Summertime fine particulate nitrate pollution in the North China Plain: Increasing trends, formation mechanisms, and implications for control policy

Liang Wen¹, Likun Xue¹*, Xinfeng Wang¹, Caihong Xu¹, Tianshu Chen¹, Lingxiao Yang¹, Tao Wang², Qingzhu Zhang¹, Wenxing Wang¹

¹ Environment Research Institute, Shandong University, Ji’nan, Shandong, China
² Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China

*Corresponding to: L. K. Xue, xuelikun@sdu.edu.cn

Abstract

Nitrate aerosol composes a significant fraction of fine particles and plays a key role in regional air quality and climate. The North China Plain (NCP) is one of the most industrialized and polluted regions in China. To obtain a holistic understanding of the nitrate pollution and its formation mechanisms over the NCP region, intensive field observations were conducted at three sites during summertime in 2014-2015. The measurement sites include an urban site in downtown Ji’nan – the capital city of Shandong Province, a rural site downwind of Ji’nan city, and a remote mountain site at Mt. Tai (1534 m a.s.l.). Elevated nitrate concentrations were observed at all three sites despite distinct temporal and spatial variations. The nitrate/PM₂.₅ and nitrate/sulfate ratios have statistically significantly increased in Ji’nan (2005-2015) and at Mt. Tai (from 2007 to 2014), indicating the worsening situation of regional nitrate pollution. A multi-phase chemical box model (RACM/CAPRAM) was deployed and constrained by observations to elucidate the nitrate formation mechanisms. The principal formation route is the partitioning of gaseous HNO₃ to aerosol phase during the day, whilst the nocturnal nitrate formation is dominated by the heterogeneous hydrolysis of N₂O₅. The daytime nitrate production in the NCP region is mainly limited by the availability of NO₂, and to a lesser extent by O₃ and NH₃. In comparison, the nighttime formation is controlled by both NO₂ and O₃. The presence of NH₃ contributes to the formation of nitrate aerosol during the day, while slightly decreasing nitrate formation at night. Our analyses suggest that
controlling NO\textsubscript{X} and O\textsubscript{3} is an efficient way at the moment to mitigate nitrate pollution in the NCP region, where NH\textsubscript{3} is usually in excess in summer. This study provides observational evidence of a rising trend of nitrate aerosol as well as scientific support for formulating effective control strategies for regional haze in China.

1. Introduction

Atmospheric particles are vital players in tropospheric chemistry, regional air pollution, and climate change. High concentrations of fine particles (i.e., PM\textsubscript{2.5}) can reduce visibility (Xu and Penner, 2012), deteriorate air quality (Huang et al., 2014), and are harmful to human health (Xie et al., 2016). They play an essential role in the Earth’s radiation balance and hence affect climate change, directly by scattering and absorbing the incoming solar radiation (IPCC, 2013) and indirectly by modifying the cloud properties (Ding et al., 2013; Fukushima et al., 2016). Aerosol particles can also serve as a medium for reactive gases to undergo heterogeneous and aqueous phase reactions (Chang et al., 2011). Understanding the chemical composition and sources of atmospheric particles is crucial for quantifying their environmental consequences and formulating science-based mitigation strategies.

Particulate nitrate (NO\textsubscript{3}−) is a principal chemical component of atmospheric fine particles. It is an oxidation product of nitrogen oxides (NO\textsubscript{X}=NO+NO\textsubscript{2}) in the ambient atmosphere. During the day, the oxidation of NO\textsubscript{2} by the hydroxyl radical (OH) produces gaseous nitric acid (HNO\textsubscript{3}), which then reacts with ammonia (NH\textsubscript{3}) or other alkaline compounds to form nitrate aerosol (Calvert and Stockwell, 1983). The partitioning of HNO\textsubscript{3} between gas and aerosol phases is dependent on ambient temperature, humidity and the abundances of alkaline species (Song and Carmichael, 2001; Wang et al., 2009a; Yao and Zhang, 2012). In dark conditions, the reaction of NO\textsubscript{2} and O\textsubscript{3} produces the nitrate radical (NO\textsubscript{3}), which forms an equilibrium with N\textsubscript{2}O\textsubscript{5} that can be subsequently taken up onto particles to enhance nitrate aerosol (Pathak et al., 2009 and 2011; Brown and Stutz, 2012). The contribution from this pathway is minimized by the rapid photolysis of NO\textsubscript{3} and thermal decomposition of N\textsubscript{2}O\textsubscript{5} during the day. The HNO\textsubscript{3} partitioning and N\textsubscript{2}O\textsubscript{5} hydrolysis reactions have been recognized as the major sink pathways of NO\textsubscript{X} in the troposphere (Dentener and Crutzen, 1993; Liu et al., 2013). There are some other formation routes of nitrate aerosol, such as the uptake of NO\textsubscript{3}.
radicals onto particles and its subsequent aqueous reactions with some water-soluble species (Hallquist et al., 1999; see also Table S1). The ambient formation of nitrate aerosol highly depends on the chemical mix of NO\textsubscript{X}, O\textsubscript{3} and NH\textsubscript{3}. To date the detailed relationship between nitrate formation and the chemical mix of NO\textsubscript{X}, O\textsubscript{3} and NH\textsubscript{3} is still poorly understood. Field measurement studies have shown that the uptake coefficient of N\textsubscript{2}O\textsubscript{5} onto particles (γN\textsubscript{2}O\textsubscript{5}) is highly variable and disagrees with the laboratory-derived parameterizations (Brown and Stutz, 2012; and references therein). The contribution of N\textsubscript{2}O\textsubscript{5} hydrolysis pathway tends to show a seasonal dependence with the largest influence in the winter season (Brown and Stutz, 2012; Baasan\textsubscript{d}orj et al., 2017). Vertical mixing of air aloft in the residual layer may also contribute to the surface nitrate pollution (Baasan\textsubscript{d}orj et al., 2017). Consequently, there are still some remaining questions for better understanding the nitrate formation mechanisms.

