Response to Reviewer #1:

This study examined changes in PM2.5 and pollution days in China under greenhouse gas warming conditions using century-long CESM large ensemble simulations. They found that increases in PM2.5 concentration and pollution days during 2005–2100 with fixed anthropogenic aerosol emissions and changes in winds and light precipitation could explain it. The topic is interesting and suit for ACP journal. However, the results are not convincible, and manuscript needs major revision before it can be considered to be accepted in ACP.

Reply: Greatly thanks for your valuable comments and suggestion, which have been fully considered and corrected in the current manuscript.

My main concern is that the authors found decreases in PM2.5/SO4/SOA concentration (Figure S2) and moderate pollution days (Figure S8) over YRD and PRD, but they claimed an increase in pollution as a whole under GHG warming in the manuscript. It looks more like a decrease in pollution over eastern China to me. It is OK to present different trend pattern for different regions. Although the severe pollution days show increase over eastern China, the mean severe pollution days is less than 5/365 and the change is around 2/365 days. These values are too small. I would guess it is more like a model noise. The model strongly underestimates aerosol concentration in China. The author may consider using to a lower threshold. The author stated ‘with an increase of approximately 68%’. It is unfair since the PM2.5 concentration only increases by 2%. The mechanism of the aerosol change is also unclear. Why SO4/SOA decreases while BC/POM increases in southeastern China?

Reply:

(1) As you indicated, the changes of PM$_{2.5}$ surface concentration and the corresponding light air pollution days are varying from regions, with a decreasing trend over the southeastern part of eastern China and an increasing trend over the northwestern part. However, the PM$_{2.5}$ loading is estimated to present positive response to the GHG-induced warming that averaged over the region of eastern
China, as well as the light air pollution days. More information can be found in the current manuscript.

Our results show that although the aerosol emission is assumed to be a constant throughout the experiment, anthropogenic air pollution presents positive responses to the GHG-induced warming. The anthropogenic PM$_{2.5}$ concentration is estimated to increase averaged over eastern China at the end of this century, but varying from regions, with an increase over northwestern part of eastern China and a decrease over southeastern part. Similar changes can be observed for the light air pollution days.

The median ensemble-mean change of the PM$_{2.5}$ surface concentration presents strong regional dependence across China with significantly decreasing trends over the southeastern part of eastern China and significantly increasing trends over the other regions throughout the 21st century (Fig. S2), even though the emissions are constant throughout the experiment.

The increase in PM$_{2.5}$ surface concentration throughout the 21st century substantially leads to the significant increase of the light anthropogenic PM$_{2.5}$ pollution days (PM$_{2.5} > 25$ µg/m3) across the northwestern part of eastern China (Fig. 3). Due to the decrease of PM$_{2.5}$ concentration over the southeastern part of eastern China, the light anthropogenic air pollution days can be expected to decrease in this region. Estimation shows that the number of the light air pollution days would be decreased by approximately 10 days at the end of the 21st century with respect to the early period of this century in the region. However, the annual mean light air pollution days is reported to increase averaged over the eastern China at the end of this century despite the aerosol emission is constant throughout the experiment.
(2) Yes, you are right. The expression referring to the change of severe air pollution days may be inaccurate. We have toned down the related expressions in the current manuscript and more information can be found in the text.

→【Line 34-35】

However, the severe air pollution days is reported to increase across eastern China at the end of this century, particularly around the Jing-Jin-Ji region.

→【Line 248-253】

In contrast to the light air pollution days, the severe anthropogenic air pollution days (PM$_{2.5} > 75$ µg/m3) show a positive response to the GHG-induced warming across eastern China, particularly for the regions around JJJ in which the high PM$_{2.5}$ concentration was localized (Fig. 3). The severe air pollution days is estimated to increase by more than 2 days at the end of this century when compared to the early period over this region.

Another main concern is that the changes in aerosol concentrations are too small between 2090–2099 and 2006–2015. The results are not convincing without significant test. The authors should add test (e.g., t-test for years and ensembles) to the results and figures to prove that the small values are not accidental. Changes in meteorological parameters also needs significant test. In addition, CESM model strongly underestimates aerosol concentration over China. Using absolute concentrations may cause problem, for example PM2.5>25/75. The authors should be caution about it.

Reply:

(1) As you suggested, the significant test has been added to the results and figures using Student T-test for years and ensembles. Figures 3, 5, and 6 have been re-plotted. More information can be found in the manuscript.

(2) The changes of air pollution days that defined according to the percentile thresholds (90th and 99th) have been also investigated and similar results can be
obtained (Figure 1). Thus, the absolute definition is still used in the current manuscript, and some discussions about the percentile definition have been added in the text.

Figure 1. Changes of the anthropogenic PM$_{2.5}$ pollution days across eastern China from the RCP8.5-FixAerosol2005 experiment. The pollution days is defined as the daily PM$_{2.5}$ surface concentration exceeding the 90th percentile threshold that estimated from the period of 2006-2015. Left panel illustrates the annual averaged air pollution days in 2006-2015 and right panel shows changes of the pollution days at the end of 21st century with respect to 2006-2015. Dots mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. Units: days.

Considering the underestimation in aerosol concentration by CESM1 model in China, the percentile threshold metric is also applied here to estimate the future changes in light (90th) and severe (99th) air pollution days. Similar results can be obtained (Fig. S8).
Minor comments:

Line 27: The authors only used one model configuration with fixed anthropogenic emissions. It can definitely be used to rule out the influence of changing emissions. However, for a supplement of the story, I suggest comparing the role of GHG warming and aerosol emission change. I know it is hard to do another simulation, but the authors can easily scale aerosol concentration by emissions using RCP8.5 scenario and roughly predict aerosol concentration under future emissions.

Reply: Good suggestion. According to your idea, we have evaluated the future changes of PM$_{2.5}$ concentrations and the associated species along the RCP8.5 forcing trajectory from the large ensemble simulations of CESM1 (Figure 2). Results present different changes of aerosol concentrations when compared with that from the fixed aerosol simulations. More discussion can be found in the following or current manuscript.

Figure 2. Simulated linear trends of the total PM$_{2.5}$ surface concentration as well as
its associated species (BC, SO₄, SOA, and POM) across eastern China for the years of 2006-2099 from the simulations forced by the RCP8.5 trajectory. The linear trends are calculated by the nonparametric Mann-Kendall and Sen’s methods, and the significant trends with 0.01 significant level are illustrated by dots. Units: µg/m³/100a.

For comparison, we also evaluated the future changes of PM₂.₅ concentrations and the associated species along the RCP8.5 forcing trajectory from the large ensemble simulations of CESM1 (Figure not shown). Different from changes of aerosol concentrations under the fixed aerosol simulations, the PM₂.₅ concentrations and the associated species present uniformly decreasing trends across eastern China from the simulations along the RCP8.5 forcing. The decreasing trends in the RCP8.5 simulations are mainly attributed to the prescribed decrease of aerosol forcing in the future in RCP database (Xu and Lin, 2017). The climate change induced by the GHG-warming might exacerbate the air pollution, but the impacts cannot compensate the prescribed decreasing trend of aerosol concentration.

Line 83: The highlight of this study, I guess, is the PM2.5 concentration under global warming. But the PM2.5 change is too small, and the authors showed pollution days instead (68% in abstract), which may not be appropriate and cannot be distinguished to precious studies. The authors may consider re-organize the findings and change the way of presentation.

Reply: Thanks for this suggestion and these expressions have been re-organized.
The anthropogenic PM$_{2.5}$ concentration is estimated to increase averaged over eastern China at the end of this century, but varying from regions, with an increase over northwestern part of eastern China and a decrease over southeastern part. Similar changes can be observed for the light air pollution days. However, the severe air pollution days is reported to increase across eastern China at the end of this century, particularly around the Jing-Jin-Ji region.

Line 125-133: I don’t understand what is fraction of attributable risk. The author can give an example and illustrate what is it used for.

Reply: The metric of the fraction of attributable risk (FAR) has been widely used for attribute analyses of climate extreme changes. FAR is defined as the 1-P0/P1, where P0 is the probability of exceeding a certain threshold during the reference period and P1 is the probability exceeding the same threshold during a given period. FAR thus presents the quantitative estimations of effects of the specified forcings on the climate changes (Stott et al., 2016). For example, the simulated occurring probability P0 of the specified extreme event in the pre-industrial experiment is estimated to be about 0.0007 compared to a probability P1 in the GHG-forced experiment of about 0.03, which indicates a more than 40-fold increase in probability between the two experiment, implying a FAR of about 0.97. In other words, there are approximately 97% of the extreme increases are mainly attributed to the impact of GHG increases.

Line 134: The author used stagnation day defined by Horton et al. (2012). It is definition suit to stagnation in China? Is there any previous study used it for stagnation in China? If not, the authors have to evaluate it using historical data of China.

Reply: The performance of this stagnation index over China has been evaluated by some early studies. They suggested that this air stagnation definition might not be
applicable for China to represent the air pollution condition under the seasonal scales (Feng et al., 2018; Wang et al., 2018). However, the annual mean stagnation generally presents good agreement with that of air pollution across China (Huang et al., 2017; 2018). Here, we mainly focus on the future changes of PM$_{2.5}$ pollution as well as the meteorological conditions from the annual mean perspective. This definition is thus suit to the stagnation analysis in this study. More information can be found in the following or in the current manuscript.

Early studies have suggested that this air stagnation definition might not be applicable for China to represent the air pollution condition under the seasonal scales (Feng et al., 2018; Wang et al., 2018). However, the annual mean stagnation generally presents good agreement with that of air pollution across China (Huang et al., 2017; 2018). The changes in the annual mean states of air stagnations over China at the end of 21st century will thus be discussed in the following.

