Dear Referees,

Thanks for giving us an opportunity to revise our manuscript (acp-2019-1045). We appreciate your positive and constructive comments. We have studied these comments carefully and make revisions on the manuscript. These comments and the corresponding replies are listed below.

The referee's comments are highlighted by gray. The symbol "≫" quotes the original texts in the manuscript. Followed by the comments are our responses (normal texts) and current texts in the manuscript (lead by line number). Some important revisions are colored by red. The revised manuscript with track changes are attached at the end of this file.

With regards,

Shuqi Yan, Bin Zhu*, and all co-authors.

Replies to Referee#1

1. Line 37-38: As indicated in IPCC AR5, “aerosol-cloud-radiation interactions” is suggested to be rephrased as “aerosol-radiation interaction” and “aerosol-cloud interaction” separately.

≫Line 37-38: ...which are called as aerosol-cloud-radiation interactions...

Thank you for this valuable suggestion. We have corrected it.

Line 38-39 (Introduction)

...which are called as aerosol-radiation and aerosol-cloud interactions...

Line 458 (Table 1)

Aerosol-cloud-radiation interactions --> Aerosol-cloud and aerosol-radiation interactions

2. Line 41: “Many”->”Previous”

≫Line 41: Many studies have analysed...
Thank you for this valuable suggestion. We have changed all the "many studies" to "previous studies" (Line 35, 42, 219).

3. Line 45: “lower supersaturation” ??

 As a result, urban areas commonly experience higher temperatures and lower vapour contents. These conditions induce a lower supersaturation that is unfavourable for fog formation.

Thank you for this valuable suggestion. We have corrected this sentence.

Line 46 (Introduction)

 …These conditions induce a lower relative humidity supersaturation that is unfavourable for fog formation.

 However, if aerosol concentration exceeds a certain threshold, this promoting effect disappears (Quan et al., 2011) or even turns into a suppressing effect due to the strong vapour competition (Koren et al., 2008; Rangognio, 2009).

Thank you for this valuable suggestion. We have added these references to the end of this sentence.

Line 68 (Introduction)

 …or even turns into a suppressing effect due to the strong vapour competition (Guo et al., 2017; Koren et al., 2008; Liu et al., 2019; Rangognio, 2009; Wang et al., 2015).

5. Lines 69-71: I notice that the work by Yan et al. JGR (2019) mentioned here is also from the same research group. Also, it occurs to me that the motivation seems a little confused: Since previous work has “quantitatively” proved…,
why the authors attempt again to “quantitatively” confirm by model simulation of a fog event. Two “quantitatively” is redundant. Therefore, this sentence is suggested to be rephrased as follows: e.g. Our recent observational work (Yan et al., 2019) indicated a decreasing trend in fog days, and ...

Lines 69-71: Yan et al. (2019) analysed decadal trends of fog days and quantitatively proved that the inhibiting effects of urbanization outweigh the promoting effects of aerosols on fog during the mature urbanization stage. Their study inspires us to quantitatively confirm the roles of urbanization and aerosols......

Thank you for this valuable suggestion. The redundant “quantitatively” is deleted. We have corrected this sentence.

Line 72-76 (Introduction)

Our recent observational work (Yan et al., 2019) indicated a decreasing trend in fog days, and the inhibiting effects of urbanization outweigh the promoting effects of aerosols on fog during the mature urbanization stage. This study aims to quantitatively confirm the roles of urbanization and aerosols......

6. Line 75: “facilitates”-> “is expected to facilitate”

Line 75: This work facilitates the understanding of......

Thank you for this valuable suggestion. We have corrected these sentences.

Line 79 (Introduction)

This work is expected to facilitate the understanding of...

Line 305 (Conclusions)

This study is expected to facilitate a better understanding of...

7. Line 85: Something is suggested to be mentioned concerning Section 4 immediately after “Section 3.6 discusses the rationality and reliability of the results.”

Line 85: Section 3.6 discusses the rationality and reliability of the results.
Thank you for this valuable suggestion. We have added something after it.

Line 89-90 (Introduction)

Section 3.6 discusses the rationality and reliability of the results. **Section 4 concludes the findings of this study.**

8. Line 90: it is suggested to clarify which city you are referring to? Since the reader cannot easily get any info from either text or Figure 1b.

>>Line 90: SX is ... approximately 30 km away from the nearest large city (Fig. 1b).

Thank you for this valuable suggestion. We have clarified this city, Huainan. It has been marked in Figure 1b.

Line 95 (Section 2.1)

SX is ... approximately 30 km away from the nearest large city, **Huainan (Fig. 1b).**

9. Line 97: “replace”-> “used to replace”

>>Line 97: The data are resampled from 500 m to 30 arc-seconds (approximately 1 km) and replace the geological data of the WRF model.

Thank you for this valuable suggestion. We have corrected this sentence.

Line 102 (Section 2.1)

The data are resampled from 500 m to 30 arc-seconds (approximately 1 km) and **used to replace** the geological data of the WRF model.

10. Lines 160-165: The logic seems a little problematic: since the fog holes are mainly caused by urbanization, as demonstrated in the references in this paragraph (aerosol effect is not mentioned and is supposed to not be the focus here), why you mentioned the effect of aerosol pollution. It is generally thought that urbanization effect tends to reduce
LWP whereas aerosol tends to accumulate the formation of fog. The combined effect is highly dependent on the competing effect of the two factors. Here it is not accurate to argue that both of them “reducing the LWP or advancing the dissipation of fog”.

Thank you for this valuable suggestion. We agree that fog holes are mainly caused by urbanization, not by aerosols. We aimed to express that "the combined effects of urbanization and aerosols lead to fog holes", not "both of them lead to fog holes". To avoid the problem you mentioned, we have corrected the last sentence.

Line 169-170 (Section 3.1)

We assume that urbanization could have profound effects on fog by reducing the LWP or advancing the dissipation of fog, and the role of aerosols on fog is weaker than that of urbanization.

11. Section 3.2: What are the criteria for you to determine a fog event from model-simulated LWP, which is required to be clarified here.

Thank you for this valuable suggestion. The criteria for fog is LWP > 2 g/m² (Jia et al., 2018). We have clarified it in Section 3.2.

Line 173 (Section 3.2)

Satellite cloud image and modelled LWP (>2 g/m²) can represent the observed and simulated fog zone (Jia et al., 2018).

References

Section 3.3: The authors attempted to discuss the complicated non-monotonic effect of aerosol on fog formation by differing the emission rate, which is not very common. Why not used the aerosol concentration or CCN or Na that can well represent the real atmospheric pollution level for the time period investigated here? I am curious of the actual CCN or Na concentration for the experiment of u0e3?

