Authors thank the reviewers for their useful and very interesting comments and for the time spent to review our work. Reviewers have common concerns which we addressed to the best of our possibilities:

- We clarified the introduction, the method and the results sections by moving some figures to supplementary material and by re-organizing the text.
- The abstract has been rewritten in order to highlight the most significant results.
- A discussion has been added in the paper on the limitations of our methodology to derive aerosol and fog microphysical properties and on the limitation of this work due to the location of the campaign and the weak chemical variability.
- We also added a discussion on the relevance of our results for numerical weather prediction.
- Cyrielle Denjean have been added to this paper as coauthors to acknowledge their contribution to discussion related to these correction.

Second paragraph in Discussion is not good one, people look at the fog droplet spectra and by definition droplets are above the 1 micron usually. What you did doesn’t explain what is wrong with this. You also state in same paragraph that Nd was lower in your case...... why? Is this because you have measured drizzle but not fog droplets???? You need to show time series of Vis and summarize the results.

Droplets are defined as hydrated particles whose diameter is above the activation diameter, it is the Köhler theory.

We add in the introduction:
« Water droplets are also the particles whose diameter are higher than the critical threshold corresponding to that critical supersaturation.«

We add a discussion on that point on the discussion session:
«In a modelling purpose, distinguishing hydrated aerosols particles from droplets allows to calculate an accurate repartition of the vapour deposition on the droplet size distribution. Indeed, behaviour of hydrated particles and droplets is quite different, the second one grow as long as there are exceeding vapor while the first one stay at an equilibrium diameter. The second one may grow enough to produce drizzle and have strong interaction with radiation. A clear distinction should improve the representation of processes in numerical weather prediction model and so on the visibilities forecast.»

A sentence have also been added in the discussion section to lighten the meaning of activated particles « To our knowledge, no other study has retrieved experimentally concentration of activated particles (and thus droplets) ».

Nd is rather low for a semi urban conditions, semi urban conditions being generally polluted conditions, an high loading in aerosol is expected. Experimental studies made in China, for example Liu, 2017, reported values as high 1000 cm⁻³. We measure concentration as high as 150 cm⁻³, which is quite lower. Drizzle is a particle issued from collision, or it is actually considered unlikely that collection happens for diameter lower than 40 µm (Berry et Reinhard, 1974).
However, Xue et al., 2008 considers that could happen for diameter lower than 20 µm and Niu et al., 2010, Zhao et al., 2013, Lu et al., 2013 suggest through processes studies that collision could be present in fog. Still we do not think that the particles we measure between 2 µm and 50 µm are from coalescence, usually a gap in the droplet size distribution is viewable (see stratocumulus droplets size distribution).

Concerning the visibility, the threshold values used to select fog events are already presented in section 2.2

You need to state how did you average your obs and why? Then, how did you come up with your plots if they are acceptable?

Observation have been averaged on different time laps. This is specified in the caption of each figure.

On pag 15; last parag., your values are much lower compared to models, what this tells you? Either model doesn’t do good job or your obs are not good.

When comparing model and observation, one can ask if errors come from model or observation. Measurement uncertainties have been developed in the method section and have been taken into account in the calculation of fog activation properties (ie. the large errors bars in our figures). The comparison of our derived parameters were close to those previously obtained in other experimental studies. This gives us a relative confidence in our experimental data.

LN11; median value ~3.8 micron? Why it is large?

Such a median value is large compared to the threshold of 2 micron generally used to define droplets from measurements. In the introduction and discussion sections, we suggest that it may be due to the instrumentation limitation, which generally begins at 2 µm in diameter to measure droplets size distribution.

In conclusions; you are saying winter time fog events???? How do I know? Why not provide T and Uh for each case?

As stated in the abstract and in the introduction, the comprehensive field campaigns were conducted during the winters of 2010-2013. Winter fog do not mean ice fog as we don’t have ice or supercooled droplets. RH is 100 % for our case and T during the fog won’t bring more usefull information for our activation process study.

Nd/Nact~ 0.25 to 0.67; in reality, Nact~Nd, why this comes out of this work? Your figures suggest that Nd>Nact (see above). What is going on here?

Nd refer to Nd_cycle that represents the median values for the whole field campaigns. It is why we name it Nd_cycle in order to not mix it with Nd at the activation. Nd_cycle/Nact was lower than 1, which means that concentration of droplets low down during the fog life cycle. Processes such as sedimentation, collision-coalescence, evaporation due to mixing
could occur. As mentioned in the paper, lots of studies have already pointed out the key mechanism of the turbulent mixing in fog.

Fig. 1 for 2 cases Nd about 127 and 46 cm^{-3}, why these are selected and like to know in Table what is the fog droplet size range? Please provide min and FM100 values, additional to mean. Any drizzle formed on these cases? This can create lots of issues. I feel because of smaller Nd from fm100, for many cases, you likely have drizzle here. How did you eliminate drizzle?

Figure 1 illustrates the discrepancies between the WELAS and the FM-100. We choose two contrasting fog event. f6 gets only one droplets mode and f20 two and less droplets.

For case f6 concentrations as measured by the FM-100 (>2\mu m) are, for the percentil 25, 50 and 75, 103-127-142 #.cm^{-3} respectively.

For case f20 concentrations as measured by the FM-100 (>2\mu m) are, for the percentil 25, 50 and 75, 33-46-56 #.cm^{-3} respectively.

Unfortunately, we did not have any measure above 50 \mu m, it is impossible to know if we had drizzle. Further measurements campaigns should definitely include such instruments.

However considering the size range involved for the cross section between WELAS and FM-100 ([2-10] \mu m), drizzle won’t create any issues.

Fig. 2 FM100 versus WE plots; these correlations are useless, no correlation in fact. You need weighted averages and then use fits. How can you do a fit if 1000 points of data at the same location but 10 points in other place? This figure can’t be acceptable for fits. Same after this figure discussion

The aim of this figure is to evaluate the use of size distributions from two different instruments to derive a single fit on the full size range. Figure 1&2 shows that no good fit can be done, a compromise must be made.

Knowing that more confidence is given in WELAS smallest classes bins and in FM-100 largest classes bins, a cross section need to be found to achieve our study. Figure1&2, show that the best crossing diameter are [4-6] \mu m and [6-8] \mu m. WELAS underestimates for diameter larger than 8 \mu m and WELAS overestimates for diameter lower than 4 \mu m. As we want to take advantage of the WELAS measurements on the smallest size bins, we choose [6-8] \mu m as the best cross diameter. However, as noticed by the reviewer, figure 2 shows that depending on the case best fit could be obtained on [4-6] \mu m. On that point we must highlight that Figure 2 is a statistical support to our study, where all data have been used during all fog long, a perfect interpretation would need to take into account other information such as wind speed and direction. Figures 1&7 clearly show a best fit on [6-8] \mu m at the beginning of fog event for f6 and f20. However disparities between the two instruments, seen in figure 2, have been considered in our calculation of activation properties as added in section 2.1: « Nevertheless because of the large discrepancies between the two sensors on the crossing diameter, next calculation using this crossing diameter also consider a standard deviation using the min and the max size distribution over this size range. » Considering that the true droplet size distribution should be between WELAS one and FM-100 one, taking into account
the min and the max for the standard deviation provide a reliable droplet size distribution. Nevertheless, we agree that more more investigation should be done to fit these two measure, that should be the purpose of another technical paper.

Fig. 3; What is the sampling rate/averaging time period of these data points? Do these points represent an event averages? Then you are comparing 2 different things, you cannot do this. Also, show some fog Nd versus Na from other works here. To me no relationship exists between Nd and Na.

These data points represent median values and 25 and 75 percentils over the fog life cycle of droplets number concentration as derived from the FM-100 [2-50]µm function of the aerosol loading as derived from the SMPS as already written in the legend. As expected form the first indirect effect (also know as Twomey’s effect) in warm cloud, more aerosol generally lead to more droplets. That have been supported by many in situ observations for other type of cloud. Concerning fog Hudson (1980) showed that fog formed in maritim condition contains less droplets than fog formed in polluted condition. One of the aims of our work is to determine the link between the Nd and Na for the fog in polluted conditions. The figure 3 shows that considering droplets on [2-50]µm no relation appears, differently from other cloud types.

Fig. 5; Show RHw here please. Also, SMPS decreases while Nd increases before 6 am, is this correct? Nccn and Nd should be correlated positively.

As mentioned above, no correlation appears between Naero and Nd for supersaturations occurring in fog due to the low supersaturations occurring in fog leading to very selective criteria on particle diameter for droplet activation. In addition the correlation between Nccn and Nd is not straightforward because the supersaturation is much lower in fog conditions than in our CCN measurements, leading to different processes involved in fog activation.

As mentioned in the instrumentation section, SMPS measurements were performed under dry condition while Welas measurements were performed at RH close to the supersaturation values.

Fig. 6; This is not valid for real atmosphere because we don’t see Sw>0.1% often. Then how can we trust these kappa values applicable to real conditions? How about model predictions?

CCNC chamber have been designed to measure CCN concentration between 0,1% and 0,5 % because usual values measured in this atmosphere are in this range. For example in stratocumulus supersaturation can be as high as 0,8%. Models actually simulate high supersaturation values (see thouron et al, 2012 for example). In our study we extrapolated CCNC measurements to lower SS values in order to derive kappa values representative to fog conditions (i.e. section 3.2 in the paper).

Fig. 8; Again, what is the averaging length for these data points? To me no relationship can be seen.

Though the scatter is rather large, the general trend points towards a slight decrease of κ values as critical supersaturation values increase, which corresponds to the expected behaviour as depicted for example in Fig. 6 from CCN data. Data are retrieved using aerosols measurement during one hour interval before the fog event. To estimate the most representative fog droplet size distribution
of the activated distribution, we average the composite wet particle size distribution derived from both WELAS and FM-100 measurements over a time interval from the beginning of the fog event during which the CDNC reaches a stable value for a sufficient long time. On average, this time period is selected from 30 min to 1 hour after the fog beginning. Calculation on the average properties take into account the two kappa and uncertainties due to use of mean time values for CDNC and aerosols distribution. This is already written in the paper page 9 line 22.

Fig. 9; a) no relationship, b) obvious because you use same sensor for the data points, again, averaging conditions? C) no relationship.

Fig. 9; a) shows that Nact values increase with SS peak. Note that even if there are quite large uncertainty intervals, they follow the same trend as the mean values. The higher is Sspeak, the stronger is Nact
b), same averaging conditions as Fig. 8, it’s not obvious, that means that the aerosols number size distribution gets a close shape at larger diameter.
c), we said page 12 line 10 “Fig. 9-c) reveals no trend at all from the several values of κ.”

Fig. 10; To me no relationship exists. Averaging scales? B) see above.

For a same color it’s undeniable that a relationship exists.

Fig. 11; Same reasoning, see above, averaging scales? Nact versus N* no relationship; why is that?

Same answer as fig 8.

Figure 11 in contrast reveals that almost no relationship exists between N act and N *. This result demonstrates that the concentration of fog droplets is roughly independent of the aerosol number concentration in opposite to the general trend depicted by Fig. 3. The concentration of fog droplets was independent of the aerosol number concentration due to the low supersaturations occurring in fog leading to very selective criteria on particle diameter for droplet activation. This is also consistent with the very large derived dry diameter.

Fig. 12; are your data points are from CCN chamber measurements? How Nact is obtained from field observations of RHw? At SS=0.5% you have 3-4000 cm-3 ~ Nd, did you observe this during field project? How accurate SS in the field data? At SS=0.05%, basically no change in Nact? This is your final figure, and should do a better job to explain it, presently, not enough to be understood properly.

Grey data point are from CCN chamber measurements, black point have been retrieved by the method explained in the paper. As we are in very polluted conditions at high supersaturations a high concentrations of particle are activated. But we don’t have 0.5% of supersaturation in fog, this supersaturation is “created” by the CCNC. At SS = 0.5%, great change in Nact, the scale is a logarithm one.

“This is illustrated in Fig. 12 where N act are plotted as a function of SS peak in log scale (black diamond, same data as Fig. 9-a)) superimposed to the statistics of CCN measurements (grey diamond)”
Fig. 13: How come CCN can be more than N*? What is the uncertainty in this figure’s result? Basically N*~Nd, then CCN called like this because they are play a role in droplet formation. We should expect Nd getting close to CCN but not more than CCN? Please explain for your case.

Here we plotted concentration of activated aerosols particles as measured by the CCN at 0.1 % supersaturation function of concentration of aerosols with diameter higher than 200 nm. N_{ccn} > N*, means that at this supersaturation the dry activation diameter is lower than 200nm. The uncertainty correspond to the mean on one hour. N*~N_{ccn} means that in average the dry activation diameter is close to 200nm at 0.1 % supersaturation.

Fig. 14; is this for dry aerosols or wet aerosols? Which sensor? SMPS? If dry aerosols, then why we expect to see change in SS. To me again there is no relationship.

The concentration of aerosols was derived from the SMPS that provides size distributions at the maximum RH of 50%. The absorption of water by continental aerosols is expected to be low at such RH. Thus hopefully dry if they are below the efflorescence point. We measure them with the SMPS, it is the only instrument we have which measure particle size distribution. It is Sspeak as retrieved with our method. Sspeak depend on the thermodynamics conditions, for example in convective situation of the vertical velocities. Here we show that aerosols could have a lowering role.

We add in section Impact of aerosol particles on fog droplets concentration:
« One can note in Fig. 11 that the highest values of N_{act} decrease as N* increase. Indeed, while aerosol particles activable concentration increases (N*), variability of Sspeak decrease and tend toward low values as reported in Fig. 14, thus lower particles can be activated. »

Table 2; serious problems, if thick fog, then how can we see Nd less than 50 cm-3? What do you mean with thick? Like to see Vis time series to validate your results given in table.