China has been suffering from severe haze pollution as a result of its fast urbanization and industrialization processes in the past decades. The North China Plain (NCP), covering the Beijing-Tianjin-Hebei area and surrounding Shandong and Henan provinces, is the most polluted region with the highest annual concentrations of PM\textsubscript{2.5} in China (http://www.cnemc.cn/kqzlkbbgyb2092938.jhtml). Previous air pollution control in China primarily focused on the reduction of anthropogenic emissions of sulfur dioxide (SO\textsubscript{2}), given the dominant contributions of sulfate (SO\textsubscript{4}2-) to the PM\textsubscript{2.5} and acid deposition (Hao et al., 2000 and 2007). In the last decade, about 75% reduction of SO\textsubscript{2} emissions in China has successfully resulted in decreases in the ambient levels of both SO\textsubscript{2} and aerosol SO\textsubscript{4}2- in fast-developing regions including the NCP (Wang et al., 2013; Li et al., 2017). In comparison, several recent observational studies have indicated an increasingly important role of aerosol nitrate, which may even dominate summertime haze formation in the NCP region (Wen et al., 2015; Li et al., 2018). A recent modeling study has predicted a significant increase of aerosol nitrate along with the decrease of sulfate during 2006-2015 over eastern China (Wang et al., 2013). To the best of our knowledge, there are no previous observational reports of increasing nitrate aerosol over northern China. Long-term measurements are necessary to confirm and quantify this trend, and better understand the nitrate formation mechanisms in China.

To achieve a better understanding of the summertime nitrate pollution and its formation
mechanism in the NCP region, four phases of intensive observations were conducted at three different sites covering urban, rural and remote areas in 2014 and 2015. The spatial distribution and temporal variation of nitrate aerosol pollution were examined. The data were combined with previous measurements to derive the trends of the “nitrate/PM$_{2.5}$” and “nitrate/sulfate” ratios, confirming the statistically significant increase of regional nitrate pollution during 2005-2015. A multi-phase chemical box model, constrained by in-situ observations, was then deployed to unravel the formation mechanisms of fine particulate nitrate. The impacts of NO$_2$, O$_3$ and NH$_3$ on the regional nitrate formation were finally quantified. Overall, the present study provides the first piece of the observational evidence for the increasing trend of nitrate aerosol in northern China, and our findings have important implications for the future control of regional haze pollution in the NCP region.

2. Materials and methods

2.1. Study sites

To better understand the regional-scale nitrate pollution and formation processes, four phases of intensive field campaigns were conducted at three sites in the central part of North China Plain in the summers of 2014-2015. Considering that southerly/southeasterly winds generally prevail in summertime, the three study sites were carefully selected to lie on a southeast-northwest transect (see Figure 1), and to represent typical urban, rural and remote atmospheres of the region. A summary of the measurement locations and periods are shown in Table S2.

The urban site (36.67°N, 117.06°E, ~50 m above sea level (a.s.l.)) was located in the downtown area of Ji’nan, the capital city of Shandong province, accommodating more than 7 million inhabitants, ~1.7 million automobiles and many factories. Ji’nan is one of the largest cities in the central NCP, and has been frequently ranked among the worst ten key cities of China in terms of air quality (http://www.cnemc.cn/kqzlzkbgyb2092938.jhtml). The site is built on the rooftop of a six-floor building in the Central Campus of Shandong University, which is situated in the residential and commercial areas. Details of this site have been provided in our previous publications (Gao et al., 2011; Wang et al., 2015). Two intensive campaigns took place during 5th-17th May 2014 and 23rd August - 21st September 2015,
respectively. In addition, measurements of aerosol ionic components have been made previously at this site in selected years since 2005 (Yang et al., 2007 and 2012; Gao et al., 2011; Zhu et al., 2015).

The rural site (36.87°N, 116.57°E, ~23 m a.s.l.) was set up at the Chinese Academy of Sciences Comprehensive Station in Yucheng. Although Yucheng belongs to Dezhou city, it serves as a satellite town of Ji’nan. The measurement site is located about 50 km northwest (normally downwind in summer) of downtown Ji’nan (Fig. 1), and thus can be regarded as a receptor site of urban pollution. The instruments were housed in a temperature controlled container that was placed in an open cropland with few anthropogenic emissions nearby (Wen et al., 2015; Zhu et al., 2016). A six-week campaign was carried out here from 2nd June to 16th July 2014.

The remote site (36.26°N, 117.11°E, 1465 m a.s.l.) was installed at the summit of Mt. Tai. Mt. Tai is the highest mountain over the North China Plain (with a peak of 1534 m a.s.l.), and has been widely deployed as the sampling platform to investigate regional air pollution (Gao et al., 2005; Sun et al., 2016). The station was set up in a hotel to the north of mountain peak with a little lower elevation. It is located approximately 15 km north of Tai’an city (with a population of 5.6 million) and 40 km south of urban Ji’nan (Fig. 1). Detailed description of this site can be found elsewhere (Guo et al., 2012; Shen et al., 2012). In the present study, the measurements were conducted from 23rd July to 27th August 2014. Previous data collected at Mt. Tai in summer 2007 are also analyzed to examine the long-term change in the regional nitrate pollution (Zhou et al., 2010).

2.2. Measurement techniques

A Monitor for AeRosols and GAses (MARGA, ADI20801, Applikon-ECN, Netherlands) was deployed in the present study to measure continuously, at a time resolution of 1-hour, inorganic water-soluble ions (i.e., \(\text{NO}_3^- \), \(\text{SO}_4^{2+} \), \(\text{NH}_4^+ \), \(\text{Cl}^- \), etc.) in PM\(_{2.5}\) together with acid and alkaline gases (i.e., \(\text{HNO}_3 \), \(\text{HCl} \), \(\text{NH}_3 \), etc.). The target gases and ions are collected and dissolved by a Wet Rotating Denuder (WRD) and a Steam Jet Aerosol Collector (SJAC), respectively (Brink et al., 2009). The dissolved components are then analyzed by a cationic and an anionic ion chromatography with eluent solutions of methane sulfonic acid (308 mg
L\(^{-1}\)) and NaHCO\(_3\) (672 mg L\(^{-1}\))-Na\(_2\)CO\(_3\) (742 mg L\(^{-1}\)). An internal standard solution of LiBr (4 mg L\(^{-1}\)) was added automatically into the collected sample solutions to calibrate the detection in each analytic process. Multi-point calibration was performed before and after the field campaigns to examine the sensitivity of the detectors. The detection limits were evaluated as 0.05, 0.04 and 0.05 μg m\(^{-3}\) for particulate NO\(_3^–\), SO\(_4^{2–}\) and NH\(_4^+\), and 0.01, 0.01 and 0.07 ppbv for gaseous HNO\(_3\), SO\(_2\) and NH\(_3\), respectively. The MARGA instrument has been deployed in many field studies in the high aerosol loading environment in China (e.g., Wen et al., 2015; Xie et al., 2015).