Thank you for this valuable suggestion. We agree that CCN can better represent the air pollution level. The CCN$_{0.1}$ concentration of each experiment is marked in the new Figure 8, because the supersaturation in fog is commonly less than 0.1% (Mazoyer et al., 2016). The CCN$_{0.1}$ of current pollution level (u0e3) is 570 cm$^{-3}$.

Figure 8. Relationships of the microphysical parameters (LWC, N$_d$, R$_e$ and LWP) with emission level and CCN$_{0.1}$ concentrations. These parameters are the time-height averages (time average for the LWP) in fog.

References

Lines 215-216: It will be misleading for the statement “the current pollution level in China is still located in the promoting regime rather than the suppressing regime of fog occurrence”. Both ideal simulation (e.g., Rosenfeld et al., Science, 2008) or observational studies (Wang et al., AE 2015; Guo et al., GRL 2017) indicated that the tipping point
tends to occur at AOD of 0.3-0.4 or CCN concentration of 1200/cm³. Recent observational work by Ilan Koren et al. (Science, 2014) suggested the cloud and precipitation is most sensitive to aerosol over the South Ocean. By comparison, the average AOD from MODIS in East China is on average much larger than 0.6, irrespective of the meteorological conditions.

The aerosol concentration of the transition point (experiment M2.5) is higher than that of u0e3 (Fig. 8), revealing that the current pollution level in China is still located in the promoting regime rather than the suppressing regime of fog occurrence.

Thank you for this valuable suggestion. The CCN_{0.4} of u0e3 is 6023 cm⁻³, higher than CCN_{0.4}=1200 cm⁻³ that revealed by Rosenfeld et al. (Science, 2008). We agree that the AOD value of East China is larger than 0.6. It seems that the current pollution level could suppress fog rather than promotes fog.

The studies you listed mostly aim at convective clouds. Aerosols affect convective clouds through two competing mechanisms: 1) invigorating convection by promoting vapor condensation. 2) suppressing convection by blocking solar radiation and reducing surface heat flux. Under polluted conditions (AOD>0.3 or CCN_{0.4}>1200 cm⁻³), the suppressing effect outweighs the invigoration effect, so the turning point occurs (Koren et al. Science, 2008; Rosenfeld et al., Science, 2008). This suppressing effect does not exist in fog because fog commonly formed at night. Therefore, the turning point in fog might occur later than that in convective clouds. In North China Plain where air pollution is thought to be more serious, a case study by WRF-Chem also indicates that fog properties (e.g., LWC, N_d and LWP) increase monotonically when emission intensity varies from 0.05-fold to 1-fold. It is consistent with our statement "the current pollution level in China is still located in the promoting regime rather than the suppressing regime of fog occurrence".

The above discussions have been included at the end of Section 3.4. Additionally, some statements are given in a more cautious manner.

Line 223-231 (Section 3.4)

Rosenfeld et al. (2008) revealed that the turning point of boomerang pattern in convective clouds is CCN_{0.4} = 1200 cm⁻³. The CCN_{0.4} of u0e3 is 6023 cm⁻³, which seems to suppress fog. Aerosols affect convective clouds through two competing mechanisms: 1) invigorating convection by promoting vapour condensation. 2) suppressing convection by blocking solar radiation and reducing surface heat flux. Under polluted conditions (AOD>0.3
or CCN_{0.4}>1200 \text{ cm}^3), the suppressing effect outweighs the invigoration effect, so the turning point occurs (Koren et al., 2008; Rosenfeld et al., 2008). This suppressing effect does not exist in fog because fog commonly formed at night. Therefore, the turning point in fog might occur later than that in convective clouds. In North China Plain where air pollution is thought to be more serious, a case study by WRF-Chem also indicates that fog properties (e.g., LWC, N_d and LWP) increase monotonically when emission intensity varies from 0.05-fold to 1-fold.

Line 220-222 (Section 3.4)

…revealing that possibly indicating that the current pollution level is still located in the promoting regime…

Line 25 (Abstract)

…the current pollution level in China *is could be* still below the critical aerosol concentration that suppresses fog.

14. Lines 205-206: times is redundant and should be removed.

>>Lines 205-206: For example, the name M2.5 means multiplying by 2.5 times; the name D10 means dividing by 10 times.

Thank you for this valuable suggestion. We have corrected this sentence.

Line 210 (Section 3.4)

For example, the name M2.5 means multiplying by 2.5; the name D10 means dividing by 10.

15. Line 448: it is better to indicate the year of 2017 following 03 January in the figure caption.

>>Line 448: Figure 2. The performance of the simulated fog zone at 08:00 03 January.

Thank you for this valuable suggestion. We have changed two figure captions.

Line 475 (Figure 2)

The performance of the simulated fog zone at 08:00 03 January 2017….
Two sub-regions (a and b) with obvious fog holes on the Himawari 8 image at 11:00 03 January 2017.184

16. Figure 3: it is suggested to show the major cities in the regions of interest shown in panel a and b, given the convenience to better understand the fog hole induced by urban. Besides, two subregions in Figure 3 is better to be marked in Figure 1 or 2.

Thank you for this valuable suggestion. The subregions of interest are marked in the new Figure 2. The cities with fog holes are marked in the new Figure 3.

Line 473-478 (Figure 2)

Figure 2. The performance of the simulated fog zone at 08:00 03 January 2017. (a) Himawari 8 RGB composite cloud image overlaid with the MICAPS observation sites (light red dots) at which fog was observed (relative humidity > 90 % and VIS < 1 km). (b) Simulated LWP distribution. Only LWC below 1500 m are integrated. The blue dots are the SX site. The two dashed rectangles in (a) are the subregions of interest in Fig. 3.
Figure 3. Two sub-regions (a and b) with obvious fog holes on the Himawari 8 image at 11:00 03 January 2017. The fog zone, which is represented by albedo > 0.45 (at 0.64 μm) and brightness temperature > 266 K (at 12.4 μm) (Di Vitortorio et al., 2002), is marked with cold colours (blue or cyan). The urban areas are marked with blue or red. The red and white pixels surrounded or semi-surrounded by cold colours are fog holes, and among these pixels, the red pixels indicate the fog holes over urban areas. Some of the cities with fog holes are marked by rectangles.
Replies to Referee#2

We appreciate your valuable suggestions of our manuscript.

Replies to Referee#3

1. The focus of this study is on the radiative fog. However, there are different fog formation in atmosphere. For example, the advection fog formation is often occurred in the coast of eastern China. The Authors should highlight that under different fog conditions (i.e., radiative fog or advection fog, etc.) what is the effects of the urbanization and aerosol particles on the fog formation.