As explained in the legend :
« Table 2. List of fog events analysed here. Type RAD corresponds to radiation fog and STL to stratus lowering, "thick" to fog developed on the vertical, and "thin" to fog layer with top altitude lower than 18 m. N_{a} is the number concentration of aerosol particles derived from SMPS data. 25th, 50th and 75th percentiles are computed from the distribution of 5 minutes samples over the last hour before the fog beginning. NFM is the droplet number concentration as measured by the FM-100 over the range [2-50] μm. Statistics of NFM are computed with minute average data of samples with LWC > 0.005 g.m −3 collected during the whole fog event. »
Authors thank the reviewers for their useful and very interesting comments and for the time spent to review our work. Reviewers have common concerns which we addressed to the best of our possibilities:

- We clarified the introduction, the method and the results sections by moving some figures to supplementary material and by re-organizing the text.
- The abstract has been rewritten in order to highlight the most significant results.
- A discussion has been added in the paper on the limitations of our methodology to derive aerosol and fog microphysical properties and on the limitation of this work due to the location of the campaign and the weak chemical variability.
- We also added a discussion on the relevance of our results for numerical weather prediction.
- Cyrielle Denjean have been added to this paper as coauthors to acknowledge their contribution to discussion related to these correction.

1) It is acknowledged that the used SMPS does not give information on the aerosol particles with diameter larger than 496nm. Why don’t you use data PALAS-WELAS to get an estimate on the particle concentration larger than that? Based on Figure 7 there is quite nice overlap and agreement between the instruments after hygroscopic growth in ambient conditions is accounted for.

We wrote (p9, l1):
“We also suppose that the concentration of aerosol particle larger than 496 nm can be neglected.”
Because we did not have any instruments to measure size distribution above 496 nm under dry conditions. Figure 7 shows indeed a very nice overlap between the SMPS and WELAS size distributions. However the overlap do not covers all the PALAS-WELAS size range. The overlap is supposed to cover sizes up to the activation diameter. On figure 7.b) adding measurement from PALAS-WELAS would lead to an overestimation of the larger size diameter aerosols concentration. A “dry” instrument measuring higher diameter would be useful in future studies. Including Welas data would result in more errors.

2) The number of fog droplets is compared to both CCN at 0.1% supersaturation and N_200, which both are on average clearly higher than the observed droplet concentration. Without further analysis it is quite strongly said that the droplet concentration does not depend on aerosol. As the aerosol is measured up to 496nm and PALAS- WELAS instrument could be used for larger particles, it would be quite straightforward to analyze if the shape of aerosol size distribution is affecting the observed droplet concentration. Now it can be only concluded that N_200 and CCN(0.1%) are not good proxies for fog droplet concentration in polluted conditions.

Actually Fig 9.b) provide some answers on that point.
For an equal Nact we don’t have the same Dd, meaning that the shape differs. However looking at the ratio Nact/N* on Fig 10.b), correlation is rather good, that suggest that the shape differs more on intensity than on form. That would also suggest that on a given diameter range, results on dependencies between N* and Nact would be the same whatever the threshold diameter. Indeed sensibilities tests made with threshold at 250 nm, 300 nm or 400 nm confirms it.
Sentence must be added in the text to explain that point.

We added in section Impact of aerosol particles on fog droplets concentration:

"Correlation when N* was calculated from the range of critical diameter inferred during the campaign (150 to 400 nm). This suggest that N* using a single critical diameter can be considered as a good proxy of the number of activable particles. This can be understood since the supersaturation occurring in fog has a narrow range of value. CCN at a supersaturation between 0.02 and 0.11 % are mostly composed of accumulation mode particles. »

Conclusions is that the concentration of activable particles is not a good proxy for fog droplet concentration, neither is N_{ccn}(0.1%), while it could be a good one for other type of cloud.

We added in the conclusion:

“Concentration of activated particles using a single critical diameter can be considered as a good proxy of the number of activable particles.”

3) The results presented are mainly for the first hour into the fog lifecycle although data would provide a nice possibility to analyze the whole lifecycle. Is there some reason except the comparison to pre-fog aerosol? Is the first hour somehow relevant for the whole cycle? For example in Figure 5, why does PALAS-WELAS see such a strong increase in the concentration whereas FOG-monitor values are quite constant in the morning just before fog dissipation? Is this the situation in all observations?

The present study focuses on activation processes so we only looked at the first hour. Once the fog formed, the aerosols can be captured by the droplets (activation, scavenging), which are not sampled by the SMPS if they are bigger than 2.5 µm. Thus all aerosols contained in hydrated particles and droplets larger than 2.5 µm won’t be measured. Or they constitute a big part of the aerosol we are interested in. This is the reason why we do not perform activation study once fog formed.

In figure 5, increase of N palas-welas, may be due to increase of Naerosols, and thus to more hydrated particles at RH=100%. However as SS is lowering, no more droplets are formed. We do observed this behaviour in all our observations.

A companion paper is under preparation to describe the evolution of the droplets during the fog life cycle. We show what are the dominant process controlling the fog life cycle, an analyse of the thin fog, thick fog and thin fog becoming thick fog will be presented too.

4) In the end it is discussed that the droplet concentration in radiation fog is subject to a pronounced decrease in the droplet concentration while stratus lowering cases are not. This is quite obvious as in the beginning of radiation fog formation the whole fog layer is cooling (higher supersaturation maintained) and there is lots of aerosol particles present. While fog matures and grows in height, available particles are consumed within the fog and cooling is more efficient at the top of fog. See e.g. Boutle et al. (2018) or Tonttila et al. (2017). I do not see any point in the comparison to cumulus clouds where dynamics is totally different.

The way fog dissipates is still unclear. The LES study of Bergot (2016) showed evidences of the key role of dry downdraughts at the top of the fog layer on dissipation. Later, Waersted 2017 confirms with experimental data the importance of top processes for the fog dissipation. He performs a comprehensive study on the interaction with the upper layer and showed the importance of the dry state of the upper layer and the amplitude of the inversion. Mixing processes leading to dilution could be of importance.
Dilution ratio being as high as in cumulus cloud in radiative fog bring a new element on that point, meaning that turbulent mixing must be of importance.

Indeed, concentration of aerosols is suppose to be lower with increasing height but the supersaturation higher (it is growing with the fog optical depth increase and the dynamical set up). Impact on droplets concentration are thus not obvious and processes making droplets evolve in fog are still poorly know. Evolution of bottom concentration could be due to a vertical mixing from top to bottom of droplets in the fog layer, to an (de)increase of supersaturation at the bottom (certainly due to the dynamical set up) or to deposition, collision-coalescence, ect... Some models shows an increase of droplets concentration (close to the ground) during fog life cycle (see Stolaki et al, 2015) while we show a dilution with magnitude close to what happen in cumulus cloud. As we expect a positive contribution of dynamics on supersaturation, we have to consider this possible downdraught being of importance.

Sentences have been added in the section Impact of CCN concentration on fog microstructure to clarify this comparison:

"Recents work of Bergot, 2016 has shown, with a LES study, evidence of the key role of dry downdraught at the top of the fog layer on dissipation. These downdraughts would even then reach the surface allowing to sun to warm it. Waersted, 2017 using experimental data, confirms the importance of top processes for the fog evolution. Dilution ratio being as high as in cumulus cloud in radiative fog bring a new element on that point, meaning that turbulent mixing must be of importance."

And in the conclusion:

meaning that mixing with clear air may be of importance for fog microphysic evolution.

5) The big question is what is the relevant droplet concentration for numerical weather prediction and climate modelling purposes? Is it really the number of droplets actually activated or some other value accounting also the biggest hydrated aerosols? I would like to see some discussion on that.

We agree with the reviewer and add a discussion on that point on the discussion session:

«In a modelling purpose, distinguishing hydrated aerosols particles from droplets allows to calculate an accurate repartition of the vapour deposition on the droplet size distribution. Indeed, behaviour of hydrated particles and droplets is quite different, the second one grow as long as there are exceeding vapor while the first one stay at an equilibrium diameter. The second one may grow enough to produce drizzle and have strong interaction with radiation. A clear distinction should improve the representation of processes in numerical weather prediction model and so on the visibilities forecast. »

We add in the introduction:

«Moreover as shown by Boutle,2018 an accurate representation of droplets concentration for fog could also impact climate projection. »
6) It is concluded that the activated fraction mainly depends on the aerosol size. I do not agree on this statement. In Figures 9 and 10 I only see that the critical size, for activation and fraction of activated particles anti-correlate, but this does not say anything on the mechanism driving this relationship. Not the size of aerosol particles at least. Instead Figure 10a gives some indication that particle chemistry might have some role in activated fraction. To really make any conclusions about the effect of size or chemistry, the information of aerosol size distribution above 200nm should be used. This is available, so I don’t see any reason why not to use it.

Figures 10-b) shows that as the dry diameter decrease, concentration of activated particles increase. But as said in answer to 2), size is actually hidden in N* (intensity differs more than shape for particles larger than 200 nm).

Looking at what happen for equal Nact on Figure 9 b) different diameter can correspond, for example Nact = 100 cm-3. However looking then at Figure 10 b), ones can see a very good correlation between dry diameter and ratio. That mean that, for points of equal Nact with different dry diameter, points with smaller Dd have also a lower N*. Thus points with lower concentration at larger diameter activate at lower diameter. That mean that size diameter distribution does have an impact on concentration of activated aerosol.

Then looking at the link between N* and Nact (Figure 11), one can observe a modulation of the concentration of activated particles with the N*. For high N* we do not observe high Nact (on the contrary to what could be expected). Our explanation is that high concentration of aerosols low down the supersaturation by vapor captation by hydrated aerosol.

We add in the Impact of aerosol particles on fog droplets concentration session:

"Nevertheless, this figure (11) also shows that, for high concentration of activable particles (N *) lower N act are obtained. As suggested by Bott et al. (1990) this could be due to a lowering of vapour supersaturation with the hydration of the numerous aerosols particles."

and in the conclusion:

"But Nact could be modulated for high concentration of aerosols particles. Hydration of numerous aerosols particles could indeed lower the supersaturation."

7) Visibilities and LWC values are discussed but not shown. Comparison between visibility and droplet concentration could give some idea how relevant is the role of activated droplets when compared to hydrated aerosols in different cases. Even more if visibility at both measurement altitudes is given.

A comparison of the extinction as measured by the visibilimeter and the FM-100 [2-50]μm have been done on the three seasons (2010-2011, 2011-2012 then 2012-2013), we observed a strong correlation over the seasons. For a given episode evolution is similar with some exception that may be due to the wind direction (and the location of the head of aspiration of the FM-100). A specific study should follows on the instrumentation intercomparison.

Moreover, discussion on visibility should be included in the second paper of this study on the fog droplets evolution during the fog event.
8) Figure 4 does not give support for understanding the method for iterating critical size and supersaturation. Please try to improve it.

We agree with the reviewer, Figure 4 has been improved.
Authors thank the reviewers for their useful and very interesting comments and for the time spent to review our work. Reviewers have common concerns which we addressed to the best of our possibilities:

- We clarified the introduction, the method and the results sections by moving some figures to supplementary material and by re-organizing the text.
- The abstract has been rewritten in order to highlight the most significant results.
- A discussion has been added in the paper on the limitations of our methodology to derive aerosol and fog microphysical properties and on the limitation of this work due to the location of the campaign and the weak chemical variability.
- We also added a discussion on the relevance of our results for numerical weather prediction.
- Cyrielle Denjean have been added to this paper as coauthors to acknowledge their contribution to discussion related to these correction.

1. One of the main conclusions is that, based on the range of hygroscopicity factors \(C_1 (k) \) observed, aerosol composition is unimportant in determining \(N_{act} \). However, the (large) error bars in Figure 9c must be considered only by keeping in mind that the \(k \) values for the SS smaller than 0.1 were determined only through an extrapolation. \(N_{act} \) is actually one order of magnitude smaller than the smallest concentrations measured by the CCN counter, therefore caution must be used in extrapolating the CCN data to derive hygroscopicity factors for such small subset of particles. For these reasons, I am not convinced that the scatter plot in Figure 9c provides enough evidence that hygroscopicity does not contribute to control the activation of aerosols to fog droplets.

On figure 8 and 9 and on table 3 ones can see that the errors bars of the kappa values are not as important and won’t change the interpretation. Then looking at Figure 7, moving from violet blue distribution to black ones (SMPS distribution growth with kappa-Köhler theory to WELAS distribution), only depends on kappa. The excellent connection between the SMPS and Welas size distributions (also true for episode) means that kappa’s determination is not that bad.

In addition ones can see on figure 10.a) that for a given Sspeak, different activation fraction can correspond and they differ according to kappa. Thus kappa does have an influence on the activation fraction. But only when looking at the ratio. That means that the \(N^* \) (which divide Nact) is important, and actually it can be seen as a proxy for the droplet size distribution above 200 nm.