To achieve a detailed analysis of nitrate formation processes, a large suite of ancillary measurements were concurrently made during the field studies. PM\(_{2.5}\) mass concentrations were in-situ quantified by a SHARP monitor (Model 5030, Thermo Scientific, USA); particle size and counts in the range of 5-10000 nm were monitored by a wide-range particle spectrometer (WPS; Model 1000XP, MSP Corporation, USA); NO and NO\(_2\) by a chemiluminescence instrument equipped with an internal molybdenum oxide (MoO) catalytic converter (Model 42C, Thermo Electron Corporation, USA); O\(_3\) by an ultraviolet absorption analyzer (Model 49C, Thermo Electron Corporation, USA); CO by a non-dispersive infrared analyzer (Model 300EU, API, USA); SO\(_2\) by an ultraviolet fluorescence analyzer (Model 43C, Thermo Electron Corporation, USA); meteorological parameters including temperature, relative humidity (RH) and wind sectors by commercial automatic weather stations. All of these techniques have been well qualified and widely applied in many previous studies, to which detailed information can be referred (Gao et al., 2011; Wang et al., 2012; Xue et al., 2014).

2.3. Multi-phase chemical box model

A zero-dimensional chemical box model was configured to simulate the in-situ formation of fine nitrate aerosol. It couples the regional atmospheric chemistry mechanism version 2 (RACM2; including 363 chemical reactions) and the chemical aqueous phase radical mechanism version 2.4 (CAPRAM 2.4; including 438 chemical reactions) to account for the gas- and aqueous-phase atmospheric chemistry (Goliff et al., 2013; Herrmann et al., 2000 and 2005). The gas-aqueous phase transfer processes were adopted from the resistance scheme of
Schwartz (1986). This model explicitly describes the gas-to-aqueous phase partitioning of various chemical species, which connects the detailed chemical reactions in both gas and aqueous phases. The chemical reactions representing the nitrate formation in the model are outlined in Table S1. Briefly, these reactions can be categorized into three major formation pathways, namely, partitioning of gaseous HNO$_3$ to the aerosol phase, hydrolysis reactions of N$_2$O$_5$, and aqueous phase reactions of NO$_3$ radicals. The HNO$_3$ partitioning is largely affected by the availability of NH$_3$, since the partitioning of NH$_3$ would decrease the aerosol acidity and hence enhance the partitioning of HNO$_3$ to the aerosol phase (see Table S1). For the N$_2$O$_5$ hydrolysis process, the uptake coefficient of N$_2$O$_5$ on particles (γN$_2$O$_5$) is the parameter with large uncertainty in modeling studies. Recent studies have shown that γN$_2$O$_5$ tends to be largely variable and significant discrepancy exists between field-derived laboratory-derived parameterizations (Chang et al., 2011). The RACM/CAPRAM model doesn’t take γN$_2$O$_5$ into account, but describes explicitly the N$_2$O$_5$ gas-to-aqueous phase partitioning as well as its subsequent aqueous phase reactions. See Table S1 for the detailed treatment of the N$_2$O$_5$ hydrolysis processes in the model. This model has been utilized to simulate the nighttime nitrate formation in Beijing and Shanghai (Pathak et al., 2011).

The model calculation requires a large number of variables and parameters, including: 1) gas phase concentrations of NO, NO$_2$, O$_3$, SO$_2$, HCl, HNO$_2$, HNO$_3$, NH$_3$, CO and VOCs, etc.; 2) particulate (or aqueous) phase concentrations of NO$_3^-$, SO$_4^{2-}$, Cl$^-$, HSO$_4^-$, NH$_4^+$, H$^+$, OH$^-$, etc.; 3) other auxiliary parameters such as temperature, RH, pressure, boundary layer height, particle radius, and aerosol water content, etc. Most of the above parameters were observed in-situ during our intensive measurement campaigns, and the available data were directly used to constrain the model. The measured aerosol ions data such as nitrate, sulfate and ammonium were only used as initial conditions of the model simulation. The model was initialized with the measured nitrate concentration at the beginning of the episodes, and then simulated its formation with constraints of other relevant species. The particle radius was calculated from the measured aerosol number and size distribution with an assumption that all particles were spherical. A hygroscopic growth factor was adopted from Lewis (2008) and Achtert et al. (2009) to take into account the effect of hygroscopic growth on the particle size.
and surface. Aerosol H⁺, OH⁻, HSO₄⁻, and water content were simulated by a thermodynamic model (E-AIM; http://www.aim.env uea.ac.uk/aim/aim.php) based on the measured aerosol chemistry data (Clegg et al., 1998; Zhang et al., 2000). The VOC measurements were not made during the present study, and we used the campaign average data previously collected in the same areas during summertime for approximation (Wang et al., 2015; Zhu et al., 2016 and 2017). The detailed VOC species and their concentrations as model input are documented in Table S3. We conducted sensitivity tests with 0.5 or 1.5 times of the initial VOC concentrations, and found that the model simulation was somewhat insensitive to the initial VOC data (the differences between sensitivity tests and base run were within 12%; see Figure S1). This should be mainly due to the low levels of biogenic VOCs in the study area. Given the lack of in-situ VOC measurements, however, the treatment of VOC data presents a major uncertainty in the present modeling analyses. The boundary layer height, which affects the dry deposition of various constituents, was estimated by the Nozaki method (Nozaki, 1973).

The simulation was conducted for selected nighttime or daytime nitrate formation cases. The starting time and simulation periods depended on the individual cases. The output data included particulate nitrate concentrations and reaction rates of the major formation pathways. In addition, a number of sensitivity simulations were performed to examine the relationships between nitrate formation and its precursors (see Sections 3.3 and 3.4).

3. Results and discussions

3.1. Temporal and spatial variations

Table 1 summarizes the statistics of the aerosol chemical properties, trace gases and meteorological parameters measured at three study sites. It clearly shows the spatial distribution of regional aerosol pollution though elevated levels of PM₂.₅ and major ions were observed at all three sites. The highest PM₂.₅ levels were recorded at the receptor rural site (Yucheng; with campaign average ± SD of 97.9±53.0 µg m⁻³), followed by the urban (Ji’nan; 68.4±41.7 and 59.3±31.8 µg m⁻³ in 2014 and 2015, respectively) and mountain sites (Mt. Tai; 50.2±31.7 µg m⁻³). Nitrate shows a similar gradient with average concentrations ranging from 6.0±4.6 µg m⁻³ at Mt. Tai to 13.6±10.3 µg m⁻³ at Yucheng. In comparison, SO₄²⁻ shows a
slightly different pattern with the lowest levels found in Ji’nan (12.2±7.5 and 12.7±7.9 μg m⁻³), then Mt. Tai (14.7±8.9 μg m⁻³) and Yucheng (23.6±13.4 μg m⁻³). Chloride showed comparable levels in urban Ji’nan (1.3±2.1 and 1.3±1.7 μg m⁻³) and rural Yucheng (1.2±1.2 μg m⁻³), with a relatively lower level at Mt. Tai (0.7±0.5 μg m⁻³). For NO₂, an anthropogenic emission indicator and a major precursor of NO₃⁻, the highest mixing ratios were determined in urban Ji’nan, followed by Yucheng and Mt. Tai. The nitrate oxidation ratio (NOR), defined as the molar ratio of NO₃⁻ to NO₃⁻+NOₓ, shows an opposite pattern with the lowest values in Ji’nan (0.11±0.07 and 0.16±0.08 in 2014 and 2015) and highest levels at Mt. Tai (0.39±0.20). This indicates the different extent of chemical processing of air masses in different types of areas. The air masses sampled at Mt. Tai were more aged and longer air transport allowed more time for chemical processing. The above regional gradients of air pollution are mainly owing to the spatial distribution of anthropogenic emissions and different chemical aging of air masses. It should be noted that these measurements were not conducted simultaneously, and thus difference in the reported data at three study sites can be expected in view of the potential difference in the meteorological conditions which affect atmospheric mixing and transport processes. However, the spatial distributions of emissions, atmospheric chemical and physical processes are still believed to be the major factor shaping the observed regional pattern of aerosol pollution.