Thank you for this valuable suggestion. We agree that radiation fog and advection fog are two major fog types in China. They can occur in both inland and coastal areas. Gu et al. (2019) revealed the occurring frequencies of different fog types in Shanghai, a coastal city, during the past three decades. The major fog type is radiation fog (38.3%), followed by advection fog (27.7%) and advection-radiation fog (23.4%). Therefore, we infer that the dominant fog type in inland areas and coastal areas is radiation fog, which should be attracted more attention.

Compared with radiation fog which usually occurs under stagnant weather conditions, advection fog is associated with synoptic forcing, i.e., advection of a moist air mass with contrasting temperature properties with respect to the underlying surface (Gultepe et al., 2007). The role of synoptic forcing should be considered when studying the effects of urbanization and aerosols on advection fog, which is more complex than radiation fog. Zhong et al. (2017) indicated that urbanization and aerosols have nonsignificant effects on convective precipitation when the synoptic forcing is strong. Therefore, this study focuses on radiation fog to study the effects of urbanization and aerosols.

References

2. Is this study suitable for the most of large cities in eastern China?

Thank you for this valuable suggestion. In the reply to comment 1, we infer that the dominant fog type in inland areas and coastal areas of eastern China is radiation fog. Under the unified leadership of national government, most of the cities in eastern China experience the similar development pattern, i.e., the expansion of urban areas is commonly accompanied by increasing aerosol pollution. So we believe our results of radiation fog are suitable for most of the cities in eastern China.

3. Some important references are missing. For example, Tie et al. (2017) studied the important feedback of atmospheric moisture on the aerosol pollution in eastern China, which should state in the instruction.

References

Tie, XX, X. Long, GH Li, SY Zhao, JJ Cao, JM Xu, Ozone enhancement due to photo-dissociation of nitrous acid in eastern China, Atmos. Chem. Phys., 19, 11267–11278, 2019.

Thank you for this valuable suggestion. We have added the two references and some texts.

Line 53-54 (Introduction)

Aerosols exert sophisticated impacts on fog through direct (radiation) effects and indirect (microphysical) effects (Khain and Pinsky, 2018). Aerosols attenuate shortwave radiation, influencing PBL structure and the vertical profile of moisture and aerosols (Tie et al., 2017, 2019), which can alter the formation and dissipation condition of fog....
To what extents do urbanization and air pollution affect fog?

Shuqi Yan1,2,3,4, Bin Zhu1,2,3,4,*, Yong Huang5,6, Jun Zhu7, Hanqing Kang1,2,3,4, Chunsong Lu1,2,3,4, Tong Zhu8

1Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China
2Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, China
3Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science & Technology, Nanjing, China
4Special test field of National Integrated meteorological observation, Nanjing University of Information Science & Technology, Nanjing, China
5Anhui Meteorology Institute, Key Lab of Atmospheric Science and Remote Sensing Anhui Province, Hefei 230031, China
6Shouxi National Climatology Observatory, Shouxi 232200, China
7Xiangshun Meteorological Bureau, Xiangshun 315700, China
8IMSG at NOAA/NESDIS/STAR, 5830 University Research Ct., College Park, MD 20740, USA

Correspondence to: Bin Zhu (binzhu@nuist.edu.cn)

Abstract. The remarkable development of China has resulted in rapid urbanization (urban heat island and dry island) and severe air pollution (aerosol pollution). Previous studies demonstrate that these two factors have either suppressing or promoting effects on fog, but what are the extents of their individual and combined effects? In this study, a dense radiation fog event in East China in January 2017 was reproduced by the WRF-Chem model, and the individual and combined effects of urbanization and aerosols on fog (indicated by liquid water content (LWC)) are quantitatively revealed. Results show that urbanization inhibits low-level fog, delays its formation and advances its dissipation due to higher temperatures and lower saturations. In contrast, upper-level fog could be enhanced because of the updraft-induced vapour convergence. Aerosols promote fog by increasing LWC, increasing droplet concentration and decreasing droplet effective radius. Further experiments show that the current pollution level in China is still below the critical aerosol concentration that suppresses fog. Urbanization influences fog to a larger extent than do aerosols. When urbanization and aerosol pollution are combined, the much weaker aerosol promoting effect is counteracted by the stronger urbanization suppressing effect on fog. Budget analysis of LWC reveals that urban development (urbanization and aerosols) alters LWC profile and fog structure mainly by modulating condensation/evaporation process. Our results infer that urban fog will be further reduced if urbanization keeps developing and air quality keeps deteriorating in the future.
1 Introduction

During the past five decades, China has achieved remarkable developments, accompanied by strong anthropogenic activities (rapid urbanization and severe air pollution). Urbanization and air pollution have significantly affected climate change, monsoons, air quality, fog, clouds and precipitation (e.g., Li et al., 2016; Li et al., 2017). Many Previous studies have linked the changes in clouds and precipitation to urbanization and aerosols. Urbanization destabilizes the boundary layer, which triggers strong updrafts and invigorates convection (e.g., Rozoff et al., 2003; Shepherd, 2005). Aerosols modify the macroscopic, microphysics, thermodynamics and radiative properties of clouds through complicated pathways, which are called as aerosol-cloud-radiation interactions and have been systematically reviewed by Fan et al. (2016), Rosenfeld et al. (2014), Tao et al. (2012), etc. Fog can be viewed as a cloud (Leng et al., 2014) that occurs near the surface. Land use features and aerosol properties may instantly affect fog, so fog is more sensitive to anthropogenic activities than other types of clouds are (Zhu and Guo, 2016). Many Previous studies have analysed the effects of urbanization and aerosols on fog, mostly in segregated manners.

Urbanization is featured with urban heat island (UHI) and dry island (UDI) effects. The urban surface has a lower albedo, which reduces the reflected solar radiation and enhances heat storage. Urban expansion decreases the coverage of cropland, water bodies and forestland, which reduces the sources of water vapour. As a result, urban areas commonly experience higher temperatures and lower vapour contents. These conditions induce a lower relative humidity supersaturation that is unfavourable for fog formation (Gu et al., 2019). In the long-term scale, urban fog days are reported to decrease significantly (e.g., Guo et al., 2016; LaDochy, 2005; Sachweh and Koepke, 1995; Shi et al., 2008; Yan et al., 2019). Although UHI and UDI inhibit near-surface fog, the upward motions can promote upper-level fog (Li et al., 2011; Niu et al., 2010b). Surface roughness and thermal circulation cause strong updrafts (Rozoff et al., 2003), which transfer water vapour aloft and cause wet island phenomenon in the upper-level (Kang et al., 2014). The fog at that altitude may be subsequently enhanced.