We added in section Impact of aerosol particles on fog droplets concentration :

```
" Correlation when \( N^* \) was calculated from the range of critical diameter inferred during the campaign (150 to 400 nm). This suggest that \( N^* \) using a single critical diameter can be considered as a good proxy of the number of activable particles. This can be understood since the supersaturation occuring in fog has a narrow range of value. CCN at a supersaturation between 0.02 and 0.11 % are mostly composed of accumulation mode particles. »
```

We added in the conclusion:
2. The Authors present a new methodology to separate activated and non-activated fog droplets (Section 3.2 and Figure 4). This is based on an iterative calculation for matching pairs of aerosol parameters (\(N_{ccn}\) and \(D_w\), where \(N_{ccn}\) was estimated by integrating the SMPS size-distributions and using the Koehler theory and the \(k\) values from the CCN measurements to derived wet diameters at the point of activation) with pairs of fog parameters (\(N_{\text{droplets}}\) and \(D_w\) measured by WELAS+FM) and making \(N_{ccn}\) to converge to \(N_{\text{droplets}}\). This is an interesting approach, but it is based on strong assumptions: a) it ignores that the \(D_w\) distribution in the WELAS+FM is much broader than the \(D_w\) of aerosols at the activation point because this point is reached only instantaneously and activated droplets grow to larger diameters afterwards; b) it ignores feedbacks of the activated droplets on SS so that all aerosols are assumed to activate at the same SS. In other words, the approach ignores kinetic effects, it is based on a purely equilibrium state, and neglects the variability of SS (and fog forms like inside a CCN counter where SS is externally controlled). The Authors have not acknowledged these caveats, and, in my opinion, they have not adequately presented a critical analysis of their approach. Only two examples are presented (f6 and f20 in Figure 7), where the approach seems to work, but what about other cases, such as the strange f22? For all these cases, it would be very interesting to compare the present approach with alternative ones based on, e.g., mode fitting (Elias et al., 2015, etc.).

a) it ignores that the \(D_w\) distribution in the WELAS+FM is much broader than the \(D_w\) of aerosols at the activation point because this point is reached only instantaneously and activated droplets grow to larger diameters afterwards;

Reviewer is right on the point that distribution of WELAS+FM must have reach larger diameter. It is the reason why we use approximatively 1h laps time after the fog beginning as explained in section “method to determine fog activation properties ». Then droplets distribution continues to evolve but that should be the point of a following paper.

b) it ignores feedbacks of the activated droplets on SS so that all aerosols are assumed to activate at the same SS. In other words, the approach ignores kinetic effects, it is based on a purely equilibrium state, and neglects the variability of SS (and fog forms like inside a CCN counter where SS is externally controlled). The Authors have not acknowledged these caveats, and, in my opinion, they have not adequately presented a critical analysis of their approach. Only two examples are presented (f6 and f20 in Figure 7), where the approach seems to work, but what about other cases, such as the strange f22? For all these cases, it would be very interesting to compare the present approach with alternative ones based on, e.g., mode fitting (Elias et al., 2015, etc.).

In the text we wrote:

“These values are slightly higher than values reported by Hammer et al. (2014), \(D_w\) 50th = 2.6
µm, but consistent with Elias et al. (2015) results Dw = 4 ± 1.1 µm who determined it from a November 2011 dataset as the intersection between the two log-normal distributions fitting the particle volume distribution measured by the WELAS. Such a gap between hydrated and activated particles can be seen in figures 7-a) and b) and it corresponds fairly well to the average wet activation diameter derived for such cases that are equal to 4.41 and 2.62 µm, respectively."

Our results are consistent with the other studies and indeed Figure 7 shows that wet diameter correspond rather well to the intersection between two modes. Same behaviour is observed with other case.

For the f22 case, correspondence is rather good too considering that wet diameter is included in the range [0.98-2.65] µm.

Note that the supersaturation we are talking about here, is the critical supersaturation peak. That is obviously not the critical supersaturation of each individual aerosols particles but the supersaturation needed to activated the smallest aerosols particles becoming a droplet.

We add in the session Fog activation properties:
“(which refers to the supersaturation needed to activate the smallest activated aerosols particles)”
(talking about supersaturation)

3. The method used to estimate Nact from aerosol measurements relies on the SMPS
size-distributions. However, instrumental uncertainties in sizing and counting for particles larger than 400 nm should be taken into account. In addition, the discussion that the Authors present about mixing state is oversimplified as a certain extent of external mixing is common in polluted environments. In this referee’s opinion, there is a lack of adequate online aerosol instrumentation for probing concentrations, composition and mixing state in the size range which is the most critical for fog droplet activation: that of large accumulation mode particles.

Concerning particles between 400 nm and 496 nm, agreement between the SMPS and Welas size distributions, give us confidence on the measurements. We had actually no way to determine dry particles larger than 496 nm. However as there should be very few particles above 496 nm (considering that the concentration decrease from ~200nm), we guess the impact to be weak. According to Franck, 1998, large accumulation mode particles could be present into the fog as big hydrated particles not activated. We don’t think they will have a notable impact on droplets concentration, but depending on their size, they could initiate some processes as collision-coalescence. We are also convinced that future studies on fog activation should include « dry » instrumentation above 500 nm.

We agree with the reviewer about the lack of clarity on the mixing states.

We add in the method section:

“However atmospheric aerosols are frequently externally mixed with particles of different sizes exhibiting different chemical composition. Discussion on this hypothesis is performed in the method validation section."

And move the discussion on the mixing state in the method validation section.

We add in the method section:

“In addition, number concentration of aerosol particles larger than 496 nm was assumed to be negligible in our calculation.“
Authors thank the reviewers for their useful and very interesting comments and for the time spent to review our work. Reviewers have common concerns which we addressed to the best of our possibilities:

- We clarified the introduction, the method and the results sections by moving some figures to supplementary material and by re-organizing the text.
- The abstract has been rewritten in order to highlight the most significant results.
- A discussion has been added in the paper on the limitations of our methodology to derive aerosol and fog microphysical properties and on the limitation of this work due to the location of the campaign and the weak chemical variability.
- We also added a discussion on the relevance of our results for numerical weather prediction.
- Cyrielle Denjean have been added to this paper as coauthors to acknowledge their contribution to discussion related to these correction.

The number of figure is high and I would suggest to move some figures to the supplementary material. For example Fig 2 used to validate the droplet size distribution measurements can be moved to supplementary. Figure 3, as well, can be moved to supplementary, since the variability of Na and NFM is already clear in Table 2. Figure 5 and 6 can be moved to supplementary, as well, as an example to show the variability of particle size distribution and the variability of kappa.

Move to supplementary

The paper deals with fog formation considering only fog droplets formed in super saturated conditions, i.e. at RH larger than 100%. Thus, the authors analysed the aerosol and fog microphysical measurements using the k-kohler theory, derived from a parametrisation of the Kohler theory. Nevertheless, Charlson et al. 2001 claimed that “soluble gases, slightly soluble solutes, and surface tension depression by organics also influence the formation of cloud droplets in a manner unforeseen by Kohler”. They concluded that “clouds or fogs with micrometered-sized droplets may exist even though the droplets have not undergone traditional activation and even though the ambient relative humidity never exceeds 100%” It would be useful if the authors could discuss their results at the light Charlson et al. conclusions, which strongly depends on the level of aerosol and gas pollutant concentration. (Charlson et al. 2001, Reshaping the theory of cloud formation, Science, Vol. 292, Issue 5524, pp. 2025-2026, and reference therein)

Surface-active species have indeed the potential to lower surface tension of a growing droplet, thereby increasing the critical supersaturation and the CCN activation efficiency. This effect has largely been attributed to organics when the organic concentration in the aerosol population is
sufficiently large (Facchini et al., 1999; Noziere et al., 2014). The extent to which this will occur is strongly dependent upon the specific molecular properties of the organic molecules, and traditional surfactants (such as fatty acids) can actually have a negligible impact on CCN activation (Forestieri et al. 2018). Moreover to influence aerosol activation, the average properties of surface-active organic molecules must differ substantially from the long-chain fatty acids having either smaller molecular volumes or larger molecular areas. Exploring these aspects would need to combine CCN measurements and a detailed analysis of the molecular species contained in organic particles. This is out of the scope of this manuscript.

We add in the method section:

“Moreover, properties (surface tension) of atmospheric aerosols could be modified by surfactant. This effect has largely been attributed to organics when the organic concentration in the aerosol population is sufficiently large (Facchini et al., 1999; Noziere et al., 2014). The extent to which this will occur is strongly dependent upon the specific molecular properties of the organic molecules. Unfortunately exploring these aspects would need to combine CCN measurements and a detailed analysis of the molecular species contained in organic particles. This is out of the scope of this manuscript.”

Fog with micrometered-sized aerosol particles not activated could exist at ambient relative humidity under 100% as also noticed by Franck, 1998. Unfortunately we don’t have any measurements of particles larger than 500 nm, so we can not evaluate this effect. All we can guess if we follow the shape of the lognormal distribution for the dry aerosols distribution, is that concentration of particles larger than 500 nm may be very few numerous and should not impact the determination of the droplets concentration.

We have added in the method section:

“In addition, number concentration of aerosol particles larger than 496 nm was assumed to be negligible in our calculation.”

The authors conclude that particles composition is less determinant than particles size for the number of activated particles. Figure 4c is used to derive such conclusion, since no correlation is observed between Nact and kappa. Is it possible that particle hygroscopicity has a stronger influence for small activation diameter than for large activations diameters? Does kappa explain the scatter of data points in Fig 9b at low activation diameter (<0.35)?

Scatter in Figure 9 b) is explained by aerosols particles diameter distribution as show Fig 10.b).

On this figure, for an equal Nact we don’t have the same Dd, meaning that the shape differs. However looking at the ratio Nact/N* on Fig 10.b), correlation is rather good, that suggest that the shape differs more on intensity than on form. That would also suggest that on a given diameter range, results on dependencies between N* and Nact would be the same whatever the threshold diameter. Indeed sensibilities tests made with threshold at 250 nm, 300 nm or 400 nm confirms it. Moreover, as figure 11 shows it, more aerosols particles, less high supersaturations, that suggest a ‘control’ of the supersaturation values by the aerosols concentration.

Sentence must be added in the text to explain that point.

We added in section Impact of aerosol particles on fog droplets concentration:
Correlation when N^* was calculated from the range of critical diameter inferred during the campaign (150 to 400 nm). This suggest that N^* using a single critical diameter can be considered as a good proxy of the number of activable particles. This can be understood since the supersaturation occurring in fog has a narrow range of value. CCN at a supersaturation between 0.02 and 0.11% are mostly composed of accumulation mode particles."

Kappa could have a larger influence for stronger supersaturation and smaller stronger diameter but range of supersaturation is limited in fog. And Fig 13 shows that at 0.1% supersaturation, Kappa get influence but is not the main factor controlling CCN.

One additional evidence to prove that “size matters more than chemistry” is the analysis reported in figure 10b. The graph shows that the ratio of Nact over N>200 decreases with the activation diameter increase. This is obvious considering the log normal shape of particle size distribution and derived form the assumption that all particles larger than 200 nm can be activated, i.e. on the assumption that “size matters more than chemistry”. The result of the analysis is biased by the starting assumption.

If we consider that kappa have a stronger influence than shape and that the “biggest” shape have also the higher kappa then activation should be more important for the “biggest” shape and Dd could be smaller. Thus the ratio Nact/N* would be inverted.

Authors consider only particles larger than 200 nm because activation only concerns the accumulation mode, and we wanted to avoid the pollution of the smallest particles (~10nm) that will never be activated and will have a very low hygroscopic growth. We thus conclude than shape of particles above 200 nm matters more than chemistry. We added some modifications on the text about that point.

MINOR COMMENTS

The manuscript concludes that aerosol size distribution impacts fog microphysics more than chemical composition. Please discuss if the limited variability of the k parameter observed during the experiment can bias this conclusion

Kappa vary between 0.1 and 0.3. Repartition in class of kappa on this range allows to show the impact of kappa of Figure 10.a).

We agree that our conclusion is valid on the kappa range observed in our study, and our conclusion can differ for other kappa values. We add a discussion on the limitation of our results in the conclusion. However on the 23 cases observed (and selected according to the instruments limitation) during three winter, aerosol size distribution impacts fog microphysics more than chemical composition.

We agree that reservation should be issued about that.

We add in the text:

“Nevertheless, some reservation must be issued on that point. Aerosol size distribution impacts fog microphysics more than chemical composition on the measure range on the hygroscopic parameter during the three winters of observations. Higher or lower values of this parameter could bias this
conclusion. Other measurements of aerosol and fog microphysics in other environmental conditions would be needed to pursue this issue.”

Page 5: do the authors see a difference in kappa values for easterly and westerly flow conditions. Is the origin of air masses reflected in kappa variability?

We did not observe difference in kappa values for the different wind conditions. As mentioned above, a discussion on the limitation of the environmental conditions observed during the field campaign have been added in the conclusion.

We add in the conclusion:
“Other measurements of aerosol and fog microphysics in other environmental conditions would be needed to pursue this issue.”

Technical corrections
Table 1: Done
Page 5: Done
Page 6: Done
Page 7: Done
Page 10: Done
Experimental study of the aerosol impact on fog microphysics

M. Mazoyer¹, F. Burnet¹, C. Denjean¹, G. C. Roberts¹, M. Haeffelin², J.-C. Dupont², and T. Elias³

¹CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
²Institut Pierre Simon Laplace/UVSQ, Palaiseau, France
³HYGEOS, Lille, France

Correspondence to: M. Mazoyer (marie.mazoyer@meteo.fr)

Abstract.

Comprehensive field campaigns dedicated to fog life cycle observation were conducted during the winters of 2010-2013 at the SIRTA observatory in the suburb of Paris. In order to document their properties, in situ microphysical measurements collected during 23 fog events induced by both radiative cooling and stratus lowering are examined here. They reveal large variability in number, concentration and size of both aerosol background before the fog onset and fog droplets according to the different cases. The objective of this paper is to evaluate the impact of aerosol particles on the fog microphysics. To derive an accurate estimation of the actual activated fog droplet number concentration N_{act}, we determine the hygroscopicity parameter κ, the dry and the wet critical diameter and the critical supersaturation for each case by using an iterative procedure based on the κ-Köhler theory that combines cloud condensation nuclei (CCN), dry particle and droplet size distribution measurements.