Table 1 also illustrates some homogeneity of the regional aerosol pollution and chemistry in the NCP region. First, secondary inorganic ions (i.e., SO₄²⁻, NO₃⁻ and NH₄⁺) accounted for on average 41%-56% of PM₂.₅ at three sites, indicating their dominant roles in the aerosol composition and regional haze. Second, NO₃⁻ alone presented an important fraction of fine particles, and the NO₃⁻/PM₂.₅ ratios were nearly uniform over the region, with average values of 11%-14% at all three sites. Based on field measurements in January 2013, Huang (2014) also reported that NO₃⁻ accounted for 12%, 14% and 13% of PM₂.₅ in Beijing, Shanghai and Guangzhou, with a smaller ratio (7%) recorded in a western city (Xi’an). At the surface sites (i.e., Ji’nan and Yucheng) in the present study, the molar concentrations of NO₃⁻ were even comparable to SO₄²⁻, with mean NO₃⁻/SO₄²⁻ ratios of 0.93-1.04. In comparison, the NO₃⁻/SO₄²⁻ ratio was lower (0.62±0.33) at Mt. Tai, which should be due to the longer lifetime
of sulfate aerosol and frequent transport of plant plumes to the mountain site (Wang et al., 2017). Finally, \(\text{NH}_4^+ \) was generally in excess in PM\(_{2.5}\). The average excess \(\text{NH}_4^+ \) (excess \(\text{NH}_4^+ = 18 \times ([\text{NH}_4^+] - 1.5 \times [\text{SO}_4^{2-}] - [\text{NO}_3^-] - [\text{Cl}^-]) \)) were calculated in the range of 0.9-4.3 \(\mu \text{g m}^{-3} \) at our three study sites. This highlights the \(\text{NH}_3 \)-rich chemical environment of the NCP region, and the abundant \(\text{NH}_3 \) may significantly affect the formation of nitrate aerosol (see Section 3.4).

Figure 2 clearly shows the distinct diurnal variation patterns of \(\text{NO}_3^- \) and \(\text{NO}_2 \) at the three different types of sites. In urban Ji’nan, \(\text{NO}_3^- \) showed a maximum level in the early morning (8:00 local time; LT) with a secondary peak in the afternoon (15:00 LT). At Yucheng, the average diurnal profile displays a continuous nitrate formation process throughout the nighttime with a \(\text{NO}_3^- \) increase of 16.9 \(\mu \text{g m}^{-3} \) from 16:00 to 8:00 LT, followed by a sharp decrease during the day with a trough in the late afternoon (16:00 LT). The absolute nighttime \(\text{NO}_3^- \) levels were higher than the daytime concentrations at Ji’nan and Yucheng, owing to the dilution within the developed planetary boundary layer (PBL) and thermal decomposition in high temperature conditions during the day. An opposite diurnal profile was observed at Mt. Tai, which showed an \(\text{NO}_3^- \) increase throughout the daytime and high concentrations remaining in the early evening. The daytime increase was due to the development of the PBL and the mountain-valley breeze, both of which could carry the boundary layer pollution aloft, and the elevated evening levels should be ascribed to the regional transport of polluted plumes to the mountain top (Sun et al., 2016). Overall, \(\text{NO}_2 \) showed similar diurnal variations with \(\text{NO}_3^- \), and the \(\text{NO}_3^- \) concentration peaks generally lagged behind \(\text{NO}_2 \), suggesting the role of \(\text{NO}_2 \) in the nitrate formation as a precursor. Inspection of diurnal variations day by day also revealed frequent nitrate formation at all three sites during nighttime and also during the day (especially at Mt. Tai). We then selected a dozen of nitrate formation cases for detailed modeling analyses in Section 3.3.

3.2. Trend over 2005-2015

Figure 3 shows the increasing trends of \(\text{NO}_3^- \) in PM\(_{2.5}\) in the past decade over the NCP region. Intensive measurements of aerosol ionic species have been made by our group in urban Ji’nan in selected years since 2005 (Yang et al., 2007 and 2012; Gao et al., 2011; Zhu
et al., 2015) and at Mt. Tai in 2007 (Zhou et al., 2010), and these previous data were combined with the more recent observations in the present study to derive the decadal trends. To eliminate the interference of inter-annual variation of weather condition on the absolute concentrations, we focused on the ratios of NO$_3^-$/PM$_{2.5}$ and NO$_3^-$/SO$_4^{2-}$ for the trend analysis.

In urban Ji’nan, the fraction of NO$_3^-$ in PM$_{2.5}$ has increased at a rate of 0.9% per year over 2005-2015 ($p<0.01$). A similar increasing rate (0.7% per year) was also derived at Mt. Tai from 2007 to 2014, affirming the statistically significant increase of fine particulate nitrate over the region. At the same time, the SO$_4^{2-}$ in PM$_{2.5}$ has statistically significantly declined in urban Ji’nan (-0.7% per year) and at Mt. Tai (-1.3% per year; figures not shown), as a result of the strict control of SO$_2$ emissions in China. As a result, the molar ratio of NO$_3^-$/SO$_4^{2-}$ has increased at a rate of 0.09 per year in Ji’nan during 2005-2015 ($p<0.01$) and 0.05 per year at Mt. Tai from 2007 to 2014 (Fig. 3b).