Aerosols exert sophisticated impacts on fog through direct (radiation) effects and indirect (microphysical) effects (Khain and Pinsky, 2018). Aerosols attenuate shortwave radiation, influencing PBL structure and the vertical profile of moisture and aerosols (Tie et al., 2017, 2019), which can alter the formation and dissipation condition of fog. Scattering aerosols block downwelling solar radiation in the daytime, thus delaying the dissipation and elongating the duration of fog (Shi et al., 2008; Maalick et al., 2016). Although they increase downwelling longwave radiation at night, scattering aerosols have negligible effects on the fog formation time (Stolaki et al., 2015; Maalick et al., 2016). The role of absorbing aerosols like BC on fog depends on its residence height. If BC resides above the fog layer, BC causes a dome effect (Ding et al., 2016) which blocks solar radiation and prevents the dissipation of fog (Bott, 1991). If BC resides within the fog layer, BC heats fog droplets and accelerates the dissipation of fog (Maalick et al., 2016). The aerosol indirect effect on cloud is addressed as one of the most
uncertain factors in the IPCC report (IPCC, 2013). Aerosol concentration has a two-fold effect on fog, which is called as the boomerang pattern (Koren et al., 2008). Under saturation conditions, increasing aerosols commonly result in more CCNs. It promotes activation and condensation, yielding more but smaller droplets and increasing cloud water content (Fan et al., 2018; Rosenfeld et al., 2008). These changes have two kinds of positive feedback on fog (Maalick et al., 2016): more droplets cause stronger radiative cooling at fog top and enhance condensation (Jia et al., 2018); smaller droplet size inhibits sedimentation and the depletion of cloud water (Zhang et al., 2014). However, if aerosol concentration exceeds a certain threshold, this promoting effect disappears (Quan et al., 2011) or even turns into a suppressing effect due to the strong vapour competition (Guo et al., 2017; Koren et al., 2008; Liu et al., 2019; Rangognio, 2009; Wang et al., 2015). Additionally, large-scale aerosol pollution can change weather patterns and affect large-scale fog formation conditions (Niu et al., 2010a). Ding et al. (2019) found that the dome effects of BC induce a land-sea thermal contrast and generate a cyclonic anomaly over coastal areas. This anomaly results in more vapor transported inland and strengthened advection-radiation fog.

Our recent observational work (Yan et al., 2019) indicated a decreasing trend in fog days, and Yan et al. (2019) analysed decadal trends of fog days and quantitatively proved that the inhibiting effects of urbanization outweigh the promoting effects of aerosols on fog during the mature urbanization stage. Their study inspires us to quantitatively confirm the roles of urbanization and aerosols in a dense fog event by an online-coupled synoptic and air quality model, WRF-Chem. This event is a radiation fog event with weak synoptic forcing (detailed in Sect. 3.1), so the effects of urbanization and aerosols should be obvious. Determining the quantitative extents of urbanization effect, aerosol effect and their combined effect is an interesting topic, which has barely been studied previously to the best of our knowledge. This work is expected to facilitate the understanding of how anthropogenic activities affect the natural environment, fog (cloud) physics and aerosol-cloud interactions near the surface.

In this study, urbanization mainly refers to UHI and UDI associated with land use change and human activities, excluding the increasing aerosol pollution caused by urban expansion. Air pollution refers to aerosols and is indicated by anthropogenic emissions because aerosol concentration is highly proportional to emission intensity. Liquid water content (LWC) and cloud/fog droplet number concentration (N_d) are two important parameters representing fog intensity and visibility. Following previous studies (e.g., Ding et al., 2019; Gu et al., 2019; Jia et al., 2018; Maalick et al., 2016; Yang et al., 2018), we use LWC as the indicator of fog to reveal different characteristics of fog in different experiments. This study is organized as follows. The data, model and methods are described in Sect. 2. Section 3.1 overviews the fog event and provides preliminary evidence of how urban development affects fog. Section 3.2 evaluates the model performance. Sections 3.3 to 3.5 analyse the urbanization, aerosol and combined effects on fog. Section 3.6 discusses the rationality and reliability of the results. Section 4 concludes the findings of this study.
2 Data, model and methods

2.1 Data

The first data are the hourly automatic weather station data from the Shouxian National Climate Observatory (SX; 32.4° N, 116.8° E, 23 m) that are used to evaluate the model performance. SX is a rural site surrounded by vast croplands and is approximately 30 km away from the nearest large city, Huainan (Fig. 1b). The data include horizontal visibility, temperature, relative humidity, wind direction and speed. The second data are the Himawari 8 satellite data that are used to represent fog area (https://www.eorc.jaxa.jp/ptree/index.html). Fog area is mainly indicated by the albedo at three visible bands: red (band 3, 0.64 μm), green (band 2, 0.51 μm) and blue (band 1, 0.47 μm). The third data are the 3-hourly data from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) (Li et al., 2010) that are also used to represent the fog area. The fourth data are the land use data from the Moderate Resolution Imaging Spectroradiometer Land Cover Type Version 6 data (MCD12Q1; https://lpdaac.usgs.gov/products/mcd12q1v006) in the year of 2017, the same as the simulation period. The data are resampled from 500 m to 30 arc-seconds (approximately 1 km) and used to replace the geological data of the WRF model.

2.2 Model configuration

The model used in this study is the WRF-Chem (V3.9.1.1) model. It is an online-coupled mesoscale synoptic and air quality model that considers the sophisticated interactions among various dynamic, physical and chemical processes (Chapman et al., 2009; Fast et al., 2006). WRF or WRF-Chem has been successfully used in simulating fog events (Jia and Guo, 2012; Jia and Guo, 2015; Jia et al., 2018) and exploring aerosol-cloud interactions (Fan et al., 2018). Two nest domains are set up (Fig. 1). The d01 domain has a size of 217×223 grids and a resolution of 6 km, covering the entire fog area of this event (Fig. 2a). The d02 domain has a size of 115×121 grids and a resolution of 2 km, covering SX and the adjacent areas. The land use data are replaced by MCD12Q1 data, which represent the latest condition.

Fog simulation is highly sensitive to vertical grids (Gultepe et al., 2007). A fine vertical resolution with a proper lowest model level can better resolve turbulences, thus yielding a reasonable fog structure (Yang et al., 2019). Here, 42 vertical levels are established with the first five values of 1.000, 0.999, 0.998, 0.997, 0.996. There are 25 levels below the boundary layer (approximately 1500 m), and the lowest model level is approximately 8 m.