Our study reveals low values of the derived critical supersaturation occurring in fog with a median of 0.043%. Consequently, the dry and wet activation diameters did not exceed 0.496 and 7.25 μm respectively, leading to a minor fraction of the aerosol population activated into droplet. The corresponding N_{act} values are low with median concentrations of 53.5 cm^{-3} and 111 cm^{-3} within the percentile 75th. The activated fraction of aerosols exhibit remarkably low correlation with κ values, which reflects the chemical composition of the aerosols. On the contrary the activated fraction exhibits a strong correlation with the inferred critical diameter throughout the field campaigns. This suggests that the variability in the activated fraction is mostly driven by particle size, while variations in aerosol composition is of secondary importance. Moreover our analysis suggests that the supersaturation reached in fog could be lowered by the aerosol number concentration, which could contribute to the sink term of water vapour during the radiative cooling. Although radiative fogs are usually associated with higher aerosol loading than stratus lowering events, our analysis also reveals that the activated fraction at the beginning of the event are similar for both types of fog. Furthermore the evolution of the droplet concentration during the fog life cycle shows significant differences between both types of fog.

This work demonstrates that an accurate calculation of supersaturation is required to provide a realistic representation of fog microphysical properties in numerical models.
1 Introduction

As they reduce visibility, fog events strongly perturb the aviation, marine and land transportation. Gultepe et al. (2009) pointed out the extremely high level of human losses and financial cost related to fog and low visibility events. Moreover present numerical weather prediction models are usually unable to predict the exact location and time evolution of the life cycle of a fog layer (Zhou and Ferrier, 2008; Van der Velde et al., 2010; Bergot, 2013; Boutle et al., 2018).

The occurrence and development of fog result from the nonlinear interaction of competing radiative, thermodynamic, microphysical and dynamical processes (see the review of Gultepe et al. (2007b)). Water droplets are formed by heterogeneous nucleation of aerosol particles when the relative humidity (RH) exceeds 100 %. The Köhler theory (Köhler, 1936) forms the basis of our understanding of cloud droplet formation. The ability of aerosol particles to act as Cloud Condensation Nuclei (CCN) depends largely on their size, composition and the phase state. The number size distribution of the droplets activated during the cloud formation phase depends on the supersaturation values reached by the air mass (Pruppacher et al., 1998). Particles having a critical supersaturation below the maximum value are activated and will then further grow by water vapour diffusion as long as the RH remains high enough, while the others particles remain at their equilibrium diameter. Water droplets are also the particles whose diameter are higher than the critical threshold corresponding to that critical supersaturation.

Because of the weak supersaturation inside the fog layers (Hudson, 1980; Pandis et al., 1990; Svenningsson et al., 1992; Hammer et al., 2014; Boutle et al., 2018) the separation between activated fog droplets and non activated particles, so-called hydrated aerosols, is not explicit (Frank et al., 1998). To date the microphysics in Numerical Weather Prediction (NWP) models takes into account activated droplets only. Recently a two moment microphysical cloud scheme, which relies on the prognostic evolution of an aerosol population to predict cloud droplets, has been developed for low supersaturation clouds (Thouron et al., 2012) and needs to be tested against observations. It is thus essential to evaluate precisely total droplet number concentration values and their corresponding size range. Currently their definition mainly deals with the instrumentation limitation that generally begins at 2 \(\mu m \) in diameter to measure droplets size distribution. However Hammer et al. (2014) and Elias et al. (2015) experimentally determined threshold diameter higher than 2 \(\mu m \) to characterize droplets. As smallest hydrated particles are more numerous, considering a smallest threshold diameter could lead to an important overestimation of the droplets concentration. Moreover as shown by Boutle et al. (2018) an accurate representation of droplets concentration for fog could also impact climate projection.

As a general rule in cloud physics, increase in aerosols causes an increase in the droplet number concentration for a given cloud type (Ramanathan et al., 2001). Hudson (1980) and Liu et al. (2017) found systematic differences in the fog microstructure between fogs formed in maritime, continental and urban air masses with a simultaneous increase of fog condensation nuclei and aerosol concentration. Recent numerical simulations exhibit a strong positive correlation between aerosol and droplet concentrations (Zhang et al., 2014; Stolaki et al., 2015; Maalick et al., 2016). They also produce fog events with high values of droplet concentrations, typically few hundreds per \(cm^{-3} \) or more. By contrast, numerical study of Bott (1991) shows that an increase in aerosol particles leads to a decrease of the supersaturation that in turn decreases the activated droplet number.
Recently, Boutle et al. (2018) have obtained impressively low droplet concentrations with LES (Large Eddy Simulation) by numerically solving the condensation equation at every time step and grid point, but they had very few activable aerosol particle.

In this study, we examined in situ microphysical measurements collected during the 3 winters campaigns to derive typical fog droplet concentrations in semi-urban condition. From October 2010 to March 2013 a suite of active and passive remote sensing and in situ sensors were deployed at the Instrumented Site for Atmospheric Remote Sensing Research (SIRTA) in the suburb of Paris (Haeffelin et al., 2010). Dupont et al. (2015) analysed 117 fog events to provide typical values of thermodynamical and radiative variables for the fog formation, the mature and dissipation phase. Burnet et al. (2012) have shown that, in term of droplet number concentration and effective diameter, the microphysical properties of fog events sampled at SIRTA present a large variability. Elias et al. (2015) examined the data collected during Nov 2011 and assessed the contribution of hydrated aerosols that led to the extinction of the visible radiation in the mist-fog-mist cycle. Hammer et al. (2014) focused on the activation properties of developed fog events observed during the winter 2012/2013, but they did not provide activated particle concentrations values.

Here, we determine the hygroscopicity parameter, the dry and wet critical diameters, and the critical supersaturation by using an iterative procedure based on the κ-Köhler theory that combines CCN measurements, dry particle size distribution and composite wet particle distribution at ambient humidity. The objectives are to derive accurate estimations of the fog droplet concentrations and to investigate the impact of aerosols on the fog microphysics. This paper provides a comprehensive data set of information on activation properties and bring explanation on the aerosol impact on activation process.

Data and method are described in Sect. 2. and 3., respectively. Results are presented in Sect. 4 with first the statistics of fog activation properties of the 23 fog events analysed in this study. The link between aerosol particles and fog droplets are examined in Sect. 4.2, and the impact of CCN concentration on fog microstructure is discussed in Sect. 5. Conclusions are finally given in Sect. 6.

2 The dataset

2.1 Instrumentation

Data presented here were collected at the SIRTA observatory in the framework of the ParisFog field campaigns (Haeffelin et al., 2010). During the winters 2010 to 2013, specific instrumentation were deployed for the PreViBOSS project (Elias et al., 2012) to provide continuous observation of aerosol and fog microphysics. The experimental set-up was already presented in Burnet et al. (2012), Hammer et al. (2014), Elias et al. (2015) and Dupont et al. (2015). The instruments used in this study are listed in Table 1.

Particle size distribution at ambient humidity is derived from a combination of two optical spectrometers: the WELAS-2000 (Palas Gmbh, Karlsruhe, Germany) and the FM-100 (Droplet Measurement Technologies Inn., Boulder, CO, U.S.A.) that do not cover the same size range. The WELAS-2000 (hereafter referred as WELAS) provides particle size spectrum between 0.4
and 40 \(\mu m \) in diameter according to the constructor. However the detection efficiency decreases drastically below \(\sim 1 \mu m \) (Heim et al., 2008; Elias et al., 2015) resulting in a strong underestimation of the concentration of the submicronic particles. Hammer et al. (2014) choose to consider only data with diameter larger than 1.4 \(\mu m \). Statistics over the whole data set reveals that the most frequent mode diameter of the WELAS size distribution is 0.96 \(\mu m \). Thus we choose to use this value as the lowest threshold and only measurements for bin diameter larger than 0.96 \(\mu m \) will be considered in this study. Note that the activated diameter in fog is expected to be larger that 1 \(\mu m \), thus this instrumental bias will not affect the results presented here, which is next confirmed in this study for SIRTA’s fog. The sampling time period was fixed to 5 minutes as a compromise between time resolution and statistical significance of the measurements. Indeed this corresponds to a volume of air of 6.40 \(cm^{-3} \) per sample.

The FM-100 provides 1 Hz droplet size distribution from 2 to 50 \(\mu m \) in diameter according to the constructor. Hence providing a large overlapping range with the WELAS measurements. However Burnet et al., 2012 and Elias et al., 2015 shows that these distributions only overlap each other at a diameter which fluctuates between 5 to 9 \(\mu m \) . Their comparisons reveal a high discrepancy between both these probes with a large underestimation by the FM-100 for particle less than about 5 \(\mu m \) but conversely a large underestimation by the WELAS for droplets larger than 10 \(\mu m \) (Burnet et al., 2012; Elias et al., 2015). This is illustrated in Fig. 1 which shows the size distributions measured by the WELAS (black) and FM-100 (cyan) for two fog cases with contrasting properties. Figure A.1 shows comparisons of the particle number concentration values of the FM-100 vs the integrated WELAS measurement over [2-10] \(\mu m \) diameter range that correspond to the four first bins of the FM-100. The default manufacturer’s first four bins of the FM-100 are [2-4], [4-6], [6-8] and [8-10] \(\mu m \) which correspond to 9, 7, 4 and 3 class bins of the WELAS, respectively. Following WELAS sampling time period, FM-100 and WELAS data points are 5 min average that represents 2851 samples for the whole data set. Figure A.1 confirms that the FM-100 strongly underestimates the particle counts in the first size bin and that the WELAS underestimates the concentration of particles larger than 8 \(\mu m \). The two instruments do not match perfectly each other over particles from between 4 and 8 \(\mu m \), which reflects the large fluctuations of the crossing diameter over this range. To derive a composite size distribution, Elias et al. (2015) choose a constant value of 7 \(\mu m \). Because of this high variability, we compute here the composite size distribution by using WELAS data up to 6 \(\mu m \), FM-100 data above 8 \(\mu m \) and the average of both from 6 to 8 \(\mu m \). Results are illustrated in Fig. 1 with red segments corresponding to the junction between WELAS and FM-100 distribution. This procedure allows us to take advantage of the finer bins resolution of the WELAS for the smaller particles and also to reduce uncertainties of the FM-100 due to Mie ambiguities for smaller diameter as described by Spiegel et al. (2012) since our FM-100 was using the default manufacturer’s bin threshold. Indeed, particularly for smaller diameter, the droplet concentration may be overestimated or underestimated, a few droplets from adjacent classes can be included or few some can be counted in an adjacent class (Gonser et al., 2012). Nevertheless because of the large discrepancies between the two sensors on the crossing diameter, next calculation using this crossing diamater also consider a standard deviation using the min and the max size distribution over this size range. Both instruments are located on a scaffolding at about 2.5 m high, close to a PVM-100 from Gerber Scientific Inc. used as a reference for the LWC measurements, which measures on the [2-50]\(\mu m \) diameter. Measurements of visibility and its vertical evolution are given by two Degreanne diffusometers (DF20+ and DF320) located at 4 m and 18 m above ground, respectively.
Confidence is given in FM-100 measurements by comparison of the integrated LWC over it size range with the LWC measured by the PVM-100 and the visibility trend, see Burnet et al, 2012 for 2010-2011 winter. A paper will follow on that issue.

Aerosol particles measurements are performed by instruments placed in a shelter. The sampled air mass enters through an aerodynamic size discriminator PM 2.5 inlet and a dryer which reduces the relative humidity to less than 50%. This value could be higher that the efflorescence point for some particles (Tang et al., 1995).

A scanning mobility particle sizer (SMPS) which provides the dry aerosol particle number size spectrum, consists of a differential mobility analyzer (DMA; TSI 3071) which selects particles from 10.6 to 496 nm and of a condensation particle counter (TSI CPC 3022). Hydrophilic filters in the DMA circuit should lower the relative humidity to less than 30% (Denjean et al., 2014) which should be enough to avoid efflorescence issues.

Another CPC (TSI 3025) measures the total particle number concentration from 2.5 nm to 2.5 µm. Finally a continuous flow streamwise thermal gradient CCN chamber (Roberts and Nenes, 2005) is used to measure the CCN number concentration at 5 different supersaturations from 0.1 % to 0.5 %, by step of 0.1 %.

2.2 Selected fog cases and aerosol properties

During the three wintertime campaigns of 2010-2013, Dupont et al. (2015) report the occurrence of 117 fog events. However due to instrument failures and technical difficulties in operating the whole set of instrument on a 24/7 mode, 42 events were sampled simultaneously with both the WELAS and the FM-100, and only a subset of 23 cases were also sampled with both the CCNC and the SMPS. They are listed in Table 2 with their classification type, RAD for radiative cooling fog and STL for stratus lowering ones as determined by the scheme of Tardif (2007), and their vertical development based on the comparison of both difusometers: a developed fog produces low visibility condition simultaneously at 4 m and 18 m while a thin fog produces low visibility condition at 4 m only (Elias et al., 2009), Dupont et al. (2015). About the same proportion (40 %) of RAD and STL fog events occured at SIRTA site Haeffelin et al. (2010), Dupont et al. (2015). Of the 23 fog events analysed here, 13 are radiation fog and 10 stratus lowering fog, 19 are developed and 4 thin.