Line 170: Spatial correlation over eastern China?
Reply: Yes. It has been corrected.
A strong spatial correlation (0.69) is found for the annual mean PM$_{2.5}$ concentration between the site observation and median ensemble of CESM1 simulations over eastern China (Fig. S1).

Line 174: I don’t agree the bias is primarily due to missing species. The bias of aerosol concentration is more complicated in China, which has been reported in many previous studies (Yang et al., 2017a,b). The causes include uncertainties in aerosol emission amount, emission injection height, course model resolution, lack of nitrate, aerosol treatment in model (e.g., aging processes, chemistry, wet removal)…

Reply: Thanks for this valuable comment. This discussion has been corrected and more information can be found in the following or in the current manuscript.

However, a negative bias is obvious. Early studies (Li et al., 2016; Yang et al., 2017b; c) have documented that this low bias of aerosol concentration simulated by models is much more complicated in China and the causes mainly involve the uncertainties from aerosol emission amount, emission injection height, lack of nitrate, aerosol treatment in model as well as the coarse model resolution.

Line 187: 2% is too small. The authors can focus on different regions and species.

Reply: Some expressions in this aspect have been corrected and added according to your suggestion. More information can be found in the following or in the current manuscript.

Furthermore, the increases of all major PM$_{2.5}$ species in terms of column burden (BC: 11%, SO$_4$: 6%, SOA: 11%, and POM: 11%) show stronger than the surface concentration (BC: 4%, SO$_4$: 2%, SOA: -1%, and POM: 4%).
As mentioned above, the PM$_{2.5}$ surface concentration in the two economic zones of YRD and PRD present a negative response to the GHG-induced warming, while the corresponding column burden shows significantly increasing trends (Fig. S3). The decreases of the surface concentration over these two zones are primarily contributed by the changes of SO$_4$ and SOA, while there are no obvious trends for BC and POM (Figs. S4-S7). The robust response of the increased surface wind speed and decreased upper-level wind speed to GHG warming can be partly responsible for the changes of the major PM$_{2.5}$ species in these two zones, which will be further discussed. Over the zones of JJJ and SCB, both the PM$_{2.5}$ concentrations and the associated major PM$_{2.5}$ species present the significantly rising trends throughout the 21st century. For the surface concentration, PM$_{2.5}$ is reported to increase by 3% and 4% in the regions of JJJ and SCB, respectively, at the end of the 21st century. The BC is reported to increase by 4% and 8% for JJJ and SCB, respectively. The other species, such as SO$_4$ and POM, increase by 4% and 4%, respectively, in the JJJ regions and by 2% and 9%, respectively, in SCB regions. Relatively stronger responses can be seen in changes of the column burden for all major species (Figs. S4-S7). The increased concentrations of PM$_{2.5}$ species finally result in significantly increasing trends of the total PM$_{2.5}$ loading over these two regions, which will present a more direct effect on human health.

Line 190: Add SOA in Figure 2.

Reply: SOA has been added in Figure 2. Please see more information in PAGE 32 in the current manuscript.

Line 200: Do the future changes in meteorology (winds, precipitation) over China also exist in other models? At least add literatures.

Reply: Yes, similar changes can be found in the other global climate models and regional climate models. More discussions have been added in the text.
The decreasing trend of wind speed in the 21st century across China not only exists in CEMS1 model, but also happens in the other global climate models that participated in Coupled Model Intercomparison Project Phase 3 (CMIP3) and CMIP5 (Jiang et al., 2010a; McInnes et al., 2011), as well as in regional climate models (Jiang et al., 2010b).

The future changes of precipitation days present much robust. Both the increasing trends of heavy precipitation days and the decreasing trends of light precipitation days are also obvious across China simulated by the CMIP5 models (Chen and Sun, 2013; 2018), as well as the regional climate models (Gao et al., 2012).

Line 217: I don’t think it is a good idea to emphasize and severe days and use ‘robust response’. First, PM2.5 > 75 is suit for observations. The simulated PM2.5 is only 1/3 of the observation value. Second, I don’t think the change will large than the standard deviation of severe days for different ensemble simulations and years. BTW, do you mean ‘positive’ response.

Reply: Thanks for this valuable comment and this expression has been re-organized.

In contrast to the light air pollution days, the severe anthropogenic air pollution days (PM$_{2.5}$ > 75 µg/m3) show a positive response to the GHG-induced warming across eastern China, particularly for the regions around JJJ in which the high PM$_{2.5}$ concentration was localized (Fig. 3).

Line 226: ‘PM2.5 loadings and their associated pollution days still present significant increases’. As mentioned above, I don’t think this statement is correct.

Reply: It has been corrected.
Although the aerosol emission was constant throughout the experiment, our study reveals that the PM$_{2.5}$ loadings and their associated pollution days still present increases throughout the 21st century, primarily resulting from the impact of climate change induced by GHG warming.

Line 228-246: I don’t understand what this section is used for. ‘28% of the pollution days are contributed by the climate change that was induced by GHG warming.’ The authors fixed aerosol emission and all changes (100%) in the model should be due to GHG warming. Even changes in pollution days due to changes in meteorological conditions result from GHG warming.

Reply: In this section, we applied the “Fraction of Attributable Risk (FAR)” metric to roughly estimate the possible contribution of climate change impact on the air pollution. The metric FAR has been widely used for the attribute analyses of climate extreme changes and it can present the quantitative estimations of effects of the GHG-induced climate changes on the anthropogenic air pollutions (More information referring to the calculation can be found in the text). The experiments are used in this study with the fixed aerosol emission and the air pollution changes are mainly contributed by the climate change that induced by GHG warming, which can be estimated by the FAR metric.

Line 293-295: Again, ‘substantially increase’ is not correct.

Reply: It has been corrected.

Our evaluations show that the anthropogenic PM$_{2.5}$ loadings, as well as the anthropogenic PM$_{2.5}$ pollution days, would increase under the global warming conditions even the aerosol emissions fixed at current levels.
Anthropogenic Fine Particulate Matter Pollution Will Be Exacerbated in Eastern China Due to 21st-Century GHG Warming

Huopo Chen¹,²*, Huijun Wang²,¹, Jianqi Sun¹,², Yangyang Xu³, and Zhicong Yin²

¹ Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

² Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University for Information Science and Technology, Nanjing, China

³ Department of Atmospheric Sciences, Texas A&M University, College Station Texas, USA

Corresponding author: Huopo Chen (chenhuopo@mail.iap.ac.cn)

Address: Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, PO Box 9804, Beijing 100029, China

Email: chenhuopo@mail.iap.ac.cn

Tel: (+86)010-82995057
Abstract

China has experienced a substantial increase in severe haze events over the past several decades, which is primarily attributed to the increased pollutant emissions caused by its rapid economic development. The climate changes observed under the warming scenarios, especially those induced by increases in greenhouse gases (GHG), are also conducive to the increase in air pollution. However, how the air pollution changes in response to the GHG warming has not been thoroughly elucidated to date. We investigate this change using the century-long large ensemble simulations with the Community Earth System Model 1 (CESM1) with the fixed anthropogenic emissions at the year 2005. Our results show that although the aerosol emission is assumed to be a constant throughout the experiment, anthropogenic air pollution presents robust positive responses to the GHG-induced warming. The anthropogenic PM$_{2.5}$ concentration is estimated to increase averaged over eastern China at the end of this century, but varying from regions, with an increase over northwestern part of eastern China and a decrease over southeastern part. Similar changes can be observed for the light air pollution days. However, the severe air pollution days is reported to increase across eastern China at the end of this century, particularly around the Jing-Jin-Ji region, with an increase of approximately 68% to be observed in the most severe days at the end of the 21st century. Further research indicates that the increased stagnation days and the decreased light precipitation days are the primary possible causes of the increase in PM$_{2.5}$ concentration, as well as the anthropogenic air pollution days. Estimation shows that the effect of climate change induced by the GHG warming can
account for 11%-28% of the changes in anthropogenic air pollution days over eastern China. Therefore, in the future, more stringent regulations on regional air pollution emissions are needed to balance the effect from climate change.
1. Introduction

The extraordinarily rapid development of China has caused extremely high aerosol loading and gaseous pollutant emissions that have enveloped most regions across China in the recent decades. The increased pollutant emissions, particularly for the particulate matter finer than 2.5 µm in aerodynamic diameter (PM$_{2.5}$), generally result in severe haze events and present a major threat to public health (Gao et al., 2017; Tang et al., 2017; Wang, 2018), crop production (Tie et al., 2016), and regional climates (Cao et al., 2016). For example, the annual averaged PM$_{2.5}$ in Beijing exceeded 75 µg/m3 during 2009-2016 (Fig. 1b), which more than three times the recommended 24-hour standard (25 µg/m3) of the World Health Organization (WHO). This degeneration of the air pollution across China, which is similar to that in Beijing, is primarily caused by the integrated effects of high emissions and poor ventilation (Chen and Wang, 2015; Zhang et al., 2016a). Many efforts are thus underway to reduce emissions that cause severe haze pollutions. However, the question remains of whether climate change will offset or facilitate these efforts.

Recent studies have documented that the exacerbation of air quality over eastern China was partly modulated by meteorological conditions and climate variability that are generally conducive to the severe haze occurrences (Li et al., 2018; Liao and Chang, 2014; Wang and Chen, 2016; Yang et al., 2016; Zhang et al., 2014; Zhang et al., 2016b). Specifically, Wang et al. (2015) revealed that the shrinking Arctic sea ice favors less cyclone activity and a more stable atmosphere conducive to haze formation, which can explain approximately 45%-67% of the interannual to
interdecadal variability of winter haze days over eastern China. Besides Arctic sea ice, other decadal variability and changes, including weak East Asian winter monsoon (Jeong et al., 2017; Li et al., 2016; Yin et al., 2015), strong El Niño-Southern oscillation (Gao and Li, 2015; Zhao et al., 2018), high Pacific decadal oscillation (Zhao et al., 2016), and high Arctic oscillation (Cai et al., 2017), may have contributed. In addition, the increasing winter haze days over eastern China may also be linked to the low boundary layer height (Huang et al., 2018; Wang et al., 2018), weakened northerly winds (Yang et al., 2017), decreased relative humidity (Ding and Liu, 2014), and increased sea surface temperature (Xiao et al., 2015; Yin and Wang, 2016; Yin et al., 2017).