Fog simulation is also sensitive to physical schemes (Gu et al., 2019). Through numerous experiments, radiation, microphysics and boundary schemes are found to significantly influence the model performance, and the boundary layer scheme plays a decisive role (Naira Chaouch et al., 2017). The radiation schemes are the RRTM longwave scheme and the Goddard
shortwave scheme. The microphysical scheme is the Morrison double-moment scheme (Morrison et al., 2005). The boundary layer scheme is the YSU 1.5-order closure non-local scheme, which yields better results than do any other schemes. The major schemes are listed in Tab. 1.

The model is driven by the highest resolution product (0.125°, approximately 13 km) of ECMWF data (https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/). The anthropogenic emissions are derived from the Multi-resolution Emission Inventory for China (MEIC) database (http://www.meicmodel.org). The simulation starts at 2017-01-01 08:00 and ends at 2017-01-03 14:00, with the first 24 hours as the spin-up period (all the times here are in local time).

2.3 Sensitivity experiments

The study site is SX because only its visibility is observed hourly and is a multiple of 1 m, which is suitable for evaluating the model performance. To investigate the effects of urbanization and aerosols on fog, we change the land use and emission intensity around SX. Four experiments, i.e., u0e0, u3e0, u0e3 and u3e3 are designed. The u0e0 is the base experiment, with no urbanization and weak emission at SX. The u3e0 is set as the urbanization condition. The u0e3 is set as the polluted condition. The u3e3 is set as the urban development condition (urbanization and pollution coexist). The experiment settings are listed in Tab. 2.

On the setting of urbanized condition, we replace the land use of SX as that of Hefei, the most urbanized city and the capital of Anhui Province. The downtown of Hefei has a built area of approximately 570 km2. Therefore, the 11x13 box centered on SX (572 km2) is replaced by urban surface in the u3e0 and u3e3 experiments to represent the urbanization condition.

The downtown of Hefei has much higher emissions than SX. For example, the PM2.5 emission rate of Hefei is 40 times higher than that of SX. To represent the polluted condition, the emission intensity of the aforementioned box is set to be equal to that of downtown Hefei in the u0e3 and u3e3 experiments.

2.4 Calculating visibility

The LWC is the proxy of fog as mentioned above. Since the LWC is not observed, and visibility (VIS) is related to LWC, the VIS is used to assess the model performance. VIS is not diagnosed by the model and can be parameterized by the function of LWC, N_d or droplet effective radius (R_e). Equation 1 (Kunkel, 1983) and 2 (Gultepe et al, 2006) are two parameterization methods.

\[
\text{VIS}[\text{m}]=27\text{LWC}[\text{g cm}^{-3}]^{0.88} \tag{1}
\]
Another parameterization method is based on the Mie theory (Gultepe et al., 2017). VIS is inverse proportional to atmospheric extinction at visible wavelength. The extinction coefficient of cloud water (β_c) is

$$\beta_c [\text{km}^{-1}] = \frac{3Q_{\text{ext}} \rho_a \text{LWC}}{4\rho_w R_e} \times 10^6$$

where ρ_a (ρ_w) is the air (water) density in kg m$^{-3}$, LWC is in g kg$^{-1}$, R_e is in μm, and Q_{ext} is the extinction efficiency, which is assumed to be 2 for cloud droplets.

The atmospheric extinction (β) is also largely contributed by aerosols (β_a) and other types of hydrometeors. The model diagnoses β_a at 550 nm. No other types of hydrometeors occur in this fog case, so we assume $\beta = \beta_a + \beta_c$. Then VIS is determined by the Koschmieder rule (Koschmieder, 1924): \(\text{VIS}[m] = 3.912/\beta [\text{km}^{-1}] \times 1000\).

During fog period (Fig. 4 shaded zone), the three methods nearly yield the same results (figure not shown), so the last method is used to calculate the simulated VIS.

3 Results and discussions

3.1 Overview of the fog event

3.1.1 Formation condition and lifetime

From 01 to 06 January 2017, East China is dominated by zonal circulation, with weak trough, ridge, pressure gradient and atmospheric diffusion (Zhang and Ma, 2017). Under this stable weather pattern, the accumulation of pollutants and water vapour promote the occurrence of fog-haze events. From the evening of 02 January to the noon of 03 January, a dense fog event occurs in wide regions of East China. The fog reaches its peak at 08:00 03 January, covering south Hebei, east Henan, west Shandong, Anhui, Jiangsu and Shanghai (Fig. 2a). Figure 4a shows the temporal variation of visibility at SX. The fog forms at 18:00 02 January and dissipates at 12:40 03 January. This is a radiation fog which is promoted by strong radiative cooling at night and weak easterly water vapour transport from northwest Pacific (Zhu et al., 2019).

3.1.2 Preliminary evidence of urban development affecting fog

Lee (1987) and Sachweh and Koepke (1995) observed "fog holes" over urban areas on satellite images. Here, fog hole means...
the low liquid water path (LWP) region within the fog region, which is visualized as pixels with weak fog (high visibility) or clear sky surrounded by dense fog. These holes demonstrate that urban development (urbanization and aerosols) has a clearing effect on fog. In this fog event, fog holes are also present over urban areas on the Himawari 8 image at 11:00 03 January (Fig. 3). We assume that urbanization and air pollution could have profound effects on fog by reducing the LWP or advancing the dissipation of fog, and the role of aerosols on fog is weaker than that of urbanization.

3.2 Model evaluation and simulations

The model performance is evaluated by comparing the fog spatial coverage. Satellite cloud image and modelled LWP (>2 g m\(^{-2}\)) can represent the observed and simulated fog zone, respectively (Jia et al., 2018). Figure 2 shows the Himawari 8 visible cloud image and the simulated LWP distribution at 08:00. The light white pixels and light red dots indicate the observed fog area. The model well captures the fog in south Hebei, east Henan, west Shandong, Anhui, Jiangsu and Shanghai.

The model performance is also evaluated by comparing the visibility and other basic parameters at the SX site (Fig. 4). Seen from the visibility, the simulated fog forms at 19:30, 1.5 h later than the observation, and dissipates at 12:20, 30 min earlier than the observation. During the fog period, the simulated visibility agrees well with the observation. The other parameters such as temperature, wind speed and relative humidity are also effectively reproduced by the model, with relative small RMSEs of 0.8 K, 0.7 m/s and 5.9 %, respectively. Overall, the model well captures the spatial feature and temporal evolution of the fog.