To characterize the aerosol background prior to a fog event, statistics of the total number aerosol particle concentration, Na, as measured by the SMPS, between [10-496] nm diameter, are computed over the last hour before the beginning of the fog event. This time laps is chosen to characterize aerosol before fog event because CCNC, which allows to characterize aerosol chemistry and a sampling time of 20 min, that 1 hour time laps is supposed to provided reliable measurements. Median, 25th and 75th percentiles are reported in Table 2. Na values range from $\approx 2000 \ cm^{-3}$ to $\approx 20000 \ cm^{-3}$. Consistently with Haeffelin et al. (2010) the smallest values are observed in westerly flow conditions while highest values are associated mostly with an easterly flow when SIRTA is exposed to continental conditions. Indeed SIRTA is located 25 km south-west of Paris in a semi-urban environment, composed of agricultural fields, wooded areas, housing and industrial developments (Haeffelin et al., 2005) and is exposed to air mass charged with pollution originating from regional background according to Crippa et al. (2013).
These various conditions are reflected on the statistics that reveal a large case to case variability. This is illustrated in Fig. 2 that shows the scatter-plot of the droplet number concentration derived by the FM-100, N_{FM} on [2-50] µm diameter range, (table 2) as function of Na, that represent the aerosol loading, for the 23 fog events. Symbols depend on the fog type: blue and red colors for STL and RAD fogs, respectively, and open and solid symbols for thin and developed fogs, respectively. For STL fogs, Na ranges from 2000 to 11000 cm^{-3} with a median value of 4340 cm^{-3} and 25th and 75th percentiles of 2833 and 6942 cm^{-3}, respectively, while for RAD cases, Na are spread over a larger range from 3000 to 20000 cm^{-3} with a median value of 8822 cm^{-3} and 25th and 75th percentiles of 5719 and 13094 cm^{-3}, respectively. Thus over this three year campaign it appears that at SIRTA STL fogs are associated with lower aerosols loading than RAD ones, as already reported by Elias et al. (2015) for the month of November 2011.

There is also a significant difference between a STL and RAD fog with respect to N_{FM}. Despite that the maximum value is reached for a STL fog (147 cm^{-3} for the case f7) N_{FM} for a STL fog is generally lower with median values between 38 and 83 cm^{-3} and 25th-75th percentiles of 31-63 and 53-118 cm^{-3}, for STL and RAD, respectively. Moreover, for a RAD fog, thin cases exhibit higher values of N_{FM} with median and 25th-75th percentiles of 97 and 73-131 cm^{-3} compared to 64 and 49-81 cm^{-3} for a developed fog. Therefore it appears that a radiative fog is also associated with higher droplet concentrations than stratus lowering fog over the range [2-50] µm as measured by the FM-100. One can note that these values are rather low for continental conditions (Wendisch et al., 1998; Garcia-Garcia et al., 2002; Gultepe and Milbrandt, 2007a; Niu et al., 2012; Price, 2011; Liu et al., 2011; Lu et al., 2013; Zhao et al., 2013; Boutle et al., 2018).

As shown in Fig. 2 the general trend point towards a slight increase in the number of droplets with the aerosol loading but the scatter is very large. In cloud physics the connection between an increase in aerosol particles and an increase in the cloud droplet number concentration (CDNC) has been supported by many in situ observations (Twohy et al., 2005; Lu et al., 2007; Levin and Brenguier, 2009) and even if the discrepancy is large in the compilation of the diverse results (Ramanathan et al., 2001) the general trend is much more pronounced to what is presently observed in Fig. 2. However, CDNC is derived here from FM-100 measurements only between [2-50] µm diameter. In warm clouds the supersaturation at the cloud base is high enough to activate droplets whose size will increase by water vapour condensation during the ascent of the air parcel. The spectrum then gets narrower because the growth rate of a droplet is inversely proportional to its size, while the remaining interstitial particles keep their own equilibrium diameter at 100 % relative humidity. Higher up in the cloud the spectrum is widened by different processes such as turbulent mixing and collision-coalescence and new CCNs can also be activated. Droplet spectra vary considerably in space and in time but the general trend is that the activated droplet population is clearly separated from the interstitial non-activated particles. See for example measurements into stratocumulus cloud as reported in Martin et al. (1994); Brenguier et al. (2011); Ditas et al. (2012). Measurements by optical counters such as FSSP or CDP over the range [about 2-50 µm] are considered to provide an accurate estimation of the droplet size distribution.

In contrast, supersaturation in fog is much lower and, as already pointed out by Hudson (1980), in continental air the droplet number size distribution does not exhibit a clear separation. This is clearly illustrated in Fig. 1. To derive an accurate estimate of the CDNC it is thus essential to determine carefully the wet activation diameter in order to integrate the composite size
distribution derived from both WELAS and FM-100 measurements. The method used to discriminate the droplets from the hydrated aerosol particles using kappa-Köhler theory is described in the next section.

3 Methods

There are different methods to separate fog droplets from non-activated aerosol particles. A fixed value can be used as a rough estimate as described in previous studies by Noone et al. (1992); Hoag et al. (1999); Elias et al. (2009) among others, with thresholds ranging from 2.5 to 5 µm. To take into account case to case variability, Elias et al. (2015) used WELAS measurements. The volume size distribution is fitted with two log-normal distributions and the transition diameter is defined as the intersection between them.

Hammer et al. (2014) investigated the activation properties by measuring the total and interstitial dry particle number size distribution behind two different inlet systems, and with WELAS and CCN measurements. They compared two methods one by fitting surface distributions of SMPS+WELAS measurements similar to Elias et al (2014) and one by retrieving the dry activation diameter from the difference between interstitial and total particle size distribution measurements.

In this study we use a different approach based on an iterative procedure that combines dry particle distribution from SMPS and composite wet particle size distribution derived from both WELAS and FM-100 measurements. The CCN measurements are also used to derive the hygroscopicity parameter (κ) needed to link the dry and wet activation diameter (D_d and D_w) with the critical supersaturation peak (SS_{peak}) using the κ-Köhler theory.

3.1 Kappa-Köhler theory

The Köhler theory (Köhler, 1936) expresses the equilibrium saturation vapor pressure over a solution droplet considering the solute effect (Raoult) and water surface tension effect (Kelvin). Accurate information is needed on the particle dry diameter and about the chemistry to determine whether or not it can act as a CCN. Recently Petters and Kreidenweis (2007) developed a method, named κ-Köhler, to describe the relationship between particle dry diameter and CCN using a single hygroscopic parameter, κ. This method allows to study the activation process without considering aerosols complex chemistry (McFiggans et al., 2006). The formulation of the method is expressed in Eq.(1):

$$S(D) = \frac{D^3 - D_d^3}{D^3 - D_d^3(1 - \kappa)} \exp\left(\frac{4\sigma_{s/a}M_w}{RT\rho_wD}\right)$$

(1)

where S is the saturation ratio over a solution droplet, D is the droplet diameter, D_d is the dry droplet diameter, ρ_w is the density of water, M_w is the molar mass of water, $\sigma_{s/a}$ is the surface tension of the solution air/interface (of pure water here), R is the universal gas constant, T is the temperature and κ is the hygroscopicity parameter. κ represents a quantitative measure of aerosol particles water uptake characteristics and CCN activity. The critical supersaturation SS_c and critical wet activation diameter D_w correspond to values at maximum of supersaturation. They are linked to a couple (D_d, κ) through the following relation:

$$\kappa = \frac{4A^3}{27D_d^3ln^2SS_c} \quad A = \frac{4\sigma_{s/a}M_w}{RT\rho_w}$$

(2)
SS_{peak} represents the maximum supersaturation that the air mass experienced for a sufficient long time \cite{Hammer2014}, all particles whose SS_{c} is less than SS_{peak} are activated and will further grow by water vapour condensation as long as RH remains high enough while other particles remain stable at their equilibrium diameter at the actual RH value.

3.2 Method to determine fog activation properties

The iterative procedure used to derive fog activation properties is illustrated in Fig. 3. To derive D_d and D_w, simultaneously measured CCN concentration (N_{ccn}), dry and wet aerosols size distribution were used. From that it follows that all particles become activated to droplets when their dry or wet size is similar to or larger than D_d and D_w. Indeed it can exist only one trio N_{ccn}, D_w and D_d that are linked to κ and SS_{peak} through Eq.(2). For each fog event the activation properties are determined as follows : N_{ccn} is set corresponding to a value of D_d. D_w and SS_{peak} are further calculated by using Eq.2 for SS_{peak} and by numerically searching for the maximum of Eq. 1 for D_w for a given value of κ. Then the integral of the droplet distribution from D_w provides the droplet concentration N_d. Iterations are made on N_{ccn} until N_{ccn} equals N_d : this is the activated aerosol number concentration for this case hereafter referred as N_{act}. N_{act} corresponds to the concentration of activated aerosols at SS_{peak}. Two sets of iteration are made with the two κ values and the average particle size distribution. To take into account the size distribution variability within the selected time period two other sets of iteration are made by using the average size distribution +/- one standard deviation corresponding to the extrema of the WELAS and FM-100 crossing diameter, respectively, and with the κ value maximizing the scatter.

Our method to determine fog activation properties have to assume that the aerosol particles are internally mixed. However atmospheric aerosols are frequently externally mixed with particles of different sizes exhibiting different chemical composition. Discussion on this hypothesis is performed in the method validation section. Moreover, properties (surface tension) of atmospheric aerosols could be modified by surfactant. This effect has largely been attributed to organics when the organic concentration in the aerosol population is sufficiently large \cite{Facchini2000, Noziere2014}. The extent to which this will occur is strongly dependent upon the specific molecular properties of the organic molecules. Unfortunately exploring these aspects would need to combine CCN measurements and a detailed analysis of the molecular species contained in organic particles. This is out of the scope of this manuscript. In addition, number concentration of aerosol particles larger than 496 nm was assumed to be negligible in our calculation.

The air mass is sampled through a PM2.5 head and is dried to RH < 50 % before entering the SMPS and the CCN chamber. Hence during a fog event activated aerosols larger than 2.5 μm are missed. Aerosol properties of the air mass must thus be characterized before the occurrence of a fog event. In addition the aerosol particle distribution changes continuously according to the boundary layer evolution and aerosol sources (wood burning, road traffic, ...). This is illustrated in Fig. A.2 that illustrates the time series of measurements for the fog event f6. There is a large variability along the diurnal cycle. To characterize the air mass just before the fog event, we average data recorded during the last hour before the fog onset. This corresponding time interval is delimited by red segments in Fig. A.2.
CCN chamber measurements are used to derive κ by using Eq. 2 knowing S_{Sc} and D_d. The chamber supplies the concentration of activated aerosol particles N_{ccn} at five supersaturations from 0.1 % to 0.5 %. Scanning takes about 20 minutes. Therefore 3 scans can be made during the 1 hour interval thus provides meaningful estimation of the aerosol hygroscopicity. However supersaturation values in the chamber are greater than 0.1 % and it is well known that SS_{peak} in fog is generally lower than 0.1 % (Hammer et al., 2014; Ming and Russell, 2004; Svenningsson et al., 1992; Hudson, 1980). Therefore assumptions must be made to extrapolate κ at lower supersaturation. This is illustrated in Fig. A.3 that shows statistics of κ as function of supersaturation for the selected time period of Fig. A.2. Data points correspond to calculations with CCN data at each supersaturation and the SMPS aerosol size distribution averaged over the one hour time interval. Solid and dashed lines superimposed to the data points correspond to mean and mean +/- one standard deviation values, respectively. Two extrema of κ are defined. κ_{inf}, which is computed as the mean value of κ at 0.1 % minus standard deviation, corresponds to the lowest expected value. κ_{sup} is calculated as the linear extrapolation of the mean κ at 0 % plus one standard deviation and corresponds to the highest expected value. Both values are indicated in Fig. A.3 by blue and red dots, respectively. These two extreme values of κ will then provide extreme values of activation properties for a given dry activation diameter.

Once droplets have been activated, their size distribution evolves during the fog life cycle. They can grow by water vapour diffusion or by coalescence with other droplets due to gravitational and turbulent motions and they can also evaporate in case of mixing with clear air or changes in temperature. Following Noone et al. (1992), the mixing with clear air has similar consequences than of external mixture for aerosols, that means that some particles can deactivate and their diameter can be under the critical wet diameter because of evaporation. In convective clouds, the activation occurs mainly within the first tenth of meters above the cloud base and it is thus possible to directly sample the resulting droplet spectra with instrumented aircraft. By contrast, in case of fog, the activation first occurs at the fog onset, the ensuing vertical development of the fog layer depends on many processes among which the radiative cooling at the fog top plays a key role. The fog onset is generally defined by a drop of visibility below the 1 km threshold, but this is still subject to debate (see discussion in Elias et al. (2015)). Time series show indeed various case to case CDNC evolution during the first fog hour of the fog event, with an instantaneous formation, or conversely, a slower increase towards a stable value as illustrated in Fig. A.2. To estimate the most representative fog droplet size distribution of the activated distribution, we average the composite wet particle size distribution derived from both WELAS and FM-100 measurements over a time interval from the beginning of the fog event during which the CDNC reaches a stable value for a sufficient long time. On average, this time period is selected from 30 min to 1 hour after the fog beginning. It is delimited by blue segments in Fig A.2. We therefore also assume that local measurements at 2 m height are representative of the fog layer.

3.3 Method validation

Fig. 4 illustrates the impact of such a variability for two fog cases of Fig. 1. The average aerosol dry size distribution measured by the SMPS recalculated at 100 % RH with the κ_{inf} and κ_{sup} values (blue and purple lines, respectively) are superimposed to the composite fog droplet number size distribution. Vertical segments indicate the corresponding D_w diameters. These values
are 3.37 and 5.45 μm corresponding to N_{act} of 91 and 61 cm^{-3}, respectively for the f6 case (Fig. 4-a); and 2.15 and 3.08 μm which correspond to N_{act} of 116 and 86 cm^{-3}, respectively for the f20 case (Fig. 4-b). The dashed ones correspond to the two calculations which produce extreme values and thus delimit the range of possible values. If the spectrum remains constant as in Fig. 4-a, these values are rather the identical. But if the shape of the spectrum evolves during the one hour time period, the range of possible values increases as in Fig. 4-b with extreme values of 1.4 and 4.75 μm corresponding to N_{act} of 266 and 21 cm^{-3}, respectively for the f14 case (Fig. 4-b). There is a good agreement between both distributions on the overlap area corresponding to hydrated (non-activated) particles. This indicates that the hygroscopic grow of all dry particles measured before the fog event with the derived κ values is consistent with the ambient measurements at the beginning of the fog. This also allows to neglect the mixture issue. Indeed the dry (growth) and wet aerosols particles shape could not fit with our assumption for a significant external mix as there is no reason for an external mix to be homogenously distributed on the dry aerosol number size distribution. Nevertheless, a significant external mix would had implied less aerosols particles activated per diameter, with our method that would lead to an overestimation of D_d.