Global warming generally presents an adverse impact on the haze pollution across China. Simulations of the dynamic downscaling by the regional climate model RegCM4 under the RCP4.5 (Representative Concentration Pathway) scenarios have shown that the air environment carrying capacity tends to decrease, and the weak ventilation days tend to increase, in the 21st century across China, suggesting an increase in the haze pollution potential compared to the current state (Han et al., 2017). Furthermore, Cai et al. (2017) projected that the days conducive to severe haze pollution in Beijing would increase by 50% at the end of the 21st century (2050-2099) under the RCP8.5 scenarios compared to the historical period.

These qualitative estimations of the haze pollution response to climate changes generally derived from the potential changes of the corresponding meteorological conditions indirectly. No studies to date quantitatively assessed the simulated PM
directly. How the fine particulate matter pollution changes in response to the global warming in China has not been thoroughly elucidated to date. This study particularly focuses on the anthropogenic \(\text{PM}_{2.5} \) loading and its response to the future warming. In this study, the large ensemble simulations from the Community Earth System Model Version 1 (CESM1) throughout the 21st century that are induced by increasing greenhouse gases (GHG) emissions along the trajectory RCP8.5 but retaining the emissions of aerosols and/or their precursors fixed at the year of 2005 level (RCP8.5_FixAerosol2005; Xu and Lamarque, 2018) will be utilized.

2. Data and methods

2.1 \(\text{PM}_{2.5} \) observational datasets

Surface hourly \(\text{PM}_{2.5} \) concentration data released since 2013 are taken from the website of the Ministry of Environmental Protection (http://106.37.208.233:20035), which covers 1602 sites across China. The duration of available datasets varies across sites because of the gradual development of the monitoring network in recent years. In our study region of eastern China (east to 100 °E), there are 1263 sites remaining after the sites with missing values were removed during 2015-2017. Additionally, surface daily \(\text{PM}_{2.5} \) concentrations for the Beijing, Shanghai, Guangzhou, and Chengdu cities that had relatively longer monitoring times are also collected from the U.S. Beijing Embassy (http://www.stateair.net/web/historical/1/1.html).

2.2 CESM1 model simulations

The CESM1 is an Earth system model involving the atmosphere, land, ocean,
and sea-ice components with a nominal 1° by 1° horizontal resolution (Hurrell et al., 2013). The RCP8.5_FixAerosol2005 simulations are forced by the RCP8.5 scenario, but all emissions of sulfate (SO₄), black carbon (BC) and primary organic matter (POM), and secondary organic aerosols (SOA; or their precursors) and atmospheric oxidants are fixed at the present-day level (2005). These simulations include 16 ensemble members, differing solely in their atmospheric initial conditions with a tiny random temperature difference (order of 10⁻¹⁴°C; Kay et al., 2015). For comparison, the CESM1 large ensemble consists of 35-member simulations that forced by the RCP8.5 scenario are also employed here. Using these relatively large ensembles can substantially reduce the contribution of natural variability of the climate system to the result estimation (Xu and Lamarque, 2018).

For the aerosol emission in the RCP scenarios database, just its decadal change is considered rather than the emission at a single year (Lamarque et al., 2011). Here, the years of 2006-2015 are considered as the reference period in the RCP8.5_FixAerosol2005 simulations. The differences of the mean climates from the reference period are largely due to the increase in GHG emissions and are not attributed to the decline in aerosol emissions, as specified in RCP8.5. The changes of anthropogenic PM₂.₅ loadings and anthropogenic air pollution days in our study are thus only a result of the GHG-induced climate change, rather than changes in aerosol emission. Note that just four species of PM₂.₅ components that show a substantial threat to public health are considered here for analysis, including SO₄, BC, POM, and SOA from the CESM1 simulations.
2.3 Definition of the fraction of attributable risk

The influences of the GHG-induced climate changes on the anthropogenic air pollutions in China are investigated using the metric of the fraction of attributable risk (FAR), which has been widely used for attribute analyses of climate extreme changes (Chen and Sun, 2017; Stott et al., 2004). FAR is defined as the $1-P_0/P_1$, where P_0 is the probability of exceeding a certain threshold during the reference period and P_1 is the probability exceeding the same threshold during a given period. FAR thus presents the quantitative estimations of effects of the GHG-induced climate changes on the anthropogenic air pollutions.

2.4 Definition of stagnation days

The changes of the stagnation days that were induced by the increase of GHG emissions are also evaluated in our study to explore the possible impact of climate change on the anthropogenic air pollutions. The day is considered to be stagnant when the daily mean near-surface wind speed is less than 3.2 m/s, the daily mean 500-hPa wind speed is less than 13 m/s, and the daily accumulated precipitation is less than 1 mm (Horton et al., 2012). Early studies have suggested that this air stagnation definition might not be applicable for China to represent the air pollution condition under the seasonal scales (Feng et al., 2018; Wang et al., 2018). However, the annual mean stagnation generally presents good agreement with that of air pollution across China (Huang et al., 2017; 2018). The changes in the annual mean states of air stagnations over China at the end of 21st century will thus be discussed in the following.
3. Results

3.1 Observational changes in PM$_{2.5}$ pollutions

The days of severe haze pollution increased over the past several decades across eastern China, particularly for the episodes of January 2013, December 2015, and December 2016, when several severe haze alerts were reached. High PM$_{2.5}$ loading was centralized over the Jing-Jin-Ji (JJJ) region, Shangdong, and Henan provinces, as well as the Sichuan Basin (SCB, Fig. 1a). The annual mean PM$_{2.5}$ mass concentrations for most sites over these regions exceed 75 µg/m3. According to the statistics, there are approximately 95% sites where the annual mean PM$_{2.5}$ concentration exceeded the WHO recommended 24-hour standard (25 µg/m3) across eastern China, and there are 65 sites centralized by Beijing, where the annual mean PM$_{2.5}$ concentration was larger than 75 µg/m3, which would present the possibility of exposing people to serious health hazards (World Health Organization, 2014).

Regarding the four economic zones of Beijing, Shanghai, Guangzhou, and Chengdu cities over China, serious PM$_{2.5}$ pollution can be expected in recent years, especially for the Beijing and Chengdu regions (Fig. 1). Taking Beijing as an example, the annual mean PM$_{2.5}$ concentration was stably exceeding 100 µg/m3, and more than a half of the year had experienced severe air pollution (> 75 µg/m3) before 2013. Since 2013, China’s State Council released its Air Pollution Prevention and Control Action Plan, which requires the key regions, including the JJJ, the Yangtze River Delta (YRD), and the Pearl River Delta (PRD) to reduce their atmospheric levels of PM$_{2.5}$ by 25%, 20%, and 15%, respectively, by the end of year 2017 (State Council,
2013). Effort is obvious, and the PM$_{2.5}$ loading and the air pollution days present sharp decreases in recent years. However, the strict emission policies substantially cost the economic development, which cannot meet the current requirement of the rapid development of China. Thus, scientifically quantifying the roles of anthropogenic emissions and climate changes shows great importance for seeking the balance between socioeconomic development and emission reduction.

3.2 Simulated changes in anthropogenic PM$_{2.5}$ pollutions

A strong spatial correlation (0.69) is found for the annual mean PM$_{2.5}$ concentration between the site observation and median ensemble of CESM1 simulations over eastern China (Fig. S1). The high concentrations across eastern China, including the regions centralized by Beijing and Chengdu, are reasonably reproduced. However, a negative bias is obvious, primarily because only four major species are considered in this study from the CESM1 simulations. Early studies (Li et al., 2016; Yang et al., 2017) have documented that this low bias of aerosol concentration simulated by models is much more complicated in China and the causes mainly involve the uncertainties from aerosol emission amount, emission injection height, lack of nitrate, aerosol treatment in model as well as the coarse model resolution.

The median ensemble-mean change of the PM$_{2.5}$ surface concentration presents strong regional dependence across China with significantly decreasing trends over the southeastern part of eastern China and significantly increasing trends over the other regions throughout the 21st century (Fig. S2), even though the emissions are constant.
throughout the experiment. The regional differences in the total PM$_{2.5}$ changes are mainly due to SO$_4$, which can account for approximately 50% of the total PM$_{2.5}$ mass (Xu and Lamarque, 2018). The species of BC and POM are reported to significantly increase in the 21st century across eastern China, although the aerosol emissions were fixed at the level in 2005. Figure 2 presents the simulated PM$_{2.5}$ loadings from the CESM1 model, in terms of column burden and surface concentration, are significantly increasing throughout the 21st century. The increase in the total PM$_{2.5}$ is approximately 8% for the column burden and 2% for the surface concentration at the end of the 21st century (2090-2099) with respect to the current state (2006-2015).

These increasing trends of PM$_{2.5}$ loadings are mainly due to the significant increases of the major PM$_{2.5}$ species, except for SOA, in which the surface concentration presents a slight decrease. Furthermore, the increases of all major PM$_{2.5}$ species in terms of column burden (BC: 11%, SO$_4$: 6%, SOA: 11%, and POM: 11%) show stronger than the surface concentration (BC: 4%, SO$_4$: 2%, SOA: -1%, and POM: 4%).

