Supplement of

Characterization of black carbon-containing fine particles
in Beijing during wintertime

Junfeng Wang¹, Dantong Liu², Xinlei Ge¹*, Yangzhou Wu¹, Fuzhen Shen¹, Mindong Chen¹, Jian Zhao³,⁴, Conghui Xie³,⁴, Qingqing Wang³, Weiqi Xu³,⁴, Jie Zhang⁵, Jianlin Hu¹, James Allan²,⁶, Rutambhara Joshi², Pingqing Fu³, Hugh Coe² and Yele Sun³,⁴

¹Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
²School of Earth and Environmental Sciences, University of Manchester, M13 9PL, Manchester, UK
³State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
⁴University of Chinese Academy of Sciences, Beijing 100049, China
⁵Atmospheric Sciences Research Center, University at Albany, State University of New York, NY, 12203, USA
⁶National Centre for Atmospheric Science, University of Manchester, M13 9PL, Manchester, UK

*Corresponding author, Email: caxinra@163.com
Phone: +86-25-58731394

For Atmospheric Chemistry & Physics
Figure S1. Map of the sampling site (IAP-Tower Division, CAS).

Figure S2. Rose-plots of wind direction and wind speed of (a) clean periods and (b) pollution periods.
Figure S3. Scatter plots of SP-AMS measured BC vs. SP2 measured BC.

Figure S4. Scatter plots of BC vs. chloride, and nitrate vs. sulfate during the whole
Figure S5. Mass-based average size distributions of BC cores and its coating components during (a) first episode (FE) and (b) second episode (SE).