Our method provides a satisfactory estimation of κ and the selected time periods are adequate to estimate the activation properties.

4 Results

4.1 Fog activation properties

Table 3 presents results for the 23 fog events with mean values and uncertainty intervals for each parameter κ, D_d, D_w, SS_{peak} and N_{act}. The mean value is the average between the two values obtained from the above procedure with the average wet composite size distribution and the two κ values. The uncertainty interval is determined by the extreme values resulting from the average wet composite size distribution minus (plus) one standard deviation and the lowest (highest) κ value, respectively.

Values of κ_{inf} and κ_{sup} are relatively close. Indeed the relative standard deviation to the average value κ_{mean} ranges between 9 and 25 % except for the case f14 which reaches 35 %. It follows that κ_{mean} which corresponds roughly to κ value at $SS \approx 0.05 \%$, is representative of the κ value at the actual supersaturation. As a result κ_{mean} values range from 0.09 to 0.3 with a median of 0.17. They are in agreement with those determined by Hammer et al. (2014) who found κ between 0.06 and 0.27 centred at 0.14 ($SS \leq 0.11 \%$) and Jurányi et al. (2013) that reported κ between 0.08 and 0.24 ($SS=0.1-1 \%$) at the same site. They are slightly lower than observed for continental aerosols: Andreae and Rosenfeld (2008) for example suggested to use $\kappa = 0.3 \pm 0.1$. As already pointed out by Hammer et al. (2014) local emissions of road traffic and residential wood burning are likely responsible to these low values of κ. Fig 5 shows the scatterplot of the hygroscopic parameter as a function of the critical supersaturation for each of the 23 fog events with their uncertainty interval. Overall the variability of kappa remain very low since 80% of of the kappa values range between 0.13 and 0.27. This suggests that the possible variations in aerosol composition occurring during the campaign due to variations in air mass type or source contributions have limited effect on the CCN ability of aerosol in fog conditions. Based on this study, a single Kappa value of 0.17 could be used for further modelling studies in this area.
The mean dry activation diameter values, 0.39 μm for the median and 0.35-0.43 μm for the 25th-75th percentiles, is rather high, which indicates that only largest aerosol particles are activated. This is in agreement with previous studies of Noone et al. (1992), Ming and Russell (2004) and Hammer et al. (2014) at the supersaturation occurring in fog. The wet activation diameter D_w is 3.79 μm in median and range from 3.03 μm and 4.67 μm for the 25th and 75 th percentiles. These values are slightly higher than the median value of 2.6 μm reported by Hammer et al. (2014) but is consistent with the mean value of 4 μm by Elias et al. (2015). The latter determined D_{w50th} from a November 2011 dataset as the intersection between the two log-normal distributions fitting the particle volume distribution measured by the WELAS. That is also highly consistent with statistics on no-fog event at SIRTA whereby particle diameters as measured by WELAS do not exceed 2 μm. Except for the f22 event mean values of D_w are larger than 2.37 μm throughout the field campaign.

The differences between hydrated and activated particles can be seen in figures 4-a) and b) and corresponds fairly well to the average wet activation diameter derived for such cases that are equal to 4.41 and 2.62 μm, respectively. Moreover it appears that the extreme values indicated by the dashed vertical segments largely maximize the uncertainty of the retrieval.

Critical supersaturation occurring in fog are very lows with median value of 0.043 % and 25th-75th of 0.035-0.051 %. This result was expected for fog conditions, as already showed in experimental and modelling studies (Hudson (1980), Svenningsson et al. (1992), Ming and Russell (2004), Hammer et al. (2014), Shen et al. (2018) and Boutle et al. (2018)).

Finally the corresponding concentration of activated particles N_{act} are 53.5 cm^{-3} for the median and 28.5-111 cm^{-3} for the 25th-75th percentiles. These values are slightly lower than the N_{FM} ones derived from FM-100 data (reported in Fig. 2) which give a median and 25th-75th percentiles of 61 and 34-103 cm^{-3}, respectively. Moreover the median of the average concentration values of particles with diameter in the range of [0.96-50] μm at the beginning of the fog events reaches 389 cm^{-3} with 25th-75th percentiles of 260-660 cm^{-3}. It follows that only a small fraction of the fog hydrated particle can be activated to droplets due to low critical supersaturations encountered in fog. Obviously because of the uncertainty interval of N_{act} is very broad. For instance this uncertainty is twice the N_{act} value itself on average but could be as high as a factor 6 for the f1 event. But as mentioned before, N_{act}, and N_{act_f} are the extreme possible values derived by cumulating uncertainties on κ and on the variability of measurements during the one hour time period.

4.2 Impact of aerosol particles on fog droplets concentration

Mean values of N_{act} are reported in Fig. 6 as a function of the other activation parameters SS_{peak}, D_d and κ for the 23 fog events. N_{act} values increase with SS_{peak} (Fig. 6-a)) and consequently decreased with D_d (Fig. 6-b). In contrast to Fig. 6-b), Fig. 6-c) reveals no trend between N_{act} and κ, suggesting that size matters more than hygroscopicity for a particle to be activated. Indeed largest aerosol particles are activated at low SS independently of their κ values. There are some scatter on
Fig. 6-b) for values of $D_d \leq 0.4\mu m$ which suggest that some variability of the dry aerosol size number distribution between the different cases occurs mainly below this threshold.

Our results extend to lower supersaturation the conclusion of Fitzgerald (1973) and Andreae and Rosenfeld (2008) that particles size plays a much greater role than composition in regulating cloud droplet nucleation. The fundamental reason is that soluble mass changes with the third power of particle diameter but only linearly with soluble fraction (Andreae and Rosenfeld (2008)). The color code in Fig. 7-a shows that, at a given supersaturation, the highest values of the CCN ratio are associated with the highest values of the hygroscopic parameter (i.e. chemical composition), and that at a given CCN ratio, decreases as the supersaturation increases. However more samples are needed before a robust interpretation of that feature to be established.

To remove the influence of the aerosol number concentration we normalize N_{act} by the number concentration of activable aerosols N^*, defined as the number concentration of aerosol particles with diameter ≥ 200 nm which corresponds to the smallest dry diameter of Table 3. Fig. 7-b shows a good correlation between N_{act} normalized by N^* and the inferred critical diameter. We obtained similar correlation when N^* was calculated from the range of critical diameter inferred during the campaign (150 to 400 nm). This suggest that N^* using a single critical diameter can be considered as a good proxy of the number of activable particles. This can be understood since the supersaturation occuring in fog has a narrow range of value. CCN at a supersaturation between 0.02 and 0.11 % are mostly composed of accumulation mode particles.

Figure 8 reveals that almost no relationship exists between N_{act} and N^*. This surprising behaviour demonstrates that the concentration of fog droplets was roughly independent of the aerosol number concentration. This is most likely due to the low SS occurring in fog leading to very selective criteria on particle diameter for droplet activation. This is also consistent with the very large derived dry diameter. Nevertheless, this figure also shows that, for high concentration of activable particles (N^*), lower N_{act} are obtained. It follows that the number concentration of fog droplets is mainly controlled by the peak supersaturation with low influence from the aerosol loading. This is illustrated in Fig. 9 where N_{act} are plotted as a function of SS_{peak} in log scale (black diamond, same data as Fig. 6-a)) superimposed to the statistics of CCN measurements (grey diamond). Compared to the compilation of CCN spectra reported in Andreae and Rosenfeld (2008) (their Fig. 2), our CCN data are spread between SCMS data (Hudson and Yum, 2001) and continental cases. However we observe a strong decrease of N_{act} for $SS_{peak} \leq 0.1\%$ similar to the ASTEX data collected in maritime stratocumuli and to Hudson (1980) fog activation spectra measurements. This indicates that only a very small fraction of aerosols are activated for such low values of supersaturation.

These results has been fitted with three differents formulae commonly used in modelling. The typical CCN parameterisation proposed by Twomey (1959) : $N_{CCN} = CS^k$, where C represents the CCN number concentration at SS=1 % and the parameter k that varies significantly (Martins et al., 2009). The formula suggested by Ji et al. (1998) : $N_{CCN} = N (1-\exp(-BS^k))$ where N is the total number concentration of CCN and B and k are empirical coefficients to be determined. And the more general description of the activation spectra proposed by Cohard et al. (1998) : $N_{CCN} = C S^k_{w,w} F(\mu, k, \frac{k}{2} + 1; \beta S^2_{w,w})$ where C is proportional to N_{CCN} that would be activated when supersaturation tends to infinity and parameters k, μ and β are adjustable parameters depending on the aerosol properties. Figure 9 shows that the parameterization of Ji et al. (1998) (green line) with parameters
as indicated by the legend, better reproduces the decrease of N_{act} for SS $<$ 0.1 % compared to the Twomey expression (blue line) but the drop is not as sharp as in the data. In contrast the parameterization of Cohard et al. (1998) (red line) provides the best fit of the data for lower values of SS.

Figure 10 shows the CCN concentration that would be activated at SS=0.1 % as a function of the aerosol activable concentration for the 23 fog events. The expected strong correlation between activated particles and aerosol concentration then clearly appears. This confirms that the apparent independence observed in Fig. 8 is simply due to the low supersaturation values experienced in fogs. The symbol color depends on κ as preceding figures. Data are aligned according to their hygroscopic parameter. For a given activable concentration the number of activated particles at SS=0.1 % increases with κ which is consistent with Fig. 7-a).

One can note in Fig. 8 that the highest values of N_{act} decrease as N^* increases. Indeed, while aerosol particles activable concentration increases (N^*), variability of SS_{peak} decreases and tends toward low values as reported in Fig. 11, thus less particles can be activated. This suggests that the supersaturation reached in fog could be limited by the activable aerosol concentration: if numerous aerosol particles are available they are efficient enough to uptake the water vapor excess and therefore limit the supersaturation. Hudson (1980) found that aerosol particle concentration does not have a great effect on fog supersaturation. Our result however supports the conclusions drawn by the numerical study performed by Bott (1991) that the higher the particle concentration, the lower the supersaturation is. Note that no trend appears with κ in Fig. 8, which means that the sensitivity of this process to the hygroscopicity is very weak. As suggested by Bott et al. (1990) this could be due to a lowering of vapour supersaturation with the hydration of the numerous aerosols particles.

Fig. 6 compared to Fig. 2 shows that they are not obvious differences between STL and RAD cases. As a result, the median values of N_{act} are 40 and 58 cm^{-3}, and the 25th-75th percentiles are 25-115 and 33-109 cm^{-3}, for STL and RAD cases, respectively. Radiative cases have thus higher values of activated particles but the percentile intervals are rather similar and the difference is less pronounced than the factor of 2 obtained from N_{FM} derived from the FM-100 measurements only.

4.3 Impact of CCN concentration on fog microstructure

The mean fog droplet concentration Nd_1h averaged over the one hour time interval at the beginning of the fog event is plotted in Fig. 12-a) as a function of N_{act}. Obviously they are almost identical apart from small deviations that come from averaging the N_{act} values derived for both κ values. As previously symbols depend on the fog type which doesn’t reveal differences between radiative (red diamond) and stratus lowering (blue diamond) fogs during the formation phase.

Once droplets have been activated, they compete for the available water vapour: when their number increases the size they can reach by water vapour diffusion grow decreases. This inverse relationship between the number and the size of droplets is clearly depicted in Fig. 12-b) that displays the concentration Nd_1h vs. the corresponding mean diameter Dm. Indeed the highest Nd_1h of 255 cm^{-3} corresponds to the lowest Dm of 4 μm, and for fog events with $Nd_1h > 120 cm^{-3}$ the mean diameter can not exceed 7 μm while it reaches twice this value for concentration as low as 25 cm^{-3}. However some scatter
appears for samples with $Nd_{1h} < 50 \text{ cm}^{-3}$. Symbol colour corresponds to the mean LWC values as indicated by the legend. Lowest values of Dm are associated with lowest values of LWC which suggests that a lack of available liquid water could also limit the droplet grow, even when there are few of them.

During a fog life cycle several processes contribute to the droplet size distribution. Droplets can grow by water vapour diffusion, or by collision-coalescence with other droplets due to gravitational and turbulent motions. Conversely, they can evaporate if the supersaturation decreases due to heating of the air mass for example or in case of mixing with clear air. Figures 13-a) and b) show the same plots except that Nd, Dm and LWC correspond to mean values over the complete fog life cycle. The mean droplet concentration values are significantly lower especially for cases with high $Nact$ values. For instance for cases with $Nact > 50 \text{ cm}^{-3}$ the ratio $Nd_{cycle}/Nact$ ranges from 0.25 to 0.92 with an average value of 0.58. Values reported in Brenguier et al. (2011) exhibit a clear separation between cumulus and stratocumulus clouds, with values from 0.32 to 0.56 (0.46 on average) and from 0.72 to 0.96 (0.87 on average), respectively, that were attributed to differences in entrainment-mixing processes in both cloud types. Here it appears that values are spanned over a large range with an intermediate average value. Worthy to be noted Fig. 13-b) reveals that Nd_{cycle} for a radiative fog can not exceed 70 cm$^{-3}$ which suggests that this reduction is more pronounced in case of a radiative fog while STL cases seem less affected. Indeed, for cases with $Nact > 100 \text{ cm}^{-3}$ the average $Nd_{cycle}/Nact$ is 0.80 for a STL fog, a value close to stratocumulus clouds, while it drops down to 0.45 for RAD cases. This suggests that the processes involved in the reduction of the CDNC in a radiative fog are as efficient as the entrainment-mixing occurring in cumulus clouds. Note that many studies (Pilié et al., 1975; Choularton et al., 1981; Gerber, 1991; Bergot, 2013; Maronga and Bosveld, 2017) among others, pointed out the key mechanism of the turbulent mixing in fogs. Recent work of Bergot (2016) has shown, with a LES study, evidence of the key role of dry downdraught at the top of the fog layer on dissipation. These downdraughts would even then reach the surface allowing to sun to warm it. Wærsted et al. (2017) using experimental data, confirms the importance of top processes for the fog evolution. Dilution ratio being as high as in cumulus cloud in radiative fog bring a new element on that point, meaning that turbulent mixing must be of importance.