For comparison, we also evaluated the future changes of PM$_{2.5}$ concentrations and the associated species along the RCP8.5 forcing trajectory from the large ensemble simulations of CESM1 (Figure not shown). Different from changes of aerosol concentrations under the fixed aerosol simulations, the PM$_{2.5}$ concentrations and the associated species present uniformly decreasing trends across eastern China from the simulations along the RCP8.5 forcing. The decreasing trends in the RCP8.5 simulations are mainly attributed to the prescribed decrease of aerosol forcing in the
future in RCP database (Xu and Lin, 2017). The climate change induced by the
GHG-warming might exacerbate the air pollution, but the impacts cannot compensate
the prescribed decreasing trend of aerosol concentration.

As mentioned above, the PM$_{2.5}$ surface concentration in the two economic zones
of YRD and PRD present a negative response to the GHG-induced warming, while
the corresponding column burden shows significantly increasing trends (Fig. S3). The
decreases of the surface concentration over these two zones are primarily contributed
by the changes of SO$_4$ and SOA, while there are no obvious trends for BC and POM
(Figs. S4-S7). The robust response of the increased surface wind speed and decreased
upper-level wind speed to GHG warming can be partly responsible for the changes of
the major PM$_{2.5}$ species in these two zones, which will be further discussed. Over the
zones of JJJ and SCB, both the PM$_{2.5}$ concentrations and the associated major PM$_{2.5}$
species present the significantly rising trends throughout the 21$^{\text{st}}$ century. For the
surface concentration, PM$_{2.5}$ is reported to increase by 3% and 4% in the regions of
JJJ and SCB, respectively, at the end of the 21$^{\text{st}}$ century. The BC is reported to
increase by 4% and 8% for JJJ and SCB, respectively, at the end of the 21$^{\text{st}}$ century.
The other species, such as SO$_4$ and POM, increase by 4% and 4%, respectively, in the
JJJ regions and by 2% and 9%, respectively, in SCB regions. Relatively stronger
responses can be seen in changes of the column burden for all major species (Figs.
S4-S7). The increased concentrations of PM$_{2.5}$ species finally result in significantly
increasing trends of the total PM$_{2.5}$ loading over these two regions, which will present
a more direct effect on human health.
The increase in PM$_{2.5}$ surface concentration throughout the 21$^{\text{st}}$ century substantially leads to the significant increase of the light anthropogenic PM$_{2.5}$ pollution days (PM$_{2.5} > 25$ µg/m3) across the northwestern part of eastern China (Fig. S83). Due to the decrease of PM$_{2.5}$ concentration over the southeastern part of eastern China, the light anthropogenic air pollution days can be expected to decrease in this region. Estimation shows that the number of the light air pollution days would be decreased by approximately 10 days at the end of the 21$^{\text{st}}$ century with respect to the early period of this century in the region. However, the annual mean light air pollution days is reported to increase averaged over the eastern China at the end of this century despite the aerosol emission is constant throughout the experiment. However, in contrast to the light air pollution days, the severe anthropogenic air pollution days (PM$_{2.5} > 75$ µg/m3) show a robust positive response to the GHG-induced warming across eastern China, particularly for the regions around JJJ in which the high PM$_{2.5}$ concentration was localized (Fig. 3). The severe air pollution days is estimated to increase by more than 2 days at the end of this century when compared to the early period over this region. Considering the underestimation in aerosol concentration by CESM1 model in China, the percentile threshold metric is also applied here to estimate the future changes in light (90th) and severe (99th) air pollution days. Similar results can be obtained (Fig. S8). The increase of the severe anthropogenic air pollution days is considerably stronger than the light air pollution days, with an increase of approximately 68% to be observed at the end of 21$^{\text{st}}$ century, while an increase of 3% is expected for the light air pollution days over eastern China.
3.3 Attributable changes due to GHG warming

Although the aerosol emission was constant throughout the experiment, our study reveals that the PM$_{2.5}$ loadings and their associated pollution days still present significant increases throughout the 21st century, primarily resulting from the impact of climate change induced by GHG warming. One may ask how large a contribution the climate change exerts on the changes in anthropogenic air pollution. To quantitatively address this issue, the framework of the “Fraction of Attributable Risk (FAR)” that has been widely used for attribute analyses of climate extreme changes (Chen and Sun, 2017; Stott et al., 2004) is employed in this study.

Figure 4 shows the percentage changes of the anthropogenic air pollution days throughout the 21st century over eastern China and their associated FAR variations. The regional averaged anthropogenic air pollution days present an obvious significant increase in the 21st century as addressed above. Correspondingly, synchronous increasing trends can be found in FAR for both light and severe anthropogenic air pollution days. For the light pollution days, FAR is estimated to be 28% at the end of the 21st century, implying that approximately 28% of the pollution days are contributed by the climate change that was induced by GHG warming. For the severe pollution days, FAR shows a relatively smaller value of approximately 11%.

Furthermore, the high FAR values are mainly located over the regions of high PM$_{2.5}$ loadings concentrated over eastern China, suggesting considerably stronger effects of climate changes in these study regions. Note that the FAR values estimated in this research may be underestimated because the GHG-induced warming impact was
involved in the selected reference period that resulted in the overestimation of the
probability of anthropogenic air pollution days.

3.4 Effects of the changes in meteorological conditions

We further examined the changes of meteorological conditions induced by the
GHG warming that alternatively exerted effects on air pollution. Our results show that
the local boundary layer height presents as higher under the warming scenario (Fig.
5a), which benefits the vertical transport of the air pollutant.

However, a robust negative response of the horizontal advection to the
GHG-induced warming across eastern China can be found in the troposphere (Fig. 5b,
c), facilitating air pollutant accumulation. The change of surface wind speed in
response to the GHG warming is highly similar with the variation of PM$_{2.5}$ surface
concentration, with wind speed increasing in the southeastern part of eastern China
and decreasing in the northwestern part. Variations of surface wind speeds are thus
mainly responsible for the changes of PM$_{2.5}$ surface concentration over eastern China.
Different responses can be found for the tropospheric upper-level wind speeds, which
are reported to substantially decrease. These decreases would directly result in
significant increases of the stagnation days over eastern China, particularly over the
northern region and SCB basin (Fig. 6). The decreasing trend of wind speed in the 21st
century across China not only exists in CEMS1 model, but also happens in the other
global climate models that participated in Coupled Model Intercomparison Project
Phase 3 (CMIP3) and CMIP5 (Jiang et al., 2010a; McInnes et al., 2011), as well as in
regional climate models (Jiang et al., 2010b).
In response to the GHG-induced warming, the stagnation days over eastern China are estimated to increase by 6% at the end of 21st century with respect to the current period. For the specific economic zones, the stagnation days over the SCB and JJJ regions show considerably stronger rising trends, while relatively weaker increases are observed over the YRD and PRD regions. The number of stagnation days is estimated to increase by 13% and 6% at the end of the 21st century for the SCB and JJJ regions, respectively. Briefly, though the atmospheric stratification appears to be considerably more unstable in response to the GHG warming, the weakened horizontal advection would substantially increase the stagnation days over eastern China, which provides a beneficial background for the air pollutant accumulation and further increases the occurrence probability of the anthropogenic air pollution events.

Early studies have documented a significant increase in total precipitation across China due to the GHG-induced warming (Chen, 2013; Li et al., 2018; Wang et al., 2012), which seems to represent a conflict with the increase of the anthropogenic air pollution days. To resolve this issue, the precipitation changes in terms of light precipitation days (daily accumulated precipitation < 10 mm) and heavy precipitation days (> 10 mm) are further examined (Fig. 5d, e). Clearly, the heavy precipitation days present an increase, while the light precipitation days show a decrease, across eastern China in response to the warming. Though the precipitation shifts toward heavy precipitation events, its cleansing impact on air pollutants has not increased because an increase in heavy precipitation days appears to be insufficient to further enhance the wet removal ability (Xu and Lamarque, 2018). In contrast, the decrease in
light precipitation days substantially weakens the wet deposition of air pollutants, leading to the increase of the PM$_{2.5}$ loading, as well as anthropogenic air pollution days. The future changes of precipitation days present much robust. Both the increasing trends of heavy precipitation days and the decreasing trends of light precipitation days are also obvious across China simulated by the CMIP5 models (Chen and Sun, 2013; 2018), as well as the regional climate models (Gao et al., 2012).

4. Conclusions

The world is predicted to experience increased disasters, such as heat waves, flash floods, and storms, due to the continuous global warming induced by the GHG increase. The research question we aim to address in this study is how the GHG warming would affect the anthropogenic PM$_{2.5}$ pollutions across China. Our evaluations show that the anthropogenic PM$_{2.5}$ loadings, as well as the anthropogenic PM$_{2.5}$ pollution days, would substantially increase under the global warming conditions even the aerosol emissions fixed at current levels. More stringent regulations are thus suggested for regional aerosol emissions to maintain the air quality standard as the current state.