We also examined the trends in the absolute concentrations of PM$_{2.5}$, nitrate and sulfate in urban Ji’nan and at Mt. Tai (see Fig. S2). As expected, the ambient concentrations of PM$_{2.5}$ (-6.3 and -1.4 µg m$^{-3}$ yr$^{-1}$) and SO$_4^{2-}$ (2.1 and -1.2 µg m$^{-3}$ yr$^{-1}$) have rapidly decreased at both locations during the past decade, which should be largely attributed to the stringent control of SO$_2$ emissions and primary particles. In comparison, the absolute concentrations of NO$_3^-$ showed an increasing trend with average rates of change of 0.39 and 0.29 µg m$^{-3}$ yr$^{-1}$. This confirms the increase of absolute nitrate aerosol pollution in the NCP region. Nevertheless, the available observations since 2011 also showed a decrease in the absolute levels of nitrate aerosol in Ji’nan. This trend may be true considering the strict NOx emission control of China since 2011, but it may be also partly interfered by the higher aerosol pollution observed during the campaign of 2011 with unfavorable meteorological conditions. More measurement efforts are urgently needed to further examine the recent trend of nitrate aerosol after 2011 and evaluate the impact of the NOx emission control of China.

Our observations provide the direct evidence of a statistically significant increase of summertime nitrate aerosol in the NCP region along with a decrease of sulfate in the last decade. The comparable contributions of NO$_3^-$ and SO$_4^{2-}$ to PM$_{2.5}$ suggest the gradual shift of the secondary inorganic aerosol type from SO$_4^{2-}$-dominant to NO$_3^-$-and-SO$_4^{2-}$-dominant. A
recent modeling study also predicted an increase of nitrate with a decrease of sulfate from 2006 to 2015 over the entire eastern China (Wang et al., 2013). A more recent observational study at two sites (Beijing and Xinxiang) in the NCP region indicated the important contributions of nitrate in PM$_1$ and its driving role in the summertime haze pollution (Li et al., 2018). Overall, nitrate has been playing a more and more important role in the haze pollution in northern China. In recent years, the strict anti-pollution measures implemented by the central government have led to a significant reduction in the primary PM$_{2.5}$ in the NCP, while secondary aerosols such as nitrate are still at high levels and present the major challenge for further mitigation of haze pollution (http://www.cnemc.cn/kqzlzkbgyb2092938.jhml). Nitrate and its precursors should be the next major target for the future control of regional haze pollution in China.

3.3. Nitrate formation mechanisms

Multi-phase chemical modeling was then conducted for typical nitrate formation events to understand the formation mechanisms of fine particulate nitrate at three study sites. The selected cases met the following criteria: 1) the nitrate formation (accumulation) process should last for a considerable time period (i.e., at least three hours); 2) the observed NOR (NOR=[NO$_3^-$]/([NO$_3^-$]+[NO$_x$])) was increasing throughout the event; 3) the meteorological conditions were stable with constant wind direction or a calm condition and without wet deposition; 4) the data in the early morning period (i.e., 06:00-09:00 LT) were excluded from analyses to eliminate the potential influence from downward mixing of air aloft to the surface sites. A total of 21 nitrate formation events were finally sorted out, including 10 daytime cases (3, 3 and 4 in Ji’nan, Yucheng and Mt. Tai) and 11 nighttime ones (3, 5 and 3 in Ji’nan, Yucheng and Mt. Tai). Details of these selected cases are provided in the supplement (see Table S4).

Figure 4 compares the model-simulated versus observed nitrate enhancements for the daytime cases, and also presents the contributions of the major nitrate formation pathways. Generally, the model reproduced well the observed nitrate formation, with a strong positive correlation between simulations and observations (with a reduced major axis (RMA) slope of 0.90 and r^2 of 0.60; see Fig. S3). The partitioning of HNO$_3$ gas to the particulate phase was
clearly the predominant daytime formation pathway of nitrate aerosol, with average contributions of 96%, 95%, and 94% at the urban, rural, and remote sites, respectively. Hydrolysis of \(\text{N}_2\text{O}_5 \) contributed to the remaining (4-6%), and the direct uptake and aqueous-phase reactions of NO\(_3\) radicals was negligible.

The modeling results for the nighttime cases are shown in Figure 5. The model also worked reasonably well for the simulation of nitrate formation at night, as indicated by the strong positive correlation between the simulated and observed NO\(_3^-\) enhancements with a RMA slope (simulation/observation) of 1.60 and \(r^2 \) of 0.93 (see Fig. S3). Figure S4 shows that the model reproduced the absolute concentrations of nitrate for two specific typical cases. The hydrolysis reaction of \(\text{N}_2\text{O}_5 \) turned over to be the overwhelming formation pathway at nighttime, with mean contributions of 94%, 98%, and 91% at the urban, rural, and remote sites, respectively. Other processes such as the HNO\(_3\) partitioning and aqueous reactions of NO\(_3\) radicals were minor routes. These results are in line with the previous studies that have assessed the nitrate formation pathways. For example, Pathak et al. (2011) found that the \(\text{N}_2\text{O}_5 \) hydrolysis contributed to 50%-100% of the nocturnal nitrate formation in Beijing and Shanghai. Based on the field measurements of \(\text{N}_2\text{O}_5 \) and related species, Wang et al. (2017) suggested that the \(\text{N}_2\text{O}_5 \) hydrolysis contributed comparably to or even higher than the partitioning of HNO\(_3\) to nitrate formation in Beijing at a daily basis. Overall, the significant roles of HNO\(_3\) partitioning and \(\text{N}_2\text{O}_5 \) hydrolysis in nitrate formation have been well outlined (Brown and Stutz, 2012).

The budgets of nitrate formation were almost the same among the three study sites. This indicates the regional homogeneity of formation mechanism of fine nitrate aerosol over the NCP region. The formation of HNO\(_3\) and its subsequent partitioning to the aerosol phase is the principal formation route during the day, while the hydrolysis reactions of \(\text{N}_2\text{O}_5 \) on the particles play a dominant role during the night. This is in line with the current understanding that the oxidation of NO\(_2\) by OH forming HNO\(_3\) and heterogeneous reactions of \(\text{N}_2\text{O}_5 \) present the major NO\(_X\) sinks during the daytime and nighttime, respectively (Liu et al., 2013).

