, Philippe Keckhut5, and Jean-Pierre Cammas1,4 Stephanie Evan et al.
  • 1LACy, Laboratoire de l’Atmosphère et des Cyclones, UMR8105 (CNRS, Université de La Réunion, Météo-France), Saint-Denis de la Réunion, 97490, France
  • 2Chemical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, 80305, CO, USA
  • 3National Center for Atmospheric Research, Boulder, 80301, CO, USA
  • 4Observatoire des Sciences de l’Univers de La Réunion, UMS3365 (CNRS, Université de La Réunion, Météo-France), Saint-Denis de la Réunion, 97490, France
  • 5LATMOS, Laboratoire ATmosphères, Milieux, Observations Spatiales-IPSL UMR8190 (UVSQ Université Paris-Saclay, Sorbonne Université, CNRS), Guyancourt, 78280, France

Abstract. Balloon-borne measurements of CFH water vapor, ozone and temperature and water vapor lidar measurements from the Maïdo Observatory at Réunion Island in the Southwest Indian Ocean (SWIO) were used to study tropical cyclones' influence on TTL composition. The balloon launches were specifically planned using a Lagrangian model and METEOSAT 7 infrared images to sample the convective outflow from Tropical Storm (TS) Corentin on 25 January 2016 and Tropical Cyclone (TC) Enawo on 3 March 2017.

Comparing CFH profile to MLS monthly climatologies, water vapor anomalies were identified. Positive anomalies of water vapor and temperature, and negative anomalies of ozone between 12 and 15 km in altitude (247 to 121 hPa) originated from convectively active regions of TS Corentin and TC Enawo, one day before the planned balloon launches, according to the Lagrangian trajectories.

Near the tropopause region, air masses on 25 January 2016 were anomalously dry around 100 hPa and were traced back to TS Corentin active convective region where cirrus clouds and deep convective clouds may have dried the layer. An anomalously wet layer around 68 hPa was traced back to the South East IO where a monthly water vapor anomaly of 0.5 ppbv was observed. In contrast, no water vapor anomaly was found near or above the tropopause region on 3 March 2017 over Maïdo as the tropopause region was not downwind of TC Enawo. This study compares and contrasts the impact of two tropical cyclones on the humidification of the TTL over the Southwest Indian Ocean.

Stephanie Evan et al.

Interactive discussion

Status: open (until 18 Mar 2020)
Status: open (until 18 Mar 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Stephanie Evan et al.

Stephanie Evan et al.

Viewed

Total article views: 101 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
78 21 2 101 2 2
  • HTML: 78
  • PDF: 21
  • XML: 2
  • Total: 101
  • BibTeX: 2
  • EndNote: 2
Views and downloads (calculated since 22 Jan 2020)
Cumulative views and downloads (calculated since 22 Jan 2020)

Viewed (geographical distribution)

Total article views: 145 (including HTML, PDF, and XML) Thereof 144 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 25 Feb 2020
Publications Copernicus
Download
Short summary
The role of deep convection in the South West Indian Ocean (the 3rd most active tropical cyclone basin) on the composition of the Tropical Tropopause Layer and the climate system is less understood due to scarce observations. Balloon-borne, Lidar and satellite measurements in the Southwest Indian Ocean were used to study tropical cyclones' influence on TTL composition. This study compares and contrasts the impact of two tropical cyclones on the humidification of the TTL over the SW Indian Ocean.
The role of deep convection in the South West Indian Ocean (the 3rd most active tropical cyclone...
Citation