The climate changes induced by GHG warming exert their effects on the anthropogenic air pollutions across eastern China via two ways that are of interest in this study. First, the weakened tropospheric wind speed induced by the GHG warming would result in a decrease of the horizontal advection and lead to an increase in the number of stagnation days, facilitating the local accumulation of air pollutants. Second, the number of light precipitation days would decrease due to GHG-induced
warming, although the total precipitation would clearly increase across China. This shift toward more no-rainfall days would further weaken the wet deposition of PM$_{2.5}$ pollutants. Thus, the increased stagnation days and decreased light precipitation days provide a beneficial background for the occurrence of anthropogenic air pollution. Of course, under the warming scenarios, a large discrepancy exists among the different meteorological processes that benefit the air pollutions at the current state, leading to the fuzzy recognition of air pollution change. For example, the boundary layer height shows an increase in response to the GHG warming that may strengthen the vertical dissipation of air pollutants. Thus, more studies are suggested in the future to further understand the mechanisms governing air quality across China.
Author contributions

H. P. Chen and H. J. Wang designed the research; H. P. Chen analyzed the data.

All the authors discussed the results and wrote the paper.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

This work is jointly supported by the National Natural Science Foundation of China (Grant No: 41421004), the National Key Research and Development Program of China (Grant No: 2016YFA0600701), and the CAS-PKU Joint Research Program.
References

Feng, J., Quan, J., Liao, H., Li, Y., and Zhao, X.: An air stagnation index to qualify
extreme haze events in northern China, J. Atmos. Sci.,
Gao, H. and Li, X.: Influences of El Niño Southern Oscillation events on haze
frequency in eastern China during boreal winters, Int. J. Climatol., 35, 2682-2688,
2015.
Li, J., Yang, J., Li, J., Cao, L., Liu, X. B., Wu, H. X., and Liu, Q. Y.: Haze, public
health and mitigation measures in China: A review of the current evidence for
Gao, X. J., Shi, Y., Zhang, D., and Giorgi, F.: Climate change in China in the 21st
century as simulated by a high resolution regional climate model, Chin. Sci. Bull.,
pollution potential in China: an ensemble of regional climate model simulations,
Horton, D. E., Harshvardhan, and Diffenbaugh, N. S.: Response of air stagnation
frequency to anthropogenically enhanced radiative forcing, Environ. Res. Lett., 7,
044034, 2012.
Climatological mean features and trends, Atmos. Chem. Phys., 17, 7793-7805,
2017.
Huang, Q., Cai, X., Wang, J., Song, Y., and Zhu, T.: Climatological study of the

Wang, X., Dickinson, R., Su, L., Zhou, C., and Wang, K.: PM$_{2.5}$ pollution in China
and how it has been exacerbated by terrain and meteorological conditions, Bull. Amer. Meteorol. Soc., 99(1), 105-119, 2018.

Zhang, Z., Zhang, X., Goog, D., Kim, S., Mao, R., and Zhao, X.: Possible influence of atmospheric circulations over winter haze pollution in the Beijing-Tian-Hebei

Figure captions

Figure 1. Observed PM$_{2.5}$ pollution conditions over eastern China during the past years. (a) Annual averaged PM$_{2.5}$ concentration (μg/m3) for the years of 2015-2017.
(b) Variations of annual averaged PM$_{2.5}$ concentration (green bars) in Beijing city and the corresponding number of the severe PM$_{2.5}$ pollution days (red bars). The severe pollution days are defined as the daily averaged PM$_{2.5}$ concentration exceeding 75 μg/m3. (c), (d), and (e) are similar to (b), but for the results of Shanghai, Guangzhou, and Chengdu city, respectively.

Figure 2. Plots of future changes of the total PM$_{2.5}$ as well as its associated species averaged over eastern China in terms of the surface concentration (μg/m3, right axis in red) and column burden (mg/m2, left axis in blue) from the simulations of the RCP8.5_FixAerosol2005 experiment. (a) PM$_{2.5}$, (b) BC, (c) SO$_4$ (d) POM, and (e) SOA. Ensemble variance (1 sigma) for surface concentration is shown in red shadings.

Figure 3. Changes of severe anthropogenic PM$_{2.5}$ pollution days (>75 μg/m3) across eastern China from the RCP8.5_FixAerosol2005 experiment. The top panel (a, b) shows the changes of light air pollution days (>25 μg/m3) and the bottom panel (c, d) shows the results of severe air pollution days (>75 μg/m3). The left panel (a, c) illustrates the annual averaged severe pollution days in 2006-2015 and the right panel (b, d) shows changes of the pollution days at the end of the 21st century with respect to 2006-2015. Dots in (b) and (d) mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. Units: days.
Figure 4. Attributable changes of anthropogenic air pollution days to the increased greenhouse gases emissions. (a) Spatial distribution of FAR for the changes of severe PM$_{2.5}$ pollutions (> 75 µg/m3) at the end of the 21st century over eastern China. (b) Regional averaged relative changes of air pollution days (left axis in red; > 25 µg/m3) and the corresponding variation of FAR (right axis in blue). Ensemble variance (1 sigma) for the relative changes of pollution days is shown in red shadings. (c) is similar to (b), but for the severe PM$_{2.5}$ pollution days. Units: %.

Figure 5. Simulated changes in weather conditions of the air pollutions across eastern China due to the GHG-induced warming. (a) Changes of the planetary boundary layer height (PBLH) at the end of the 21st century with respect to the years of 2006-2015 from the RCP8.5_FixAerosol2005 experiment. (b) and (c) are similar to (a) but for the wind speed at near-surface and 500-hPa levels, respectively. (d) Changes in the light precipitation days (daily accumulated precipitation < 10 mm) at the end of the 21st century with respect to the current state. (e) is similar to (d) but for the heavy precipitation days (> 10 mm). Dots in the figure mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. Units: %.

Figure 6. Changes in the stagnant conditions across China due to the GHG-induced warming. (a) Distribution of the relative changes of the stagnation days at the end of the 21st century against the current state (2006-2015). Dots mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. (b) Variations of the regional averaged stagnation days over
eastern China. Ensemble variance (1 sigma) is shown in red shadings. (c), (d), (e), and (f) are similar to (b), but for the results of four Chinese economic zones, i.e., JJJ, YRD, PRD, and SCP. Units: %.

Figure 1. Observed PM$_{2.5}$ pollution conditions over eastern China during the past years. (a) Annual averaged PM$_{2.5}$ concentration (µg/m3) for the years of 2015-2017. (b) Variations of annual averaged PM$_{2.5}$ concentration (green bars) in Beijing city and the corresponding number of the severe PM$_{2.5}$ pollution days (red bars). The severe pollution days are defined as the daily averaged PM$_{2.5}$ concentration exceeding 75 µg/m3. (c), (d), and (e) are similar to (b), but for the results of Shanghai, Guangzhou, and Chengdu city, respectively.
Figure 2. Plots of future changes of the total PM$_{2.5}$ as well as its associated species averaged over eastern China in terms of the surface concentration (µg/m3, right axis in red) and column burden (mg/m2, left axis in blue) from the simulations of the RCP8.5_FixAerosol2005 experiment. (a) PM$_{2.5}$, (b) BC, (c) SO$_4$, (d) POM, and (e) SOA. Ensemble variance (1 sigma) for surface concentration is shown in red shadings.
Figure 3. Changes of the severe anthropogenic PM$_{2.5}$ pollution days (>75 µg/m3) across eastern China from the RCP8.5_FixAerosol2005 experiment. The top panel (a, b) shows the changes of light air pollution days (>25 µg/m3) and the bottom panel (c, d).
(c, d) shows the results of severe air pollution days (> 75 µg/m³). The left panel (a, c) illustrates the annual averaged severe pollution days in 2006-2015 and the right panel (b, d) shows changes of the pollution days at the end of the 21st century with respect to 2006-2015. Dots in (b) and (d) mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. Units: days.
Figure 4. Attributable changes of anthropogenic air pollution days to the increased greenhouse gases emissions. (a) Spatial distribution of FAR for the changes of severe PM$_{2.5}$ pollutions (> 75 µg/m3) at the end of the 21st century over eastern China. (b) Regional averaged relative changes of air pollution days (left axis in red; > 25 µg/m3) and the corresponding variation of FAR (right axis in blue). Ensemble variance (1 sigma) for the relative changes of pollution days is shown in red shadings. (c) is similar to (b), but for the severe PM$_{2.5}$ pollution days. Units: %.
Figure 5. Simulated changes in weather conditions of the air pollutions across eastern China due to the GHG-induced warming. (a) Changes of the planetary boundary layer height (PBLH) at the end of the 21st century with respect to the years of 2006-2015 from the RCP8.5_FixAerosol2005 experiment. (b) and (c) are similar to (a) but for the wind speed at near-surface and 500-hPa levels, respectively. (d) Changes in the light precipitation days (daily accumulated precipitation < 10 mm) at the end of the 21st century with respect to the current state. (e) is similar to (d) but for the heavy precipitation days (> 10 mm). Dots in the figure mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. Units: %.
Figure 6. Changes in the stagnant conditions across China due to the
GHG-induced warming. (a) Distribution of the relative changes of the stagnation days at the end of the 21st century against the current state (2006-2015). Dots mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. (b) Variations of the regional averaged stagnation days over eastern China. Ensemble variance (1 sigma) is shown in red shadings. (c), (d), (e), and (f) are similar to (b), but for the results of four Chinese economic zones, i.e., JJJ, YRD, PRD, and SCB. Units: %.
Anthropogenic Fine Particulate Matter Pollution Will Be Exacerbated in Eastern China Due to 21st-Century GHG Warming

Huopo Chen1,2*, Huijun Wang2,1, Jianqi Sun1,2, Yangyang Xu3, and Zhicong Yin2

1 Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University for Information Science and Technology, Nanjing, China

3 Department of Atmospheric Sciences, Texas A&M University, College Station Texas, USA

Corresponding author: Huopo Chen (chenhuopo@mail.iap.ac.cn)

Address: Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, PO Box 9804, Beijing 100029, China