According to the above identified major formation pathways, the nitrate formation can be influenced by the availability of NO\(_X\), O\(_3\), and NH\(_3\). NO\(_X\) are direct precursors of nitrate
formation. \(\text{O}_3 \) is a major oxidant and supplier of OH radicals during the day, and is also a precursor of \(\text{N}_2\text{O}_5 \) at night. \(\text{NH}_3 \) may prompt the partitioning of HNO\(_3\) to the aerosols, and alter the aerosol acidity that affects not only the partitioning of HNO\(_3\) but also the hydrolysis of \(\text{N}_2\text{O}_5 \). Therefore, we further examined the dependence of nitrate formation to \(\text{NO}_2 \), \(\text{O}_3 \) and \(\text{NH}_3 \) at the three sites by sensitivity analyses. Sensitivity modeling calculations were conducted by adjusting the concentrations of the target species (\(\text{NO}_2 \) or \(\text{O}_3 \) or \(\text{NH}_3 \)) by \(X \) times (i.e., 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.2 and 1.5), and the other settings remained unchanged with the base simulations. The difference in the simulated NO\(_3^-\) concentrations between base and sensitivity runs should reflect the impact of the change in the target species on nitrate formation. The sensitivity modeling results for the daytime cases are documented in Figure 6. Similar results were derived from the three different study areas. During the day, the nitrate formation was the most sensitive to \(\text{NO}_2 \), a necessary precursor of NO\(_3^-\) aerosol. It was also sensitive to a lesser extent to \(\text{O}_3 \), which is a major OH source and thus affects the gaseous HNO\(_3\) formation. An interesting finding was the dependence of nitrate formation to the abundance of \(\text{NH}_3 \). Adjusting (neither increasing nor decreasing) the currently measured \(\text{NH}_3 \) concentrations by up to 50\% would not lead to significant changes in the model simulated NO\(_3^-\), whilst further reduction of \(\text{NH}_3 \) (c.a., more than 50\%-80\%) would result in a significant decrease of NO\(_3^-\). This indicates that \(\text{NH}_3 \) plays an important role in the nitrate formation, but it is now highly in excess in the NCP region so that the nitrate formation is somewhat insensitive to \(\text{NH}_3 \).

Figure 7 presents the dependence of nitrate formation to \(\text{NO}_2 \), \(\text{O}_3 \) and \(\text{NH}_3 \) for the nighttime cases. Again, the results obtained from the three study sites were similar. Nitrate formation was very sensitive to both of \(\text{NO}_2 \) and \(\text{O}_3 \). Adjusting the abundances of \(\text{NO}_2 \) or \(\text{O}_3 \) would lead to almost a linear response in the model-simulated nitrate formation. As discussed above, the nocturnal nitrate formation was mainly controlled by the hydrolysis reactions of \(\text{N}_2\text{O}_5 \), which is the product of the reactions of \(\text{NO}_2 \) with \(\text{O}_3 \). In comparison, nitrate formation was not sensitive to \(\text{NH}_3 \) at all three sites. Interestingly, large reductions of \(\text{NH}_3 \) (c.a. >60\% at Yucheng and >90\% in Ji’nan) would result in a slight increase of the NO\(_3^-\) aerosol formation. This should be due to the increase of aerosol acidity by reducing the \(\text{NH}_3 \) levels, which could
change the partitioning of the formations of both nitrate and ClNO₂ from the N₂O₅ hydrolysis. Increasing the aerosol acidity would restrict the reaction of NO₂⁺ with Cl⁻ yielding ClNO₂, and hence enhance the formation of nitrate aerosol. We conducted sensitivity tests without the inputs of Cl⁻, and the results didn’t show any increase in nitrate formation with reduction of NH₃ (figures not shown).

It should be noted that the Mt. Tai site is located at around 1465 m a.s.l., which is almost near the top of PBL in summer. Thus the Mt. Tai data can provide insights into the chemical conditions in the top boundary layer during the day and in the residual layer during the night. Our observations at Mt. Tai demonstrate the serious nitrate aerosol pollution throughout the PBL in the NCP region. Furthermore, the nitrate formation mechanisms, including the major formation routes and sensitivities to NOₓ, O₃ and NH₃, were fairly consistent between Mt. Tai and the surface sites. This implies the regional homogeneity in the in-situ formation of fine nitrate aerosol within the PBL over the NCP region.

3.4. Implications for control policy

The above analyses revealed the important roles of NO₂ and O₃ in the nitrate formation at three different types of areas. Although NH₃ can facilitate the partitioning of HNO₃ to the aerosol phase, it seems that the summertime nitrate formation is less sensitive to NH₃ due to the NH₃-rich environments in the NCP region. To achieve a comprehensive understanding of the effect of NH₃ on nitrate formation, a large set of theoretical simulations were designed with varying initial concentrations of NO₂ and NH₃. The multi-phase chemical box model was initialized by a typical pollution and meteorological condition in the NCP region (see Table S5 for the detailed modeling setup), and was run to simulate the daytime nitrate formation from 8:00 to 19:00 LT. The initial concentrations of NO₂ and NH₃ were set to vary in wide ranges of 0-200 ppbv and 0-40 ppbv, to cover a variety of real atmospheric conditions. The dependence of the model-simulated nitrate increment (ΔNO₃⁻) to the pair of NO₂ and NH₃ can be established.

Figure 8 shows the contour plot of the model-simulated daytime ΔNO₃⁻ as a function of NO₂ and NH₃ concentrations. Several interesting aspects are noteworthy from the figure. First, NH₃ indeed plays a very important role in prompting the nitrate formation. A relatively small
amount of NH₃ could significantly enhance the nitrate formation efficiency of NOₓ. For example, formation of 25 μg m⁻³ of NO₃⁻ would consume 116 ppbv of NO₂ in the absence of NH₃, but only need 16 ppbv of NO₂ in the presence of 10 ppbv of NH₃. Second, at high NH₃ conditions (e.g., the right panel of the figure), the nitrate formation becomes to be insensitive to NH₃. Nitrate formation is mainly limited by NO₂ when NH₃ is in excess. Third, the nitrate formation regimes can be classified into three types, namely, “NOₓ-limited at NH₃-deficient condition”, “NH₃-controlled”, and “NOₓ-limited at NH₃-rich condition”, according to the concentration ratios of NO₂ and NH₃. Identification of the nitrate formation regime is a fundamental step towards the formulation of science-based control policy of nitrate pollution.

Similarly, we also performed theoretical simulations to examine the detailed dependence of nocturnal nitrate formation to both NO₂ and O₃. The detailed model configuration is given in Table S6. The initial concentrations of NO₂ and O₃ were set to vary in the range of 0-80 ppbv to represent various nocturnal environments. The contour plot is shown in Figure 9. It clearly shows the three categories of nighttime nitrate formation regimes, i.e., “NOₓ-limited” under high O₃ and low NO₂ conditions, “O₃-limited” at low O₃ and high NO₂ conditions, and “mixed-limited” by both NOₓ and O₃. The ambient pollution conditions measured at the three study sites in the present study were generally lie in the mixed-limited regime. Effective control measures could be established based upon the diagnosis of the nitrate formation regimes.