3.3 Urbanization effects

From different sensitivity experiments (u3e0, u0e3 and u3e3), we can deduce the extents of the separate or combined effects of urbanization and aerosols on fog. Figure 5 compares the LWC between u0e0 and u3e0. The general results are: (1) Before 02:00, urbanization leads to a decreasing LWC in all layers. Fog forms on the surface at 22:30 in u3e0, 3 h later than in u0e0. (2) After 02:00, the LWC decreases in the low-level while it increases in the upper-level. Fog dissipates at 10:50 in u3e0, 1.5 h earlier than in u0e0. To better explain the LWC difference, its profiles are shown in Fig. 6. At 23:00, although fog has formed in u3e0, the fog is rather weak compared with u0e0, which is caused by the higher temperature (Fig. 6f) and lower saturation associated with UHI and UDI. At 02:00, fog develops in u3e0, but its intensity (the value of LWC) cannot reach the same level as that in u0e0.

An interesting phenomenon is the opposite change of LWC in the low-level and upper-level after 02:00. This phenomenon can be explained by the role of updrafts. The increasing roughness length and extra warming in urban conditions could trigger horizontal wind convergence (Fig. S1) and the enhanced updrafts (Fig. 5c). The stronger updrafts in u3e0 affect conden-
sation via two possible pathways: (1) the vertical transport of vapour \((- w \frac{\partial q}{\partial z})\) and vertical convergence/divergence \((- q \frac{\partial w}{\partial z})\) re-distribute water vapour and affect condensation; (2) the adiabatic cooling promotes condensation. The role of the first pathway is measured by vertical vapour flux divergence \(\left(\frac{1}{g} \frac{\partial (qw)}{\partial z}\right)\). At 05:00, u3e0 shows a stronger vapour convergence above 110 m (Fig. 6h), and the LWC increases above 130 m (Fig. 6c). At 08:00, u3e0 shows a stronger vapour convergence above 130 m (Fig. 6i), and the LWC increases above 170 m (Fig. 6d). Therefore, it is possible that the adiabatic cooling and updraft-induced vapour flux convergence increase the vapour content and promote condensation in the upper-level, while the fog in the low-level is suppressed by the divergence of vapour flux. At 11:00, fog disappears at the ground in u3e0 likely due to the higher temperature (Fig. 6j). In summary, the UHI, UDI and updrafts alter the profile of LWC and reduce the LWP most of the time (Fig. 5c), and the decreasing LWP in the daytime can explain why fog holes occur above urban areas (Fig. 3).

3.4 Aerosol effects

Figure 7 compares the LWC between u0e0 and u0e3. The formation time, dissipation time of fog and fog top show almost no changes. The LWC increases at almost all layers in the polluted condition. Accordingly, the LWP also increases (Fig. 7c). It is probable that the current pollution level of China always promotes fog occurrence. To testify whether the u0e3 is below the transition point of the boomerang pattern, eight additional experiments (D10, D7.5, D5, D2.5, M2.5, M5, M7.5 and M10) are performed. These experiments are the same as u0e3, except that the emissions around SX (the black box in Fig. 1b) are multiplied (the "M" prefix) or divided (the "D" prefix). For example, the name M2.5 means multiplying by 2.5 times, the name D10 means dividing by 10 times.

Figure 8 compares the LWC, \(N_d\), \(R_e\) and LWP among the nine emission-variant experiments. All the four parameters show the boomerang pattern, which demonstrates that the model is able to simulate the dual effects of aerosols. Below u0e3, the four parameters monotonically vary with emission level, or CCN concentration, indicating that aerosol pollution could always promote fog. This phenomenon is because stronger emissions produce more aerosols and CCN. Under saturation conditions, the larger amount of CCN boost activation and yield a higher \(N_d\). The higher \(N_d\) reduces \(R_e\) and inhibits autoconversion and sedimentation (Twomey, 1977); thus, this situation decreases the depletion of fog water and increases the LWC. This promoting effect has been confirmed by many previous model studies (e.g., Maalick et al., 2016; Stolaki et al., 2015) and observations (e.g., Chen et al., 2012; Goren and Rosenfeld, 2012). The aerosol CCN concentration of u0e3 (570 cm\(^{-3}\)) is lower than that of the turning point (experiment M2.5) (1349 cm\(^{-3}\)) is higher than that of u0e3 (Fig. 8), revealing possibly indicating that the current pollution level in China (u0e3) is still located in the promoting regime rather than the suppressing regime of fog occurrence, which is also found by Jia et al. (2018).
Rosenfeld et al. (2008) revealed that the turning point of boomerang pattern in convective clouds is $\text{CCN}_{0.4} = 1200 \text{ cm}^{-3}$. The $\text{CCN}_{0.4}$ of u0e3 is 6023 cm^{-3}, which seems to suppress fog. Aerosols affect convective clouds through two competing mechanisms: 1) invigorating convection by promoting vapour condensation. 2) suppressing convection by blocking solar radiation and reducing surface heat flux. Under polluted conditions ($\text{AOD}>0.3$ or $\text{CCN}_{0.4}>1200 \text{ cm}^{-3}$), the suppressing effect outweighs the invigoration effect, so the turning point occurs (Koren et al., 2008; Rosenfeld et al., 2008). This suppressing effect does not exist in fog because fog commonly formed at night. Therefore, the turning point in fog might occur later than that in convective clouds. In North China Plain where air pollution is thought to be more serious, a case study by WRF-Chem also indicates that fog properties (e.g., LWC, N_d and LWP) increase monotonically when emission intensity varies from 0.05-fold to 1-fold.

3.5 Combined effects of urbanization and aerosols

Figure 9 compares the LWC between u0e0 and u3e3. The u3e3-induced change is quite similar to but not the same as the u3e0-induced change. The time-height average of absolute change of LWC induced by u3e0, u0e3 and u3e3 are 0.120, 0.019, 0.124 g kg$^{-1}$, respectively. This result indicates that urbanization affects fog to a larger extent than do aerosols; when urbanization and aerosols are combined, the effect of aerosols is indiscernible. The LWP is also significantly suppressed in the daytime, and the promoting effect of aerosols in Fig. 7c is indiscernible in Fig. 9c. To further explain the changes in LWC, we perform budget analysis of the LWC to determine which physical processes are the dominant contributors.

In WRF, the budget of LWC is composed of the following items,

$$ \frac{\partial q_c}{\partial t} = - \left(\frac{\partial}{\partial x} u + \frac{\partial}{\partial y} v + \frac{\partial}{\partial z} w \right) q_c + \left(\frac{\partial q_c}{\partial t} \right)_{\text{adv}} \left(\frac{\partial q_c}{\partial t} \right)_{\text{PBL}} + \left(\frac{\partial q_c}{\partial t} \right)_{\text{micro}} + \left(\frac{\partial q_c}{\partial t} \right)_{\text{cumu}} $$

(4)

where q_c is LWC, and the subscripts denote advection, boundary layer, microphysical and cumulus processes, respectively.