Email: chenhuopo@mail.iap.ac.cn

Tel: (+86)010-82995057
Abstract

China has experienced a substantial increase in severe haze events over the past several decades, which is primarily attributed to the increased pollutant emissions caused by its rapid economic development. The climate changes observed under the warming scenarios, especially those induced by increases in greenhouse gases (GHG), are also conducive to the increase in air pollution. However, how the air pollution changes in response to the GHG warming has not been thoroughly elucidated to date. We investigate this change using the century-long large ensemble simulations with the Community Earth System Model 1 (CESM1) with the fixed anthropogenic emissions at the year 2005. Our results show that although the aerosol emission is assumed to be a constant throughout the experiment, anthropogenic air pollution presents positive responses to the GHG-induced warming. The anthropogenic PM$_{2.5}$ concentration is estimated to increase averaged over eastern China at the end of this century, but varying from regions, with an increase over northwestern part of eastern China and a decrease over southeastern part. Similar changes can be observed for the light air pollution days. However, the severe air pollution days is reported to increase across eastern China at the end of this century, particularly around the Jing-Jin-Ji region. Further research indicates that the increased stagnation days and the decreased light precipitation days are the possible causes of the increase in PM$_{2.5}$ concentration, as well as the anthropogenic air pollution days. Estimation shows that the effect of climate change induced by the GHG warming can account for 11%-28% of the changes in anthropogenic air pollution days over eastern China. Therefore, in the
future, more stringent regulations on regional air pollution emissions are needed to balance the effect from climate change.
1. Introduction

The extraordinarily rapid development of China has caused extremely high aerosol loading and gaseous pollutant emissions that have enveloped most regions across China in the recent decades. The increased pollutant emissions, particularly for the particulate matter finer than 2.5 µm in aerodynamic diameter (PM$_{2.5}$), generally result in severe haze events and present a major threat to public health (Gao et al., 2017; Tang et al., 2017; Wang, 2018), crop production (Tie et al., 2016), and regional climates (Cao et al., 2016). For example, the annual averaged PM$_{2.5}$ in Beijing exceeded 75 µg/m3 during 2009-2016 (Fig. 1b), which more than three times the recommended 24-hour standard (25 µg/m3) of the World Health Organization (WHO).

This degeneration of the air pollution across China, which is similar to that in Beijing, is primarily caused by the integrated effects of high emissions and poor ventilation (Chen and Wang, 2015; Zhang et al., 2016a). Many efforts are thus underway to reduce emissions that cause severe haze pollutions. However, the question remains of whether climate change will offset or facilitate these efforts.

Recent studies have documented that the exacerbation of air quality over eastern China was partly modulated by meteorological conditions and climate variability that are generally conducive to the severe haze occurrences (Li et al., 2018; Liao and Chang, 2014; Wang and Chen, 2016; Yang et al., 2016; Zhang et al., 2014; Zhang et al., 2016b). Specifically, Wang et al. (2015) revealed that the shrinking Arctic sea ice favors less cyclone activity and a more stable atmosphere conducive to haze formation, which can explain approximately 45%-67% of the interannual to
interdecadal variability of winter haze days over eastern China. Besides Arctic sea ice, other decadal variability and changes, including weak East Asian winter monsoon (Jeong et al., 2017; Li et al., 2016; Yin et al., 2015), strong El Niño-Southern oscillation (Gao and Li, 2015; Zhao et al., 2018), high Pacific decadal oscillation (Zhao et al., 2016), and high Arctic oscillation (Cai et al., 2017), may have contributed. In addition, the increasing winter haze days over eastern China may also be linked to the low boundary layer height (Huang et al., 2018; Wang et al., 2018), weakened northerly winds (Yang et al., 2017a), decreased relative humidity (Ding and Liu, 2014), and increased sea surface temperature (Xiao et al., 2015; Yin and Wang, 2016; Yin et al., 2017).

Global warming generally presents an adverse impact on the haze pollution across China. Simulations of the dynamic downscaling by the regional climate model RegCM4 under the RCP4.5 (Representative Concentration Pathway) scenarios have shown that the air environment carrying capacity tends to decrease, and the weak ventilation days tend to increase, in the 21st century across China, suggesting an increase in the haze pollution potential compared to the current state (Han et al., 2017). Furthermore, Cai et al. (2017) projected that the days conducive to severe haze pollution in Beijing would increase by 50% at the end of the 21st century (2050-2099) under the RCP8.5 scenarios compared to the historical period.

These qualitative estimations of the haze pollution response to climate changes generally derived from the potential changes of the corresponding meteorological conditions indirectly. No studies to date quantitatively assessed the simulated PM
directly. How the fine particulate matter pollution changes in response to the global warming in China has not been thoroughly elucidated to date. This study particularly focuses on the anthropogenic PM$_{2.5}$ loading and its response to the future warming. In this study, the large ensemble simulations from the Community Earth System Model Version 1 (CESM1) throughout the 21st century that are induced by increasing greenhouse gases (GHG) emissions along the trajectory RCP8.5 but retaining the emissions of aerosols and/or their precursors fixed at the year of 2005 level (RCP8.5_FixAerosol2005; Xu and Lamarque, 2018) will be utilized.

2. Data and methods

2.1 PM$_{2.5}$ observational datasets

Surface hourly PM$_{2.5}$ concentration data released since 2013 are taken from the website of the Ministry of Environmental Protection (http://106.37.208.233:20035), which covers 1602 sites across China. The duration of available datasets varies across sites because of the gradual development of the monitoring network in recent years. In our study region of eastern China (east to 100 °E), there are 1263 sites remaining after the sites with missing values were removed during 2015-2017. Additionally, surface daily PM$_{2.5}$ concentrations for the Beijing, Shanghai, Guangzhou, and Chengdu cities that had relatively longer monitoring times are also collected from the U.S. Beijing Embassy (http://www.stateair.net/web/historical/1/1.html).

2.2 CESM1 model simulations

The CESM1 is an Earth system model involving the atmosphere, land, ocean,
and sea-ice components with a nominal 1° by 1° horizontal resolution (Hurrell et al., 2013). The RCP8.5_FixAerosol2005 simulations are forced by the RCP8.5 scenario, but all emissions of sulfate (SO₄), black carbon (BC) and primary organic matter (POM), and secondary organic aerosols (SOA; or their precursors) and atmospheric oxidants are fixed at the present-day level (2005). These simulations include 16 ensemble members, differing solely in their atmospheric initial conditions with a tiny random temperature difference (order of 10⁻¹⁴°C; Kay et al., 2015). For comparison, the CESM1 large ensemble consists of 35-member simulations that forced by the RCP8.5 scenario are also employed here. Using these relatively large ensembles can substantially reduce the contribution of natural variability of the climate system to the result estimation (Xu and Lamarque, 2018).

For the aerosol emission in the RCP scenarios database, just its decadal change is considered rather than the emission at a single year (Lamarque et al., 2011). Here, the years of 2006-2015 are considered as the reference period in the RCP8.5_FixAerosol2005 simulations. The differences of the mean climates from the reference period are largely due to the increase in GHG emissions and are not attributed to the decline in aerosol emissions, as specified in RCP8.5. The changes of anthropogenic PM₂.₅ loadings and anthropogenic air pollution days in our study are thus only a result of the GHG-induced climate change, rather than changes in aerosol emission. Note that just four species of PM₂.₅ components that show a substantial threat to public health are considered here for analysis, including SO₄, BC, POM, and SOA from the CESM1 simulations.
2.3 Definition of the fraction of attributable risk

The influences of the GHG-induced climate changes on the anthropogenic air pollutions in China are investigated using the metric of the fraction of attributable risk (FAR), which has been widely used for attribute analyses of climate extreme changes (Chen and Sun, 2017; Stott et al., 2004). FAR is defined as the $1 - P_0/P_1$, where P_0 is the probability of exceeding a certain threshold during the reference period and P_1 is the probability exceeding the same threshold during a given period. FAR thus presents the quantitative estimations of effects of the GHG-induced climate changes on the anthropogenic air pollutions.

2.4 Definition of stagnation days

The changes of the stagnation days that were induced by the increase of GHG emissions are also evaluated in our study to explore the possible impact of climate change on the anthropogenic air pollutions. The day is considered to be stagnant when the daily mean near-surface wind speed is less than 3.2 m/s, the daily mean 500-hPa wind speed is less than 13 m/s, and the daily accumulated precipitation is less than 1 mm (Horton et al., 2012). Early studies have suggested that this air stagnation definition might not be applicable for China to represent the air pollution condition under the seasonal scales (Feng et al., 2018; Wang et al., 2018). However, the annual mean stagnation generally presents good agreement with that of air pollution across China (Huang et al., 2017; 2018). The changes in the annual mean states of air stagnations over China at the end of 21st century will thus be discussed in the following.
3. Results

3.1 Observational changes in PM$_{2.5}$ pollutions

The days of severe haze pollution increased over the past several decades across eastern China, particularly for the episodes of January 2013, December 2015, and December 2016, when several severe haze alerts were reached. High PM$_{2.5}$ loading was centralized over the Jing-Jin-Ji (JJJ) region, Shangdong, and Henan provinces, as well as the Sichuan Basin (SCB, Fig. 1a). The annual mean PM$_{2.5}$ mass concentrations for most sites over these regions exceed 75 µg/m3. According to the statistics, there are approximately 95% sites where the annual mean PM$_{2.5}$ concentration exceeded the WHO recommended 24-hour standard (25 µg/m3) across eastern China, and there are 65 sites centralized by Beijing, where the annual mean PM$_{2.5}$ concentration was larger than 75 µg/m3, which would present the possibility of exposing people to serious health hazards (World Health Organization, 2014).

Regarding the four economic zones of Beijing, Shanghai, Guangzhou, and Chengdu cities over China, serious PM$_{2.5}$ pollution can be expected in recent years, especially for the Beijing and Chengdu regions (Fig. 1). Taking Beijing as an example, the annual mean PM$_{2.5}$ concentration was stably exceeding 100 µg/m3, and more than a half of the year had experienced severe air pollution (> 75 µg/m3) before 2013. Since 2013, China’s State Council released its Air Pollution Prevention and Control Action Plan, which requires the key regions, including the JJJ, the Yangtze River Delta (YRD), and the Pearl River Delta (PRD) to reduce their atmospheric levels of PM$_{2.5}$ by 25%, 20%, and 15%, respectively, by the end of year 2017 (State Council,
2013). Effort is obvious, and the PM$_{2.5}$ loading and the air pollution days present sharp decreases in recent years. However, the strict emission policies substantially cost the economic development, which cannot meet the current requirement of the rapid development of China. Thus, scientifically quantifying the roles of anthropogenic emissions and climate changes shows great importance for seeking the balance between socioeconomic development and emission reduction.