Figure 13-b) shows that mean diameter values averaged over the fog life cycle are similar to the previous ones. The resulting cluster of data points does not reveal any general trend and the anti-correlation between size and number of droplets is no longer noticeable. Indeed, the evolution of microphysical properties during the fog life cycle is complex and highly varies from case to case and depends on many parameters. A comprehensive study on this topic has been performed and will appear in a forthcoming paper.

5 Discussion

In this experimental study we derived accurate estimations of the activated droplet concentration at the beginning of a fog event. This was done through a careful estimation of the critical supersaturation and of the wet critical diameter which allowed us to integrate the composite size distribution derived from WELAS and FM-100 measurements. We have shown that the derived parameters are consistent with the parameterization of Cohard et al. (1998). They are also consistent with measurements reported in Hudson (1980) who developed the Isothermal Haze Chamber to extend the CCN measurements to supersaturation.
range below 0.1 % and derived fog condensation nuclei (FCN). Indeed the author found effective supersaturation between 0.06 and 0.1 % as well as sharp changes in FCN spectra below 0.1 % with activated concentration at SS=0.4 % ranging from 0.8 \(cm^{-3} \) over the sea to 250 \(cm^{-3} \) for polluted cases.

To our knowledge, no other study has retrieved experimentally concentration of activated particles (and thus droplets) in fog. Usually measurements of droplet spectra reported in the literature were performed by single particle counters such as FSSP, CDP or FM-100 over the range [2-50] \(\mu m \). The corresponding droplet concentrations are in the range of a tenth to several hundred \(cm^{-3} \) (Wendisch et al., 1998; Garcia-Garcia et al., 2002; Gultepe and Milbrandt, 2007a; Niu et al., 2012; Price, 2011; Liu et al., 2011; Burnet et al., 2012; Lu et al., 2013; Zhao et al., 2013; Boutle et al., 2018). In our study droplet concentrations are rather low for semi-urban conditions with maximum value of 150 \(cm^{-3} \). For instance, Liu et al. (2017) reported values in China as high as 1000 \(cm^{-3} \). Moreover our values of critical diameter are large with a median value of 3.8 \(\mu m \). Consequently, the use of FM-100 data over the range [2-50] \(\mu m \) will lead to an overestimation of the droplet concentration, because it includes deliquescent aerosol particles that are not activated. A noticeable exception comes from the f22 case with a maximum value of 264 \(cm^{-3} \). Surprisingly, the median \(N_{FM} \) value for this case is only 36 \(cm^{-3} \) which is rather low. This is explained by the fact that this case also corresponds to the lowest critical diameter \(Dw=1.44 \(\mu m \), therefore the contribution from WELAS data is the most important and emphasizes the underestimation of the FM-100 in the first classes (see Fig. A.1). Thus for cases with low \(Dw \) WELAS data must be taken into account to avoid an underestimation of the concentration. In a modelling purpose, distinguishing hydrated aerosols particles from droplets allows to calculate an accurate repartition of the vapour deposition on the droplet size distribution. Indeed, behaviour of hydrated particles and droplets is quite different, the second one grow as long as there are exceeding vapor while the first one stay at an equilibrium diameter. The second one may grow enough to produce drizzle and have strong interaction with radiation. A clear distinction should improve the representation of processes in numerical weather prediction model and so on the visibilities forecast.

A surprising result is the observed decrease of droplet concentrations with increasing aerosol loading. This is in contrast with recent numerical simulations that exhibit a strong positive correlation between aerosol and droplet concentrations in fog (Zhang et al., 2014; Stolaki et al., 2015; Maalick et al., 2016). This could be due to a limitation of the supersaturation according to Bott (1991). Sensitivity study of Stolaki et al. (2015) indicates that the fog droplet concentration during the mature stage is 2.6 times greater (2.9 times lower) when doubling (halving) the CCN number concentration of the accumulation mode. Indeed at the fog onset, the droplet concentration at the surface reaches 467 \(cm^{-3} \) in their simulation with a double CCN concentration. This value is much larger than that of our estimations which is \(\leq 150 \(cm^{-3} \) except in one case where it reaches 264 \(cm^{-3} \). For their reference run also this value is as high as to 304 \(cm^{-3} \). The CCN activation scheme used by the model follows the expression of Cohard et al. (1998). Given the CCN activation spectrum derived from their values of CCN size distribution parameters (geometric mean radius and standard deviation of 0.1525 \(\mu m \) and 2.33, respectively) and concentration (540 \(cm^{-3} \) and solubility of aerosols (0.4), this corresponds to an estimation of the maximum supersaturation of 0.15 %. Even for activated concentration of 250 \(cm^{-3} \) the corresponding SS is still \(\simeq 0.1 \% \). We have shown that CCN measurement at SS=0.1 % exhibits a linear increase of the droplet concentration with the activable aerosol concentration. Consequently with
such high supersaturation values it is consistent that their simulations produce a strong positive correlation between aerosol and droplet concentration.

More generally, one shall keep in mind that the use of the CCN activation spectra provides a satisfactory estimation of the activated concentration, providing that the maximum supersaturation is correctly diagnosed. For instance, a current limitation of schemes with adjustment to saturation with parameterized peak supersaturation is that the formulae do not take into account pre-existing liquid water in the model grid box (Thouron et al., 2012). This leads to a significant overestimation of the supersaturation peak value that in turn will overestimate the activated concentration. Another limitation is the use of minimum values for vertical velocities in typical supersaturation parametrisation as pointed out by Boutle et al. (2018). They are not necessary consistent with fog dynamic and can lead to an overestimation of the supersaturation peak value. As could do the using of the saturation adjustment assumption instead of a diffusion growth/evaporation equation according to Khain et al. (2015). Moreover, in sensitivity study in which the CCN concentration is increased (or decreased) while keeping other parameters constant, intrinsically introduces a strong dependency between droplet and aerosol particles. Indeed, the pre-existing hygroscopic aerosol particles contribute to the sink term of water vapour during the radiative cooling that will also reduce the supersaturation peak value at the fog onset and then limits the number of activated particles. Thus changing the aerosol properties in models using such a scheme, provides a useful way to modify the droplet concentration and study the impact of this latter on the fog life cycle but it shall not be used to asses the impact of aerosol properties themselves on the fog life cycle.

6 Conclusions

In situ microphysical measurements collected during 23 wintertime fog events sampled from October 2010 to March 2013 at the semi-urban site SIRTA near Paris has been examined to document their properties. They reveal a large variability of their characteristic values in terms of number concentration and size of fog droplets depending on the different cases, as well as various evolution of these properties during the fog life cycle. The aerosol background exhibits also a highly variable number concentration of particles > 10 nm before the fog onset. The objective of this paper was to evaluate the impact of aerosol particles on the fog microphysics. As a first step, we focused on the relationship between aerosol and fog droplet number concentrations as we expected that they follow the same trend with more numerous fog droplets with an increase of the aerosol loading.

To derive accurate estimations of the actual activated fog droplet number concentration (N_{act}), we determined the hygroscopicity parameter, the dry and wet critical diameters, and the critical supersaturation for the 23 events by using an iterative procedure based on the κ-Köhler theory which combined CCN measurements, dry particle distribution from an SMPS and composite wet particle size distribution at ambient humidity derived from WELAS and FM-100 measurements. These data are averaged over a one hour time period before and during the fog onset to characterize the air mass and the fog properties, respectively.

Values of the hygroscopicity parameter κ extrapolated at $SS\approx 0.05\%$ were found to range from 0.09 to 0.3 which are characteristics for urban aerosol. They are rather similar from case to case thus we recommended to use $\kappa = 0.17 \pm 0.05$ for
fog modelling studies in this urban area. Our study reveals low values of the derived critical supersaturations with median of 0.043 % and 25th-75th percentiles of 0.035-0.051 %. Consequently wet and dry activation diameters are high and the corresponding N_{act} are low for continental conditions with a median concentration of 53.5 cm$^{-3}$ and 25th-75th percentiles of 28.5-111 cm$^{-3}$. Our results depict a sharp drop of N_{act} as critical supersaturations decrease which is best fitted by the parameterization of Cohard et al. (1998).

Concentration of activated particles using a single critical diameter can be considered as a good proxy of the number of activable particles. No detectable trend between concentration of aerosol particles with diameter > 200 nm and N_{act} was observed. But N_{act} could be modulated for high concentration of aerosols particles. Hydration of numerous aerosols particles could indeed lower the supersaturation. Our analysis corroborates modelling study by Bott (1991) suggesting that an increase of the aerosol concentration limits the SS values. In contrast the CCN data at 0.1 % supersaturation exhibits a strong correlation with these aerosol concentrations. We therefore conclude that the droplet number concentration is roughly independent of the aerosol one because the actual supersaturations reached in these fog events are too low. Given the very diverse origin of atmospheric particles, the complexity of their composition has long been seen as a major obstacle to modelling aerosol effects on fog properties. Understanding that particle’s ability to act as CCN at the supersaturation reached in fog is largely controlled by aerosol size rather than composition greatly facilitates the treatment of aerosol impacts on fog microphysics in models.

Nevertheless, some reservation must be issued on that point. Aerosol size distribution impacts fog microphysics more than chemical composition on the measure range on the hygroscopic parameter during the three winters of observations. Higher or lower values of this parameter could bias this conclusion. Other measurements of aerosol and fog microphysics in other environmental conditions would be needed to pursue this issue.

Despite that a stratus lowering fog appears to be associated with lower aerosol loading than with a radiation fog event, no significant differences were observed with respect to the droplet number concentration at the fog formation when calculations are performed by taking into account the wet critical diameter. In contrast, statistics over the complete life cycle indicate that a radiation fog is subject to a pronounced decrease in the droplet concentration while stratus lowering cases seem unaffected. In a radiation fog this decrease, which occurs mainly for events with $N_{\text{act}} > 50$ cm$^{-3}$, is significant with a ratio of average droplet concentration to N_{act} ranging from 0.25 to 0.67. This reduction is similar to the dilution which results from entrainment-mixing in cumulus clouds meaning that mixing with clear air may be of importance for fog microphysic evolution. The expected inverse relationship between the number and the size of the droplets at the formation phase is clearly depicted except for some cases with low liquid water content values. However this trend is less pronounced on average over the fog life cycle.
Acknowledgements. Authors are very grateful to all SIRTA operators and database managers. This campaign was held in the framework of the PreViBOSS project supported by DGA/DGIS. This research was partially funded by the European Community’s Seventh Framework Program (FP7/2007–2013) under the SESAR WP 11.2.2 project, under Grant Agreement 11-120809-C.
References

Tardif, R. M.: Characterizing fog and the physical mechanisms leading to its formation during precipitation in a coastal area of the northeastern United States, ProQuest, 2007.

ACRONYMS

CCN : Cloud Condensation Nuclei
Nd : Concentration of particles above the wet critical diameter (derived from WELAS+FM-100)
CN : Cloud Nuclei

N_FM : Concentration of particles measured by the FM-100 between [2-50] micron diameter
Na : Concentration of dry particles measured by the SMPS between [10-495] nm diameter
Nact : Concentration of activated particles
N* : Concentration of dry particles between [200-496] nm diameter (derived from SMPS)
Nccn : Concentration of activated aerosol measured by the CCN at different supersaturation

Dd : Dry critical diameter
Dw : Wet critical diameter
Dm : Median diameter
SSpeak : Critical supersaturation peak
SS : Supersaturation
Figure 1. One hour average composite number size distributions at ambient humidity derived from WELAS (black) and FM-100 (cyan) at the beginning of the fog event for cases a) f6 and b) f20. The solid line represents mean value and the dotted lines mean ± one standard deviation. The red segments correspond to the result of merging both distributions between 6 and 8 µm.

Table 1. Instrumentation deployed during the campaigns that are used for this study.

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Measured parameters</th>
<th>Time resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALAS WELAS - 2000</td>
<td>Hydrated and activated aerosol particles number size distribution D=[0.39-42] µm</td>
<td>5 min</td>
</tr>
<tr>
<td>DMT Fog Monitor (FM-100)</td>
<td>Droplet number size distribution D=[2-50] µm</td>
<td>1 min</td>
</tr>
<tr>
<td>PVM Gerber</td>
<td>Liquid water content D=[3-50] µm</td>
<td>1 min</td>
</tr>
<tr>
<td>Degreanne DF20+</td>
<td>Horizontal visibility</td>
<td>1 min</td>
</tr>
<tr>
<td>TSI SMPS</td>
<td>Dry aerosol particles distribution D=[10.6-493] nm</td>
<td>5 min</td>
</tr>
<tr>
<td>CCNC DMT</td>
<td>CCN concentration SS=[0.1-0.5] %</td>
<td>20 min</td>
</tr>
<tr>
<td>CPC (TSI 3025)</td>
<td>Aerosol particles concentration D=[2.5-2500] nm</td>
<td>5 min</td>
</tr>
</tbody>
</table>
Figure 2. Droplet number concentration as derived from the FM-100 collected during the whole fog event as a function of the aerosol number concentration as derived from the SMPS measurements collected over the last hour before the fog beginning. Median values (diamond) are indicated for each case of table 2 with the 25th and 75th percentiles (triangle) to represent the variability. Symbols depend on the fog type STL (blue) and RAD (red) with open and solid symbols for thin and developed fogs, respectively.
Figure 3. Schematic of the iterative method used to retrieve fog activation properties from dry and ambient humidity particle size distributions.