Our findings have important implications for the control policy of regional aerosol pollution. Our observations demonstrate the increasing trend and serious situation of nitrate pollution over the NCP region. Given the decline of sulfate and primary particles in the recent decade (Wang et al., 2013), nitrate should be a major target for the future control of haze pollution in China. The observation-based modeling analyses in this study suggest that the summertime nitrate formation in the NCP region is mainly controlled by NOₓ and O₃ (particularly in nighttime). Recent studies have also confirmed the increasing trends of surface O₃ levels in the past decades in several major fast-developing regions of eastern China (Ding et al., 2008; Xu et al., 2008; Wang et al., 2009b; Xue et al., 2014; Sun et al., 2016). Therefore, further reduction of anthropogenic NOₓ emissions and mitigation of
regional O₃ pollution should be an efficient way to alleviate the nitrate-driven haze pollution in China. NH₃ also plays a very important role in the nitrate aerosol formation, as a relatively small amount could efficiently prompt the HNO₃-to-NO₃ partitioning and nitrate formation. However, the summertime nitrate formation seems to be less sensitive to NH₃ in the NCP region, where ambient NH₃ is generally in excess. Indeed, the available field observations of ambient NH₃ confirmed the widespread NH₃-excess chemical environments in polluted regions of northern China (Meng et al., 2018 and references therein). Thus, it looks like that cutting down the NOₓ emissions should be more efficient for the current control of nitrate pollution in the NH₃-rich environments. Nevertheless, reduction of NH₃ emissions is still very important for the future aerosol pollution control in North China from a long-term perspective, in light of the fact that the nitrate formation would be largely restricted at NH₃-poor conditions (see Fig 8).

It is worth noting that in addition to NOₓ, O₃ and NH₃, there are also some other factors that influence nitrate formation. For example, VOCs are principal O₃ precursors, and regulate the abundances of OH and losses of NO₃ (and N₂O₅). Thus VOCs can affect the daytime HNO₃ formation and nocturnal N₂O₅ hydrolysis, which in turn affect the nitrate formation. In addition, the increasing nitrate aerosol may reduce the N₂O₅ uptake and restrict the nocturnal nitrate formation. These aspects were not quantified in this study. Our modeling analyses were performed with constant VOC level and chemical speciation. Further studies are needed to explore the detailed dependence of nitrate formation to the variety of factors including NOₓ, O₃, NH₃, VOCs, aerosol composition and meteorological conditions.

4. Conclusions

We report recent field measurements of fine particulate nitrate chemistry at three urban, rural and remote sites in the NCP region. Serious aerosol pollution was observed at all sites, with nitrate accounting for on average 11%-14% of the PM₂.₅. Distinct temporal and spatial distributions of nitrate pollution were found at different sites. The NO₃⁻/PM₂.₅ and NO₃⁻/SO₄²⁻ ratios have increased significantly in urban Ji’nan over 2005-2015 and at Mt. Tai from 2007 to 2014, highlighting the worsening situation of nitrate pollution in the region. Fine nitrate aerosol was primarily formed via the production of HNO₃ followed by its partitioning to the
aerosol phase during the day, and by the hydrolysis reactions of N₂O₅ on particles during the night. The daytime nitrate formation was mainly controlled by NO₂ and to a lesser extent to O₃ and NH₃, and the nocturnal formation was controlled by both NO₂ and O₃. NH₃ plays a vital role in the nitrate formation by prompting the partitioning of HNO₃ to particles. A small amount of NH₃ can significantly enhance the efficiency of nitrate formation from NOₓ. Given the highly NH₃-excess condition, the summertime nitrate formation was relatively less sensitive to NH₃ in the NCP region. We recommend that further reduction of anthropogenic emissions of NOₓ should be the most efficient pathway for the current control of nitrate aerosol, whilst control of regional ozone pollution and NH₃ emissions is very important for the future haze pollution control in China. Some recent studies have reported the rapid decrease in the NOₓ abundances over eastern China since 2011 (Liu et al., 2017). It can be expected that such reduction of NOₓ would help to alleviate the nitrate particulate pollution in China. More observational studies are needed to further examine the trend in the nitrate aerosol and assess the contributions of the strict NOx control of China. We also note that the present study was only confined to the summer conditions, and the chemical mix of NO₂, O₃ and NH₃ should be different in wintertime (e.g., higher NOₓ levels and relatively low O₃ and NH₃ concentrations). Further studies are urgently needed to better understand the formation regimes of nitrate aerosol in winter, when the haze pollution is more serious in China.

Acknowledgements

The authors thank Lan Yao, Yanhong Zhu, Junmei Zhang and Hao Wang for their efforts in the field measurements, and thank Dr. Hartmut Herrmann for providing the multi-phase chemical model. This work was funded by the National Key Research and Development Program of China (No.: 2016YFC0200500), the National Natural Science Foundation of China (No.: 91544213 and 41505111), the Natural Science Foundation of Shandong Province (ZR2014BQ031), the Qilu Youth Talent Program of Shandong University, the Taishan Scholars (ts201712003) and the Jiangsu Collaborative Innovation Center for Climate Change. We also thank the editor and three anonymous reviewers for their comments which are very helpful for improving the original manuscript.

References

Meng, Z., Xu, X., Lin, W., Ge, B., Xie, Y., Song, B., Jia, S., Zhang, R., Peng, W., Wang, Y.,

Wang, N., Li, N., Liu, Z., and Evans, E.: Investigation of chemical reactivity and active comp

Table 1. Statistics (average ± standard deviation) of the measured aerosol chemical properties, trace gases and meteorological conditions in urban Ji’nan, rural Yucheng, and Mt. Tai