The microphysical tendency is further decomposed into the following items,

$$ \left(\frac{\partial q_c}{\partial t} \right)_{\text{micro}} = \left(\frac{\partial q_c}{\partial t} \right)_{\text{cold}} + \left(\frac{\partial q_c}{\partial t} \right)_{\text{auto}} + \left(\frac{\partial q_c}{\partial t} \right)_{\text{accr}} + \left(\frac{\partial q_c}{\partial t} \right)_{\text{sed}} + \left(\frac{\partial q_c}{\partial t} \right)_{\text{cond/evap}} $$

(5)

where the subscripts denote cold phase processes, autoconversion, accretion, sedimentation and condensation/evaporation, respectively.

All the processes regarding precipitation and cold phase (the cumu, cold, auto and accr subscripts) are not analysed because
no precipitation occurs, and the temperature is above 0°C in the simulated fog (figure not shown). The sum of microphysical (condensation/evaporation and sedimentation), boundary layer and advection tendencies is equal to the LWC distribution, so the contributions of other physical processes can be safely ignored.

We can also infer that to what extents the various physical processes affect fog through the sensitivity experiments (u3e0, u0e3 and u3e3). Additional aerosols weakly influence these processes (Fig. S2 right column) and subsequently result in weak LWC change (Fig. 7c). Compared with aerosols, urbanization effect is much more considerable (Fig. S3 right column); it dominantly accounts for the variation in physical tendencies from u0e0 to u3e3 (Fig. 10 right column). In u3e3 condition, urban development (urbanization and aerosols) induces different magnitude of changes in different physical tendencies. The relative magnitudes are 52.1, 38.3 and 9.6 % for the microphysical, boundary layer and advection processes, respectively, indicating that microphysics is most susceptible to urban development and contributes most to the LWC change. Among various microphysical processes, condensation/evaporation contributes most (72.7 %) to the change in microphysical tendency (Fig. 11 right column). The above results indicate that urban development affects the LWC mainly by modulating the condensation/evaporation process. Since u3e3 condition still witnesses higher temperatures and stronger updrafts (figure not shown), the notable variation in condensation/evaporation tendency induced by u3e3 can also be attributed to the predominant role of UHI, UDI and updrafts. The mechanism has been analysed in Sect. 3.3.

3.6 Discussions

As mentioned above, urbanization influences fog to a larger extent than do aerosols; the LWC in fog does not vary substantially with pollution level. This section discusses the rationality and reliability of our results through mechanism analysis and observational evidence.

The sensitivity of cloud properties to aerosols depends on aerosol concentration and saturation environment. In convective clouds with intense upward motions and high saturations, the response of cloud properties to additional aerosols is significant ("aerosol-limited regime") (Fan et al., 2018). However, in fog with much weaker updrafts and lower saturations, this response could be more sensitive to vapour content rather than aerosol concentration ("vapour-limited regime"). It possibly implies that the LWC in fog varies slightly with pollution level but considerably with saturation condition that related to urbanization. Our results reveal that the time-height average LWC varies within the extent of 0.07 g kg⁻¹ when emission intensity varies within two orders of magnitude (Fig. 8). This relative weak response of the LWC to pollution level is also reported by Jia et al. (2018).

In terms of observational evidence, Yan et al. (2019) revealed that fog days in polluted regions of East China have decreased since the 1990s. Through quantitative analysis, the promoting effects of aerosols are weakening, while the suppressing ef-
Effects of urbanization are enhancing and dominantly cause this decrease. Sachweh and Koepke (1995) also claimed that the hindering effects of urbanization outweigh the promoting effects of aerosols on fog in southern Germany. Additionally, satellite images present discernible fog holes above urban areas (Fig. 3) (Lee, 1987; Sachweh and Koepke, 1995). Therefore, these observational evidence support the model results that the promoting effect of aerosols is counteracted by the hindering effect of urbanization. We believe that the results can also be applied to other large cities in China because these cities commonly witness strong UHI, UDI and severe air pollution.

4 Conclusions

A dense radiation fog event occurred in East China from 02 to 03 January 2017. Satellite images show that fog holes occur over urban areas, demonstrating the remarkable effects of urbanization and air pollution on fog. Hence, the mechanism is investigated by the WRF-Chem model. The model well captures the spatial coverage and temporal evolution of the fog. Furthermore, the separate and combined effects of urbanization (refers to UHI and UDI) and air pollution (refers to aerosols) on fog (indicated by the LWC) are revealed, and the extents of these effects are quantitatively determined. Results show that:

Urbanization redistributes the LWC profile by the UHI, UDI effect and updrafts. The updrafts may be caused by surface roughness and extra warming. The UHI and UDI suppress low-level fog, delay its formation by 3 h, and advance its dissipation by 1.5 h. However, the upper-level fog could be enhanced due to the updraft-induced adiabatic cooling and vapour flux convergence. Urbanization reduces the LWP most of the time, and this reduction in the daytime can explain why fog holes are present above urban areas on satellite images.

Aerosols promote fog mainly by changing microphysical properties. The increasing emissions (aerosol concentration) produce more CCN and fog droplets, which decreases \(R_e \) and inhibits sedimentation, thus leading to a higher LWC. Further sensitivity experiments show that the current pollution level in China is still below the transition point of the boomerang pattern that suppresses fog. The macroscopic properties such as fog top and lifetime remain nearly unchanged.

The role of urbanization far outweighs that of aerosols. Therefore, when they act together, the urbanization effect is dominant, and the aerosol effect is indiscernible. Budget analysis of LWC shows that increasing aerosols influence various physical processes to a lesser extent, while urbanization influences these processes to a larger extent, eventually leading to a substantial LWC change in urban development condition (urbanization and aerosols). In this condition, the comparisons among various physical processes reveal that microphysics dominates the change in LWC, and condensation/evaporation dominates the change in microphysical tendency. This result highlights the importance of condensation/evaporation process in modulating the LWC profile and fog structure.
Mechanism analysis and the observational evidence support our key finding that urbanization influences fog to a much larger extent than do aerosol pollution. Therefore, we believe our results are reasonable and robust in radiation fog events without strong synoptic forcings, and the results can also be applied to other large cities in China due to the similar urban development patterns. This study is expected to facilitate a better understanding of how anthropogenic activities affect the natural environment, fog (cloud) physics and aerosol-cloud interactions near the surface. We can also infer the future change of fog occurrence. Under the traditional urban development pattern, i.e., urbanization keeps developing and air quality keeps deteriorating, urban fog occurrence will be further reduced.

