Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Discussion papers
https://doi.org/10.5194/acp-2018-949
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2018-949
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 03 Jan 2019

Research article | 03 Jan 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Chemistry and Physics (ACP).

Aerosol radiative effects with MACv2

Stefan Kinne Stefan Kinne
  • Max-Planck Institute for Meteorology, Hamburg, 20146, Germany

Abstract. onthly global maps for aerosol properties of the MACv2 climatology are applied in an off-line radiative transfer model to determine aerosol radiative effects. For details beyond global averages in most cases global maps are presented to visualize regional and seasonal details. Aside from the direct radiative (aerosol presence) effect, including those for aerosol components as extracted from MACv2 aerosol optics, also the major aerosol indirect radiative effect is covered. Hereby, the impact of smaller drops in water clouds due to added anthropogenic aerosol was simulated by applying a satellite retrieval based fit from locally associations between aerosol and drop concentrations over oceans. Present-day anthropogenic aerosols of MACv2 – on a global average basis – reduce the radiative net-fluxes at the top of the atmosphere (TOA) by −1.0W/m2 and at the surface by −2.1W/m2. Direct cooling contributions are only about half of indirect contributions (−.35 vs −.65) at TOA, but about twice at the surface (−1.45 vs −.65), as solar absorption of the direct effect warms the atmosphere by +1.1W/m2. Natural aerosols are on average less absorbing (for a relatively larger solar TOA cooling) and larger in size (now contributing with IR greenhouse warming). Thus, average TOA direct forcing efficiencies for total and anthropogenic aerosol happen to be similar: −11W/m2/AOD at all-sky and −24W/m2/AOD at clear-sky conditions. The present-day direct impact by all soot (BC) is globally averaged +0.55W/m2 and at least half of it should be attributed to anthropogenic sources. Hereby any accuracy of anthropogenic impacts, not just for soot, suffers from the limited access to a pre-industrial reference. Anthropogenic uncertainty has a particular strong impact on aerosol indirect effects, which dominate the (TOA) forcing. Accounting for uncertainties in the anthropogenic definition, present-day aerosol forcing is estimated to stay within the −0.7 to −1.6W/m2 range, with a best estimate at −1W/m2. Calculations with model predicted temporal changes to anthropogenic AOD indicate that qualitatively the anthropogenic aerosol forcing has not changed much over the last decades and is not likely to increase over the next decades, despite strong regional shifts. These regional shifts explain most solar insolation (brightening or dimming) trends that have been observed by ground-based radiation data.

Stefan Kinne
Interactive discussion
Status: open (until 28 Feb 2019)
Status: open (until 28 Feb 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Stefan Kinne
Viewed  
Total article views: 307 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
245 59 3 307 7 1 2
  • HTML: 245
  • PDF: 59
  • XML: 3
  • Total: 307
  • Supplement: 7
  • BibTeX: 1
  • EndNote: 2
Views and downloads (calculated since 03 Jan 2019)
Cumulative views and downloads (calculated since 03 Jan 2019)
Viewed (geographical distribution)  
Total article views: 113 (including HTML, PDF, and XML) Thereof 109 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 21 Jan 2019
Publications Copernicus
Special issue
Download
Citation
Share