<table>
<thead>
<tr>
<th>Site</th>
<th>Period</th>
<th>Ji’nan (Urban)</th>
<th>Ji’nan (Urban)</th>
<th>Yucheng (Rural)</th>
<th>Mt. Tai (Remote)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_3^-$ (μg m$^{-3}$)</td>
<td>8.8±8.2</td>
<td>7.4±5.1</td>
<td>13.6±10.3</td>
<td>6.0±4.6</td>
<td></td>
</tr>
<tr>
<td>SO$_4^{2-}$ (μg m$^{-3}$)</td>
<td>12.2±7.5</td>
<td>12.7±7.9</td>
<td>23.6±13.4</td>
<td>14.7±8.9</td>
<td></td>
</tr>
<tr>
<td>NH$_4^+$ (μg m$^{-3}$)</td>
<td>6.8±5.3</td>
<td>11.1±8.2</td>
<td>11.9±7.7</td>
<td>7.3±5.0</td>
<td></td>
</tr>
<tr>
<td>Cl$^-$ (μg m$^{-3}$)</td>
<td>1.3±2.1</td>
<td>1.3±1.7</td>
<td>1.2±1.2</td>
<td>0.7±0.5</td>
<td></td>
</tr>
<tr>
<td>PM$_{2.5}$ (μg m$^{-3}$)</td>
<td>68.4±41.7</td>
<td>59.3±31.8</td>
<td>97.9±53.0</td>
<td>50.2±31.7</td>
<td></td>
</tr>
<tr>
<td>NO3^-/PM${2.5}$</td>
<td>0.12±0.06</td>
<td>0.14±0.07</td>
<td>0.14±0.07</td>
<td>0.11±0.05</td>
<td></td>
</tr>
<tr>
<td>SO4^{2-}/PM${2.5}$</td>
<td>0.18±0.06</td>
<td>0.24±0.10</td>
<td>0.27±0.12</td>
<td>0.30±0.11</td>
<td></td>
</tr>
<tr>
<td>NH4^+/PM${2.5}$</td>
<td>0.10±0.05</td>
<td>0.18±0.11</td>
<td>0.13±0.06</td>
<td>0.15±0.07</td>
<td></td>
</tr>
<tr>
<td>Cl$^-$/PM$_{2.5}$</td>
<td>0.015±0.016</td>
<td>0.024±0.027</td>
<td>0.012±0.010</td>
<td>0.019±0.025</td>
<td></td>
</tr>
<tr>
<td>[NO$_3^-$/[SO$_4^{2-}$]</td>
<td>1.04±0.46</td>
<td>0.98±0.49</td>
<td>0.93±0.53</td>
<td>0.62±0.33</td>
<td></td>
</tr>
<tr>
<td>NO$_2$ (ppb)</td>
<td>20.5±9.0</td>
<td>14.1±4.5</td>
<td>16.6±10.7</td>
<td>3.0±2.3</td>
<td></td>
</tr>
<tr>
<td>O$_3$ (ppb)</td>
<td>31±19</td>
<td>43±36</td>
<td>38±26</td>
<td>75±21</td>
<td></td>
</tr>
<tr>
<td>SO$_2$ (ppb)</td>
<td>10.4±11.1</td>
<td>7.1±4.6</td>
<td>4.2±7.4</td>
<td>2.4±2.8</td>
<td></td>
</tr>
<tr>
<td>CO (ppb)</td>
<td>1835±2046</td>
<td>——</td>
<td>622±280</td>
<td>609±214</td>
<td></td>
</tr>
<tr>
<td>Particle diameter (nm)</td>
<td>41±12</td>
<td>55±50</td>
<td>78±34</td>
<td>66±21</td>
<td></td>
</tr>
<tr>
<td>Particle number (103# cm$^{-3}$)</td>
<td>7.1±4.1</td>
<td>12±8.3</td>
<td>3.0±3.8</td>
<td>3.4±2.8</td>
<td></td>
</tr>
<tr>
<td>NOR a</td>
<td>0.11±0.07</td>
<td>0.16±0.08</td>
<td>0.24±0.13</td>
<td>0.39±0.20</td>
<td></td>
</tr>
<tr>
<td>Excess NH$_4^+$ (μg m$^{-3}$)b</td>
<td>2.0±2.4</td>
<td>4.3±6.4</td>
<td>0.9±2.5</td>
<td>1.0±1.8</td>
<td></td>
</tr>
<tr>
<td>T (°C)</td>
<td>22.2±4.2</td>
<td>23.6±3.4</td>
<td>25.4±4.7</td>
<td>18.0±2.7</td>
<td></td>
</tr>
<tr>
<td>RH (%)</td>
<td>38.8±19.7</td>
<td>66.0±21.0</td>
<td>70.3±19.8</td>
<td>86.9±12.8</td>
<td></td>
</tr>
</tbody>
</table>

a NOR (Nitrate Oxidation Ratio) = [NO$_3^-$/([NO$_3^-$]+[NO$_X$])];

b Excess NH$_4^+$ = ([NH$_4^+$]-1.5*[SO$_4^{2-}$]-[NO$_3^-$]-[Cl$^-$])$^{*}18$;

Note that [NO$_3^-$], [NO$_X$], [NH$_4^+$], [SO$_4^{2-}$] and [Cl$^-$] are molar concentrations of NO$_3^-$, NO$_X$, NH$_4^+$, SO$_4^{2-}$ and Cl$^-$, respectively.
Figure 1. Map showing the study region and three measurement sites. The left map is color-coded with the OMI-retrieved tropospheric NO\textsubscript{2} column density in July 2014, and the right map is color-coded with the topographic height (the pink regions denote urban areas).
Figure 2. Average diurnal variations of fine particulate NO$_3^-$, NO$_2$ and meteorological conditions in (a) urban Ji’nan in May 2014, (b) rural Yucheng, and (c) Mt. Tai. Error bars stand for the standard errors of the measurements. The shaded area denotes the nighttime period.
Figure 3. Long-term trends of (a) mass ratio of NO$_3^-$/PM$_{2.5}$ and (b) molar ratio of NO$_3^-$/SO$_4^{2-}$ in urban Ji’nan and at Mt. Tai in summertime from 2005 to 2015. The fitted lines are derived from the least square linear regression analysis, with the slopes and p values (99% confidence intervals) denoted.

Figure 4. Comparison of the model-simulated versus observed nitrate enhancement (upper panel) as well as the contributions from the major three formation pathways (lower panel) for the daytime cases in urban Ji’nan, rural Yucheng and Mt. Tai. The error bars are the standard error of the differences between simulated and observed increase of nitrate aerosol.
Figure 5. The same as Figure 4 but for the selected nocturnal nitrate formation cases.

Figure 6. Model-simulated daytime average NO₃⁻ enhancements as a function of the X times of the base concentrations of NH₃, NO₂ and O₃ in (a) urban Ji’nan, (b) rural Yucheng and (c) Mt. Tai. The results are the average of sensitivity analyses for all selected daytime cases.

Figure 7. The same as Figure 6 but for the nocturnal nitrate formation cases.
Figure 8. Contour plot of the model-simulated daytime NO$_3^-$ formation as a function of the initial concentrations of NO$_2$ (0-200 ppbv) and NH$_3$ (0-40 ppbv). Note that the dashed lines are artificially drawn to separate the three zones with different sensitivity of nitrate formation to NO$_2$ and NH$_3$.
Figure 9. Contour plot of the model-simulated nighttime NO$_3^-$ formation as a function of the initial concentrations of NO$_2$ (0-80 ppbv) and O$_3$ (0-80 ppbv). Note that the dashed lines are artificially drawn to separate the three zones with different sensitivity of nitrate formation to NO$_2$ and O$_3$.