Code and data availability. Some of the data repositories have been listed in Sect. 2. The other data, model outputs and codes can be accessed by contacting Bin Zhu via binzhu@nuist.edu.cn.

Author contributions. SY performed the model simulation, data analysis and manuscript writing. BZ proposed the idea, supervised this work and revised the manuscript. YH provided the observation data at the SX site. JZ processed the observation data. HK offered helps to the model simulation. CL and TZ also contributed to the manuscript revision.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgments. We are grateful to the High Performance Computing Center of Nanjing University of Information Science and Technology for doing the numerical calculations in this work on its blade cluster system. We thank American Journal Experts (AJE) for the English language editing.

Financial support. This work is supported by the National Key Research and Development Program (2016YFA0602003) and the National Natural Science Foundation of China (91544229, 41575148, 41605091).

References

IPCC: Climate change 2013: The physical science basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1585 pp., 2013.

Table 1. Summary of major parameterization schemes.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary layer</td>
<td>YSU</td>
</tr>
<tr>
<td>Longwave radiation</td>
<td>RRTM</td>
</tr>
<tr>
<td>Shortwave radiation</td>
<td>New Goddard</td>
</tr>
<tr>
<td>Microphysics</td>
<td>Morrison</td>
</tr>
<tr>
<td>Surface layer</td>
<td>MM5 similarity</td>
</tr>
<tr>
<td>Land surface</td>
<td>Noah</td>
</tr>
<tr>
<td>Urban surface</td>
<td>Urban canopy model</td>
</tr>
<tr>
<td>Gas phase chemistry</td>
<td>CBMZ</td>
</tr>
<tr>
<td>Aerosol chemistry</td>
<td>MOSAIC (4-bin)</td>
</tr>
</tbody>
</table>

Aerosol-cloud and aerosol-radiation interactions: All turned on

Table 2. Settings of sensitive experiments. "N" represents no changes.

<table>
<thead>
<tr>
<th>Case name</th>
<th>Description</th>
<th>Underlying surface</th>
<th>Anthropogenic emission</th>
</tr>
</thead>
<tbody>
<tr>
<td>u0e0</td>
<td>base condition</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>u3e0</td>
<td>urbanization condition</td>
<td>the 11x13 grid centered on SX is replaced by urban surface</td>
<td>N</td>
</tr>
<tr>
<td>u0e3</td>
<td>polluted condition</td>
<td>N</td>
<td>the 11x13 grid centered on SX is replaced by the emission of Hefei downtown</td>
</tr>
<tr>
<td>u3e3</td>
<td>urbanization and polluted condition</td>
<td>same as u3e0</td>
<td>same as u0e3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>u3e0-u0e0</td>
<td>urbanization effect</td>
</tr>
<tr>
<td>u0e3-u0e0</td>
<td>aerosol effect</td>
</tr>
<tr>
<td>u3e3-u0e0</td>
<td>urbanization and aerosol effect</td>
</tr>
</tbody>
</table>
Figure 1. (a) The WRF domain overlaid with terrain height. (b) The land use distribution of domain d02. The green dot is Hefei, the capital of Anhui Province. The white dot is Huainan. The two red dots are the SX site. The land use and emissions of the 22 km × 26 km black box in the center of (b) will be altered in the sensitivity experiments.
Figure 2. The performance of the simulated fog zone at 08:00 03 January 2017. (a) Himawari 8 RGB composite cloud image overlaid with the MICAPS observation sites (light red dots) at which fog was observed (relative humidity $>90\%$ and VIS $<1\,$km). (b) Simulated LWP distribution. Only LWC below 1500 m are integrated. The blue dots are the SX site. The two dashed rectangles in (a) are the subregions of interest in Fig. 3.
Figure 3. Two sub-regions (a and b) with obvious fog holes on the Himawari 8 image at 11:00 03 January 2017. The fog zone, which is represented by albedo > 0.45 (at 0.64 μm) and brightness temperature > 266 K (at 12.4 μm) (Di Vittorio et al., 2002), is marked with cold colours (blue or cyan). The urban areas are marked with blue or red. The red and white pixels surrounded or semi-surrounded by cold colours are fog holes, and among these pixels, the red pixels indicate the fog holes over urban areas. Some of the cities with fog holes are marked by rectangles.
Figure 4. The performance of the simulated meteorological parameters at the SX site. (a) VIS. (b) air temperature. (c) 10-minute average wind speed. (d) Relative humidity (RH). The red dotted lines represent the model results, and the black lines are the observations. The fog period (VIS < 1 km and RH > 90 %) is shaded with light yellow.
Figure 5. Time-height distribution of the LWC (g kg\(^{-1}\)) in (a) \(u_0\epsilon_0\) and (b) \(u_3\epsilon_0\), and (c) is the urbanization effect (\(u_3\epsilon_0\) minus \(u_0\epsilon_0\)) on LWC. The two white curves in (c) are the LWP. The black contour lines in (c) are the difference of vertical velocity (cm s\(^{-1}\)) (\(u_3\epsilon_0\) minus \(u_0\epsilon_0\)). Only the lines after 00:00 are shown for clarity.
Figure 6. Profiles of the LWC (first row), temperature (Tem) (f, g, j) and vertical vapour flux divergence (VFD) (h, i) (g h\(^{-1}\) m\(^{-2}\) hpa\(^{-1}\)) in u0e0 and u3e0 at different times.
Figure 7. Similar to Fig. 5, but for the aerosol effect (u0e3 minus u0e0).
Figure 8. Relationships of the microphysical parameters (LWC, N_d, R_e and LWP) with emission level and CCN_{0.1} concentrations. These parameters are the time-height averages (time average for the LWP) in fog, taking only non-zero values into consideration.
Figure 9. Similar to Fig. 5, but for the combined effect of urbanization and aerosols (u3e3 minus u0e0).
Figure 10. The combined effect of urbanization and aerosols (u3e3 minus u0e0) on various items of the LWC budget. The three rows are the hourly accumulated tendencies (g kg$^{-1}$) of the microphysical, boundary layer, and advection processes.
Figure 11. The combined effect of urbanization and aerosols (u3e3 minus u0e0) on various items of the microphysical tendency. The three rows are the 1-hour accumulated hourly tendencies (g kg$^{-1}$) of the microphysical, condensation-evaporation, and sedimentation processes.