3.2 Simulated changes in anthropogenic PM$_{2.5}$ pollutions

A strong spatial correlation (0.69) is found for the annual mean PM$_{2.5}$ concentration between the site observation and median ensemble of CESM1 simulations over eastern China (Fig. S1). The high concentrations across eastern China, including the regions centralized by Beijing and Chengdu, are reasonably reproduced. However, a negative bias is obvious. Early studies (Li et al., 2016; Yang et al., 2017b; c) have documented that this low bias of aerosol concentration simulated by models is much more complicated in China and the causes mainly involve the uncertainties from aerosol emission amount, emission injection height, lack of nitrate, aerosol treatment in model as well as the coarse model resolution.

The median ensemble-mean change of the PM$_{2.5}$ surface concentration presents strong regional dependence across China with significantly decreasing trends over the southeastern part of eastern China and significantly increasing trends over the other regions throughout the 21st century (Fig. S2), even though the emissions are constant throughout the experiment. The regional differences in the total PM$_{2.5}$ changes are mainly due to SO$_4$, which can account for approximately 50% of the total PM$_{2.5}$ mass.
(Xu and Lamarque, 2018). The species of BC and POM are reported to significantly increase in the 21st century across eastern China, although the aerosol emissions were fixed at the level in 2005. Figure 2 presents the simulated PM$_{2.5}$ loadings from the CESM1 model, in terms of column burden and surface concentration, are significantly increasing throughout the 21st century. The increase in the total PM$_{2.5}$ is approximately 8% for the column burden and 2% for the surface concentration at the end of the 21st century (2090-2099) with respect to the current state (2006-2015). These increasing trends of PM$_{2.5}$ loadings are mainly due to the significant increases of the major PM$_{2.5}$ species, except for SOA, in which the surface concentration presents a slight decrease. Furthermore, the increases of all major PM$_{2.5}$ species in terms of column burden (BC: 11%, SO$_4$: 6%, SOA: 11%, and POM: 11%) show stronger than the surface concentration (BC: 4%, SO$_4$: 2%, SOA: -1%, and POM: 4%).

For comparison, we also evaluated the future changes of PM$_{2.5}$ concentrations and the associated species along the RCP8.5 forcing trajectory from the large ensemble simulations of CESM1 (Figure not shown). Different from changes of aerosol concentrations under the fixed aerosol simulations, the PM$_{2.5}$ concentrations and the associated species present uniformly decreasing trends across eastern China from the simulations along the RCP8.5 forcing. The decreasing trends in the RCP8.5 simulations are mainly attributed to the prescribed decrease of aerosol forcing in the future in RCP database (Xu and Lin, 2017). The climate change induced by the GHG-warming might exacerbate the air pollution, but the impacts cannot compensate
the prescribed decreasing trend of aerosol concentration.

As mentioned above, the PM$_{2.5}$ surface concentration in the two economic zones of YRD and PRD present a negative response to the GHG-induced warming, while the corresponding column burden shows significantly increasing trends (Fig. S3). The decreases of the surface concentration over these two zones are primarily contributed by the changes of SO$_4$ and SOA, while there are no obvious trends for BC and POM (Figs. S4-S7). The robust response of the increased surface wind speed and decreased upper-level wind speed to GHG warming can be partly responsible for the changes of the major PM$_{2.5}$ species in these two zones, which will be further discussed. Over the zones of JJJ and SCB, both the PM$_{2.5}$ concentrations and the associated major PM$_{2.5}$ species present the significantly rising trends throughout the 21st century. For the surface concentration, PM$_{2.5}$ is reported to increase by 3% and 4% in the regions of JJJ and SCB, respectively, at the end of the 21st century. The BC is reported to increase by 4% and 8% for JJJ and SCB, respectively. The other species, such as SO$_4$ and POM, increase by 4% and 4%, respectively, in the JJJ regions and by 2% and 9%, respectively, in SCB regions. Relatively stronger responses can be seen in changes of the column burden for all major species (Figs. S4-S7). The increased concentrations of PM$_{2.5}$ species finally result in significantly increasing trends of the total PM$_{2.5}$ loading over these two regions, which will present a more direct effect on human health.

The increase in PM$_{2.5}$ surface concentration throughout the 21st century substantially leads to the significant increase of the light anthropogenic PM$_{2.5}$
pollution days (PM$_{2.5}$ > 25 µg/m3) across the northwestern part of eastern China (Fig. 3). Due to the decrease of PM$_{2.5}$ concentration over the southeastern part of eastern China, the light anthropogenic air pollution days can be expected to decrease in this region. Estimation shows that the number of the light air pollution days would be decreased by approximately 10 days at the end of the 21st century with respect to the early period of this century in the region. However, the annual mean light air pollution days is reported to increase averaged over the eastern China at the end of this century despite the aerosol emission is constant throughout the experiment. In contrast to the light air pollution days, the severe anthropogenic air pollution days (PM$_{2.5}$ > 75 µg/m3) show a positive response to the GHG-induced warming across eastern China, particularly for the regions around JJJ in which the high PM$_{2.5}$ concentration was localized (Fig. 3). The severe air pollution days is estimated to increase by more than 2 days at the end of this century when compared to the early period over this region.

Considering the underestimation in aerosol concentration by CESM1 model in China, the percentile threshold metric is also applied here to estimate the future changes in light (90th) and severe (99th) air pollution days. Similar results can be obtained (Fig. S8).

3.3 Attributable changes due to GHG warming

Although the aerosol emission was constant throughout the experiment, our study reveals that the PM$_{2.5}$ loadings and their associated pollution days still present increases throughout the 21st century, primarily resulting from the impact of climate change induced by GHG warming. One may ask how large a contribution the climate
change exerts on the changes in anthropogenic air pollution. To quantitatively address
d this issue, the framework of the “Fraction of Attributable Risk (FAR)” that has been
widely used for attribute analyses of climate extreme changes (Chen and Sun, 2017;
Stott et al., 2004) is employed in this study.

Figure 4 shows the percentage changes of the anthropogenic air pollution days
throughout the 21st century over eastern China and their associated FAR variations.
The regional averaged anthropogenic air pollution days present an obvious increase in
the 21st century as addressed above. Correspondingly, synchronous increasing trends
can be found in FAR for both light and severe anthropogenic air pollution days. For
the light pollution days, FAR is estimated to be 28% at the end of the 21st century,
implying that approximately 28% of the pollution days are contributed by the climate
change that was induced by GHG warming. For the severe pollution days, FAR shows
a relatively smaller value of approximately 11%. Furthermore, the high FAR values
are mainly located over the regions of high PM$_{2.5}$ loadings concentrated over eastern
China, suggesting considerably stronger effects of climate changes in these regions.

Note that the FAR values estimated in this research may be underestimated because
the GHG-induced warming impact was involved in the selected reference period that
resulted in the overestimation of the probability of anthropogenic air pollution days.

3.4 Effects of the changes in meteorological conditions

We further examined the changes of meteorological conditions induced by the
GHG warming that alternatively exerted effects on air pollution. Our results show that
the local boundary layer height presents as higher under the warming scenario (Fig.
5a), which benefits the vertical transport of the air pollutant.

However, a robust negative response of the horizontal advection to the GHG-induced warming across eastern China can be found in the troposphere (Fig. 5b, c), facilitating air pollutant accumulation. The change of surface wind speed in response to the GHG warming is highly similar with the variation of PM$_{2.5}$ surface concentration, with wind speed increasing in the southeastern part of eastern China and decreasing in the northwestern part. Variations of surface wind speeds are thus mainly responsible for the changes of PM$_{2.5}$ surface concentration over eastern China. Different responses can be found for the tropospheric upper-level wind speeds, which are reported to substantially decrease. These decreases would directly result in significant increases of the stagnation days over eastern China, particularly over the northern region and SCB (Fig. 6). The decreasing trend of wind speed in the 21st century across China not only exists in CEMS1 model, but also happens in the other global climate models that participated in Coupled Model Intercomparison Project Phase 3 (CMIP3) and CMIP5 (Jiang et al., 2010a; McInnes et al., 2011), as well as in regional climate models (Jiang et al., 2010b).

In response to the GHG-induced warming, the stagnation days over eastern China are estimated to increase by 6% at the end of 21st century with respect to the current period. For the specific economic zones, the stagnation days over the SCB and JJJ regions show considerably stronger rising trends, while relatively weaker increases are observed over the YRD and PRD regions. The number of stagnation days is estimated to increase by 13% and 6% at the end of the 21st century for the SCB and
JJJ regions, respectively. Briefly, though the atmospheric stratification appears to be considerably more unstable in response to the GHG warming, the weakened horizontal advection would substantially increase the stagnation days over eastern China, which provides a beneficial background for the air pollutant accumulation and further increases the occurrence probability of the anthropogenic air pollution events.