Figure 4. One hour wet number size distribution before the fog event resulting from the hygroscopic grow at RH=100% of the dry distribution measured by the SMPS calculated with κ_{inf} (purple) and κ_{sup} (cyan) for case a) f6 and b) f20. The in-fog composite size distribution of Fig. 1 is superimposed (black). The solid lines represent mean values and the dashed lines mean ± one standard deviation. The vertical segments indicate the mean values of D_w corresponding to each κ (solid color lines) and the extreme values (dashed lines).
Figure 5. Hygroscopicity parameter κ as a function of the critical supersaturation for the 23 fog events. Diamonds correspond to mean values and error bars to uncertainty intervals.

Figure 6. Number concentration of activated particles N_{act} as a function of a) the critical supersaturation, b) the dry critical diameter and c) κ, for the 23 fog cases. Diamonds correspond to mean values and error bars to uncertainty intervals. Same symbols as in Fig. 2.
Figure 7. Ratio of activated particles to concentration of aerosol particles with diameter > 200 nm (activated fraction) for the 23 fog cases function of a) the critical supersaturation and b) the dry critical diameter. Diamonds correspond to mean values and error bars to uncertainty intervals. Color as a function of κ as indicated in the legend.
Figure 8. Number concentration of activated particles N_{act} as a function of N^* the concentration of aerosol particles with diameter > 200 nm for the 23 fog events. For N^* diamonds correspond to median values and error bars to 25th-75th percentile intervals. Colour as a function of κ as indicated in the legend.
Figure 9. Number concentration of activated particles N_{act} as a function of the critical supersaturation for the 23 fog events (black) superimposed for the statistics of CCN chamber measurements (grey). For CCN measurements diamonds correspond to median values and error bars to 25th-75th percentile intervals. Colour lines correspond to fitted results of $N_{\text{CCN}}=C S_{v,w}^{\kappa} F(\mu, k, k + 1, \beta S_{v,w})$ (red), $N_{\text{CCN}}=C S_{v,w}^{k}$ (blue) and $N_{\text{CCN}}=N (1-\exp(-B S^{k}))$ (green), with parameters as indicated on the legend.
Figure 10. Median values for the 23 fog events of the number concentration measured by the CCN chamber at SS = 0.1 % as a function of the concentration of aerosol particles with diameter > 200 nm. Colour as a function of κ as in Fig. 8. Symbol size proportional to the mean diameter.
Figure 11. Critical supersaturation as a function of the concentration of aerosol particles with diameter > 200 nm for the 23 fog cases. Diamonds correspond to mean values and error bars to uncertainty intervals. Colour and size of symbols as in Fig. 10.
Figure 12. Droplet number concentration at the beginning of the fog for the 23 cases as a function of a) the activated particle concentration \(N_{act} \) and b) the mean fog diameter. Diamonds correspond to median values and error bars to 25th-75th percentile intervals. Symbol colors as a function of a) fog type as in Fig. 2 and b) LWC values as indicated on the legend.

Figure 13. Same as Fig. 12 except that statistics of \(N_d \), \(D_m \) and LWC are computed over the complete fog life cycle.
Table 2. List of fog events analysed here. Type RAD corresponds to radiation fog and STL to stratus lowering. "thick" to fog developed on the vertical, and "thin" to fog layer with top altitude lower than 18 m. N_a is the number concentration of aerosol particles derived from SMPS data. 25th, 50th and 75th percentiles are computed from the distribution of 5 minutes samples over the last hour before the fog beginning. N_{FM} is the droplet number concentration as measured by the FM-100 over the range [2-50] μm. Statistics of N_{FM} are computed with minute average data of samples with LWC > 0.005 g.m$^{-3}$ collected during the whole fog event.

<table>
<thead>
<tr>
<th>Fog ID</th>
<th>Start time [UTC]</th>
<th>End time [UTC]</th>
<th>Type</th>
<th>N_a (cm$^{-3}$)</th>
<th>N_{FM} (cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25th</td>
<td>50th</td>
</tr>
<tr>
<td>f1</td>
<td>16/11/10 2200</td>
<td>17/11/10 0540</td>
<td>RAD</td>
<td>thick</td>
<td>18868</td>
</tr>
<tr>
<td>f2</td>
<td>19/11/10 0540</td>
<td>19/11/10 1010</td>
<td>STL</td>
<td>thick</td>
<td>5877</td>
</tr>
<tr>
<td>f3</td>
<td>19/11/10 1540</td>
<td>19/11/10 1750</td>
<td>STL</td>
<td>thick</td>
<td>3540</td>
</tr>
<tr>
<td>f4</td>
<td>10/11/11 1800</td>
<td>11/11/11 1730</td>
<td>RAD</td>
<td>thick</td>
<td>10723</td>
</tr>
<tr>
<td>f5</td>
<td>15/11/11 0230</td>
<td>15/11/11 0940</td>
<td>RAD</td>
<td>thick</td>
<td>5703</td>
</tr>
<tr>
<td>f6</td>
<td>16/11/11 0110</td>
<td>16/11/11 1330</td>
<td>RAD</td>
<td>thick</td>
<td>7391</td>
</tr>
<tr>
<td>f7</td>
<td>16/11/11 1600</td>
<td>17/11/11 0010</td>
<td>STL</td>
<td>thick</td>
<td>7213</td>
</tr>
<tr>
<td>f8</td>
<td>18/11/11 0130</td>
<td>18/11/11 0410</td>
<td>RAD</td>
<td>thin</td>
<td>5245</td>
</tr>
<tr>
<td>f9</td>
<td>19/11/11 2200</td>
<td>20/11/11 0830</td>
<td>RAD</td>
<td>thin</td>
<td>13094</td>
</tr>
<tr>
<td>f10</td>
<td>21/11/11 2350</td>
<td>22/11/11 0810</td>
<td>RAD</td>
<td>thin</td>
<td>10160</td>
</tr>
<tr>
<td>f11</td>
<td>22/11/11 2050</td>
<td>22/11/11 2230</td>
<td>RAD</td>
<td>thin</td>
<td>15209</td>
</tr>
<tr>
<td>f12</td>
<td>23/11/11 0325</td>
<td>23/11/11 1005</td>
<td>RAD</td>
<td>thick</td>
<td>8920</td>
</tr>
<tr>
<td>f13</td>
<td>24/11/11 0620</td>
<td>24/11/11 1400</td>
<td>STL</td>
<td>thick</td>
<td>4770</td>
</tr>
<tr>
<td>f14</td>
<td>24/11/11 1610</td>
<td>24/11/11 1815</td>
<td>STL</td>
<td>thick</td>
<td>4180</td>
</tr>
<tr>
<td>f15</td>
<td>25/11/11 2140</td>
<td>26/11/11 1030</td>
<td>STL</td>
<td>thick</td>
<td>3328</td>
</tr>
<tr>
<td>f16</td>
<td>28/11/11 0630</td>
<td>28/11/11 1040</td>
<td>RAD</td>
<td>thick</td>
<td>9308</td>
</tr>
<tr>
<td>f17</td>
<td>16/11/12 2045</td>
<td>17/11/12 0920</td>
<td>STL</td>
<td>thick</td>
<td>9145</td>
</tr>
<tr>
<td>f18</td>
<td>20/11/12 0300</td>
<td>20/11/12 0910</td>
<td>RAD</td>
<td>thick</td>
<td>3108</td>
</tr>
<tr>
<td>f19</td>
<td>20/11/12 2015</td>
<td>20/11/12 2250</td>
<td>STL</td>
<td>thick</td>
<td>3198</td>
</tr>
<tr>
<td>f20</td>
<td>22/11/12 0315</td>
<td>22/11/12 0910</td>
<td>RAD</td>
<td>thick</td>
<td>4673</td>
</tr>
<tr>
<td>f21</td>
<td>30/11/12 1900</td>
<td>01/12/12 0245</td>
<td>RAD</td>
<td>thick</td>
<td>17791</td>
</tr>
<tr>
<td>f22</td>
<td>10/01/13 0215</td>
<td>10/01/13 0336</td>
<td>STL</td>
<td>thick</td>
<td>1975</td>
</tr>
<tr>
<td>f23</td>
<td>10/01/13 0500</td>
<td>10/01/13 0640</td>
<td>STL</td>
<td>thick</td>
<td>1904</td>
</tr>
</tbody>
</table>
Table 3. Activation properties of the 23 fog events: hygroscopicity parameters κ_{inf} and κ_{sup}, mean values and uncertainty intervals of the dry diameter D_d, the wet diameter D_w, the supersaturation SS_{peak} and the number concentration of activated particles N_{act}. 5th, 25th, 50th, 75th and 95th percentiles of the distribution of the 23 cases are indicated on the last lines for each parameter.

Fog	κ_{inf}	κ_{sup}	D_d	D_d	D_{ds}	D_w	D_{w}	SS_i	SS_s	SS_{act}	N_{act}	N_{act}	
f1	0.11	0.16	0.46	0.35	0.50	4.24	2.56	5.14	0.04	0.03	0.06	33.5	1
f2	0.10	0.16	0.32	0.25	0.39	2.42	1.49	3.57	0.06	0.04	0.10	131	51
f3	0.06	0.12	0.45	0.44	0.49	3.31	2.66	4.25	0.05	0.04	0.06	13.5	6
f4	0.12	0.24	0.38	0.26	0.44	3.65	1.73	5.15	0.04	0.03	0.09	104	46
f5	0.20	0.35	0.4	0.32	0.45	4.83	2.89	6.56	0.03	0.02	0.05	41	16
f6	0.20	0.41	0.37	0.34	0.41	4.41	3.19	6.08	0.04	0.02	0.05	76	51
f7	0.14	0.28	0.35	0.31	0.41	3.46	2.27	5	0.05	0.03	0.07	111	61
f8	0.17	0.29	0.36	0.24	0.50	3.79	1.73	6.9	0.04	0.02	0.09	53.5	1
f9	0.14	0.25	0.47	0.39	0.50	5.22	3.43	6.37	0.03	0.02	0.04	18.5	6
f10	0.12	0.19	0.35	0.27	0.47	3.03	1.83	5.15	0.05	0.03	0.08	146	31
f11	0.13	0.20	0.43	0.42	0.49	4.67	3.59	5.63	0.03	0.03	0.04	53.5	21
f12	0.14	0.21	0.47	0.42	0.50	4.9	3.76	5.84	0.03	0.03	0.04	28.5	11
f13	0.17	0.22	0.34	0.24	0.38	3.25	1.73	4.04	0.05	0.04	0.09	106	71
f14	0.13	0.38	0.41	0.34	0.47	4.91	2.66	7.25	0.03	0.02	0.06	31	11
f15	0.19	0.31	0.43	0.37	0.47	5.15	3.54	6.6	0.03	0.02	0.04	21	11
f16	0.10	0.16	0.43	0.39	0.47	3.69	2.87	4.65	0.04	0.03	0.05	23.5	16
f17	0.12	0.18	0.45	0.41	0.47	4.15	3.23	4.97	0.04	0.03	0.05	36	26
f18	0.12	0.18	0.30	0.20	0.39	2.37	1.13	3.86	0.07	0.04	0.13	141	41
f19	0.13	0.22	0.39	0.34	0.44	3.82	2.66	5.02	0.04	0.03	0.06	56	26
f20	0.21	0.34	0.26	0.19	0.37	2.62	1.4	4.75	0.06	0.03	0.11	101	21
f21	0.10	0.16	0.37	0.29	0.47	3.03	1.85	4.67	0.05	0.03	0.08	161	31
f22	0.14	0.21	0.21	0.17	0.29	1.44	0.98	2.65	0.11	0.06	0.15	264	116
f23	0.14	0.21	0.43	0.37	0.47	4.27	3.03	5.33	0.04	0.03	0.05	18.5	11
5th	0.12	0.18	0.35	0.25	0.41	3.03	1.73	4.65	0.03	0.02	0.05	18.5	11
25th	0.13	0.21	0.39	0.34	0.47	3.79	2.66	5.14	0.04	0.03	0.05	28.5	11
50th	0.14	0.21	0.43	0.37	0.47	4.27	3.03	5.33	0.04	0.03	0.06	53.5	21
75th	0.17	0.29	0.43	0.39	0.49	4.67	3.19	6.08	0.05	0.03	0.09	111	46
95th	0.21	0.41	0.47	0.44	0.50	5.22	3.76	7.25	0.11	0.06	0.15	264	116
Appendix A: Supplementary material
Figure A.1. Scatterplot of the five minutes average particle number concentration values as measured by the FM-100 for the four first bins vs the integrated WELAS measurement over the corresponding diameter range a) [2-4] µm, b) [4-6] µm, c) [6-8] µm and d) [8-10] µm. Solid line corresponds to 1:1 line and dashed line corresponds to best fit line with correlation coefficient ρ and slope a, as indicated in the legend.
Figure A.2. Time series of measurements for the f6 case: (a) particle number concentration at ambient humidity from FM-100 (cyan) and WELAS (black); (b) dry particle number concentration from SMPS: total (black) and particle with diameter > 200 nm (purple); and (c) Nccn from the CCN chamber at each supersaturation with color as indicated on the label. Vertical segments indicate the selected time periods before (red) and during (blue) the beginning of the fog event.
Figure A.3. Derived κ values as a function of CCN chamber supersaturations from measurements over the 1 hour time period before the fog event for the f6 case. Mean (diamond, solid line) and mean ± one standard deviation (dashed lines). Extrapolated κ_{inf} (blue dot) and κ_{sup} (red dot) are also indicated.