Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Discussion papers
https://doi.org/10.5194/acp-2018-898
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2018-898
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 10 Sep 2018

Research article | 10 Sep 2018

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Atmospheric Chemistry and Physics (ACP).

Relative Humidity Effect on the Formation of Highly Oxidized Molecules and New Particles during Monoterpene Oxidation

Xiaoxiao Li1,2, Sabrina Chee1, Jiming Hao2, Jonathan P. D. Abbatt3, Jingkun Jiang2, and James N. Smith1 Xiaoxiao Li et al.
  • 1Chemistry Department, University of California, Irvine, CA 92697, USA
  • 2State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
  • 3Department of Chemistry, University of Toronto, Toronto, Canada

Abstract. It has been widely observed around the world that the frequency and intensity of new particle formation (NPF) events are reduced during periods of high relative humidity (RH). The current study focuses on how RH affects the formation of highly oxidized molecules (HOMs), which are key components of NPF and initial growth caused by oxidized organics. The ozonolysis of α-pinene, limonene, and △3-carene, with and without OH-scavenger, were carried out under low NOx conditions under a range of RH (from ~3% to ~90%) in a temperature-controlled flow tube. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution of generated particles and a novel transverse-ionization chemical ionization inlet with a high-resolution time-of-fight mass spectrometer detected HOMs. A major finding from this work is that neither the detected HOMs nor their abundance changed significantly with RH, which indicates that the detected HOMs must be formed from water-independent pathways. In fact, the distinguished OH- and O3-derived peroxy radicals (RO2), HOM monomers, and HOM dimers could mostly be explained by the autoxidation of RO2 followed by bimolecular reactions with other RO2 or hydroperoxy radicals (HO2), rather than from a water-influenced pathway like through the formation of a stabilized Criegee intermediate (sCI). However, as RH changed from 3 to 90% the particle number concentrations decreased by a factor of 2~3 while particle mass concentrations increased or decreased slightly within a factor of 2. These observations show that, while high RH appears to inhibit NPF as evident by the decreasing number concentration, this reduction is not caused by a decrease in RO2-derived HOMs formation. One possible explanation is the existence of other extremely low volatility compounds (ELVOCs), like gas phase formed sCI-included accretion products, which are responsible for the very first steps of NPF but are not detected by nitrate-based chemical ionization mass spectrometry. These ELVOCs may be preferentially reduced at high RH compared to more volatile compounds, the latter of which mainly determine the final mass concentration of particles. Another possibility is that a fraction of HOMs cluster with water (but detected as the declustered molecules) at high RH in such a way that they may no longer be able to participate in cluster formation, thereby suppressing NPF.

Xiaoxiao Li et al.
Interactive discussion
Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Co-Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Xiaoxiao Li et al.
Xiaoxiao Li et al.
Viewed
Total article views: 499 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
361 132 6 499 36 3 10
  • HTML: 361
  • PDF: 132
  • XML: 6
  • Total: 499
  • Supplement: 36
  • BibTeX: 3
  • EndNote: 10
Views and downloads (calculated since 10 Sep 2018)
Cumulative views and downloads (calculated since 10 Sep 2018)
Viewed (geographical distribution)
Total article views: 499 (including HTML, PDF, and XML) Thereof 495 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited
Saved
No saved metrics found.
Discussed
No discussed metrics found.
Latest update: 15 Nov 2018
Publications Copernicus
Download
Short summary
We performed lab experiments to explore the role of relative humidity, RH, on atmospheric monoterpene oxidation and new particle formation. These studies will provide insights into the most important steps in the process, while also more accurately representing the real atmosphere. We found that the detected compounds did not change with RH, and in fact could mostly be fully explained by the autoxidation of organic peroxy radicals followed by bimolecular reactions with other peroxy radicals.
We performed lab experiments to explore the role of relative humidity, RH, on atmospheric...
Citation
Share