NH$_3$-promoted hydrolysis of NO$_2$ induces explosive growth in HONO

1 State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, 100081, China.

2 Institute for Environmental and Climate Research, Jinan University, Guangzhou, China.

3 Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

4 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China

Corresponding author: Ye Kuang (kuangye@jnu.edu.cn)
Figure S1. The production rate of HONO under different conditions and with different values of reactive NO$_2$ uptake coefficients (γ_{NO_2}), the γ_{NO_2} range is from Li et al. (2018). The surface area density range of fog is calculated based on the fog droplet size distribution measured on the North China Plain (Shen et al.).
Figure S2. Fire spots maps (large red dots: fire spots closest to the station, bright and red dots: VIIRS, yellow and orange dots: MODIS Aqua, bright and dark green dots: MODIS Terra) produced by NASA’s Web Fire Mapper (https://firms.modaps.eosdis.nasa.gov/firemap/), respectively for the 4th-5th, 11th and 14th Nov. 2016. The blue dot shows the location of the Gucheng site, while the pink solid and dashed line circles respectively cover areas within 10 and 20 km distance.

Indirect oxidation of S(IV) by HONO:

\[
\text{HONO} + h\nu \rightarrow \text{NO} + \text{OH} \quad (\text{RS1})
\]

\[
\text{OH} + \text{HSO}_3^- + \text{O}_2 \rightarrow \text{HSO}_4^- + \text{HO}_2 \quad (\text{RS2})
\]
36 $\text{OH} + \text{RH} + \text{O}_2 \rightarrow \text{RO}_x + \text{HO}_2$ \hspace{2cm} (RS3)
37 $\text{HO}_2 + \text{NO} \rightarrow \text{NO}_2 + \text{OH}$ \hspace{2cm} (RS4)
38 $\text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$ \hspace{2cm} (RS5)
39 $\text{HSO}_3^- + \text{H}_2\text{O}_2 \rightarrow \text{HSO}_4^- + \text{H}_2\text{O}$ \hspace{2cm} (RS6)
