Contribution of local and remote anthropogenic aerosols to intensification of a record-breaking torrential rainfall event in Guangdong Province

Zhen Liu¹,², Yi Ming³, Chun Zhao⁴, Ngar Cheung Lau⁵,²,¹, Jianping Guo⁶, Steve Hung Lam Yim⁵,²,¹

¹Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China
²Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
³Geophysical Fluid Dynamics Laboratory/NOAA, Princeton, New Jersey, USA
⁴School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
⁵Department of Geography and Resource Management, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
⁶State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

Correspondence to: Steve H.L. Yim (steveyim@cuhk.edu.hk)

Figure S1. (a) WRF-Chem model two-nested domains with resolutions of 20 km and 4 km for domain 1 (D1) and domain 2 (D2), respectively. Shading represents terrain height (unit: m). (b) Spatial distribution of 3-day averaged column-integrated PM$_{2.5}$ concentrations (shading; unit: µg m$^{-2}$) and 925-hPa wind (vector; unit: m s$^{-1}$) during December 14–16, 2013, in control run. The red box denotes the analysis region.
Figure S2. Differences in accumulated precipitation (unit: mm) on December 16 between (a) CTL and CLEAN (i.e., CTL minus CLEAN), (b) CTL and ARIoff (i.e., CTL minus ARIoff), (c) ARIoff and CLEAN (i.e., ARIoff minus CLEAN), (d) D1 and CLEAN (i.e., D1 minus CLEAN), (e) D2 and CLEAN (D2 minus CLEAN), and (f) 10X and CLEAN (10X minus CLEAN). Red boxes (22°–24° N, 112°–115° E) denote the analysis region. ARIoff run refers to simulation with aerosol-radiation interactions off.
Figure S3. Time series of station average rain rate (unit: mm h\(^{-1}\)) over 22°–24° N, 112°–115° E (a) for OBS (red), CMORPH (black), CTL (blue), ARIoff (green), and CLEAN (purple).