Early studies have documented a significant increase in total precipitation across China due to the GHG-induced warming (Chen, 2013; Li et al., 2018; Wang et al., 2012), which seems to represent a conflict with the increase of the anthropogenic air pollution days. To resolve this issue, the precipitation changes in terms of light precipitation days (daily accumulated precipitation < 10 mm) and heavy precipitation days (> 10 mm) are further examined (Fig. 5d, e). Clearly, the heavy precipitation days present an increase, while the light precipitation days show a decrease, across eastern China in response to the warming. Though the precipitation shifts toward heavy precipitation events, its cleansing impact on air pollutants has not increased because an increase in heavy precipitation days appears to be insufficient to further enhance the wet removal ability (Xu and Lamarque, 2018). In contrast, the decrease in light precipitation days substantially weakens the wet deposition of air pollutants, leading to the increase of the PM$_{2.5}$ loading, as well as anthropogenic air pollution days. The future changes of precipitation days present much robust. Both the increasing trends of heavy precipitation days and the decreasing trends of light precipitation days are also obvious across China simulated by the CMIP5 models (Chen and Sun, 2013; 2018), as well as the regional climate models (Gao et al., 2012).
4. Conclusions

The world is predicted to experience increased disasters, such as heat waves, flash floods, and storms, due to the continuous global warming induced by the GHG increase. The research question we aim to address in this study is how the GHG warming would affect the anthropogenic PM\(_{2.5}\) pollutions across China. Our evaluations show that the anthropogenic PM\(_{2.5}\) loadings, as well as the anthropogenic PM\(_{2.5}\) pollution days, would increase under the global warming conditions even the aerosol emissions fixed at current levels. More stringent regulations are thus suggested for regional aerosol emissions to maintain the air quality standard as the current state.

The climate changes induced by GHG warming exert their effects on the anthropogenic air pollutions across eastern China via two ways that are of interest in this study. First, the weakened tropospheric wind speed induced by the GHG warming would result in a decrease of the horizontal advection and lead to an increase in the number of stagnation days, facilitating the local accumulation of air pollutants. Second, the number of light precipitation days would decrease due to GHG-induced warming, although the total precipitation would clearly increase across China. This shift toward more no-rainfall days would further weaken the wet deposition of PM\(_{2.5}\) pollutants. Thus, the increased stagnation days and decreased light precipitation days provide a beneficial background for the occurrence of anthropogenic air pollution. Of course, under the warming scenarios, a large discrepancy exists among the different meteorological processes that benefit the air pollutions at the current state, leading to
the fuzzy recognition of air pollution change. For example, the boundary layer height shows an increase in response to the GHG warming that may strengthen the vertical dissipation of air pollutants. Thus, more studies are suggested in the future to further understand the mechanisms governing air quality across China.
Author contributions

H. P. Chen and H. J. Wang designed the research; H. P. Chen analyzed the data.

All the authors discussed the results and wrote the paper.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

This work is jointly supported by the National Natural Science Foundation of China (Grant No: 41421004), the National Key Research and Development Program of China (Grant No: 2016YFA0600701), and the CAS-PKU Joint Research Program.
References

Feng, J., Quan, J., Liao, H., Li, Y., and Zhao, X.: An air stagnation index to qualify
extreme haze events in northern China, J. Atmos. Sci.,

Gao, H. and Li, X.: Influences of El Niño Southern Oscillation events on haze
frequency in eastern China during boreal winters, Int. J. Climatol., 35, 2682-2688,
2015.

Li, J., Yang, J., Li, J., Cao, L., Liu, X. B., Wu, H. X., and Liu, Q. Y.: Haze, public
health and mitigation measures in China: A review of the current evidence for

Gao, X. J., Shi, Y., Zhang, D., and Giorgi, F.: Climate change in China in the 21st
century as simulated by a high resolution regional climate model, Chin. Sci. Bull.,

pollution potential in China: an ensemble of regional climate model simulations,

Horton, D. E., Harshvardhan, and Diffenbaugh, N. S.: Response of air stagnation
frequency to anthropogenically enhanced radiative forcing, Environ. Res. Lett., 7,
044034, 2012.

Climatological mean features and trends, Atmos. Chem. Phys., 17, 7793-7805,
2017.

Huang, Q., Cai, X., Wang, J., Song, Y., and Zhu, T.: Climatological study of the

McInnes, K. L., Erwin, T. A., and Bathols, J. M.: Global climate model projected changes in 10 m wind speed and direction due to anthropogenic climate change,

Wang, X., Dickinson, R., Su, L., Zhou, C., and Wang, K.: PM$_{2.5}$ pollution in China
and how it has been exacerbated by terrain and meteorological conditions, Bull. Amer. Meteorol. Soc., 99(1), 105-119, 2018.

Zhang, Z., Zhang, X., Goog, D., Kim, S., Mao, R., and Zhao, X.: Possible influence of atmospheric circulations over winter haze pollution in the Beijing-Tian-Hebei
Figure captions

Figure 1. Observed PM$_{2.5}$ pollution conditions over eastern China during the past years. (a) Annual averaged PM$_{2.5}$ concentration (μg/m3) for the years of 2015-2017. (b) Variations of annual averaged PM$_{2.5}$ concentration (green bars) in Beijing city and the corresponding number of the severe PM$_{2.5}$ pollution days (red bars). The severe pollution days are defined as the daily averaged PM$_{2.5}$ concentration exceeding 75 μg/m3. (c), (d), and (e) are similar to (b), but for the results of Shanghai, Guangzhou, and Chengdu city, respectively.

Figure 2. Plots of future changes of the total PM$_{2.5}$ as well as its associated species averaged over eastern China in terms of the surface concentration (μg/m3, right axis in red) and column burden (mg/m2, left axis in blue) from the simulations of the RCP8.5_FixAerosol2005 experiment. (a) PM$_{2.5}$, (b) BC, (c) SO$_4$, (d) POM, and (e) SOA. Ensemble variance (1 sigma) for surface concentration is shown in red shadings.

Figure 3. Changes of the anthropogenic PM$_{2.5}$ pollution days across eastern China from the RCP8.5_FixAerosol2005 experiment. The top panel (a, b) shows the changes of light air pollution days (> 25 μg/m3) and the bottom panel (c, d) shows the results of severe air pollution days (> 75 μg/m3). The left panel (a, c) illustrates the annual averaged severe pollution days in 2006-2015 and the right panel (b, d) shows changes of the pollution days at the end of the 21st century with respect to 2006-2015. Dots in (b) and (d) mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. Units: days.
Figure 4. Attributable changes of anthropogenic air pollution days to the increased greenhouse gases emissions. (a) Spatial distribution of FAR for the changes of severe PM$_{2.5}$ pollutions (> 75 µg/m3) at the end of the 21st century over eastern China. (b) Regional averaged relative changes of air pollution days (left axis in red; > 25 µg/m3) and the corresponding variation of FAR (right axis in blue). Ensemble variance (1 sigma) for the relative changes of pollution days is shown in red shadings. (c) is similar to (b), but for the severe PM$_{2.5}$ pollution days. Units: %.

Figure 5. Simulated changes in weather conditions of the air pollutions across eastern China due to the GHG-induced warming. (a) Changes of the planetary boundary layer height (PBLH) at the end of the 21st century with respect to the years of 2006-2015 from the RCP8.5_FixAerosol2005 experiment. (b) and (c) are similar to (a) but for the wind speed at near-surface and 500-hPa levels, respectively. (d) Changes in the light precipitation days (daily accumulated precipitation < 10 mm) at the end of the 21st century with respect to the current state. (e) is similar to (d) but for the heavy precipitation days (> 10 mm). Dots in the figure mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. Units: %.

Figure 6. Changes in the stagnant conditions across China due to the GHG-induced warming. (a) Distribution of the relative changes of the stagnation days at the end of the 21st century against the current state (2006-2015). Dots mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. (b) Variations of the regional averaged stagnation days over
eastern China. Ensemble variance (1 sigma) is shown in red shadings. (c), (d), (e), and (f) are similar to (b), but for the results of four Chinese economic zones, i.e., JJJ, YRD, PRD, and SCB. Units: %.

Figure 1. Observed PM$_{2.5}$ pollution conditions over eastern China during the past years. (a) Annual averaged PM$_{2.5}$ concentration (µg/m3) for the years of 2015-2017. (b) Variations of annual averaged PM$_{2.5}$ concentration (green bars) in Beijing city and the corresponding number of the severe PM$_{2.5}$ pollution days (red bars). The severe pollution days are defined as the daily averaged PM$_{2.5}$ concentration exceeding 75 µg/m3. (c), (d), and (e) are similar to (b), but for the results of Shanghai, Guangzhou, and Chengdu city, respectively.
Figure 2. Plots of future changes of the total PM$_{2.5}$ as well as its associated species averaged over eastern China in terms of the surface concentration (µg/m3, right axis in red) and column burden (mg/m2, left axis in blue) from the simulations of the RCP8.5_FixAerosol2005 experiment. (a) PM$_{2.5}$, (b) BC, (c) SO$_4$, (d) POM, and (e) SOA. Ensemble variance (1 sigma) for surface concentration is shown in red shadings.
Figure 3. Changes of the anthropogenic PM$_{2.5}$ pollution days across eastern China from the RCP8.5_FixAerosol2005 experiment. The top panel (a, b) shows the changes of light air pollution days (> 25 µg/m3) and the bottom panel (c, d) shows the results of severe air pollution days (> 75 µg/m3). The left panel (a, c) illustrates the annual averaged severe pollution days in 2006-2015 and the right panel (b, d) shows changes of the pollution days at the end of the 21st century with respect to 2006-2015. Dots in (b) and (d) mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. Units: days.
Figure 4. Attributable changes of anthropogenic air pollution days to the increased greenhouse gases emissions. (a) Spatial distribution of FAR for the changes of severe PM$_{2.5}$ pollutions (> 75 µg/m3) at the end of the 21st century over eastern China. (b) Regional averaged relative changes of air pollution days (left axis in red; > 25 µg/m3) and the corresponding variation of FAR (right axis in blue). Ensemble variance (1 sigma) for the relative changes of pollution days is shown in red shadings. (c) is similar to (b), but for the severe PM$_{2.5}$ pollution days. Units: %.
Figure 5. Simulated changes in weather conditions of the air pollutions across eastern China due to the GHG-induced warming. (a) Changes of the planetary boundary layer height (PBLH) at the end of the 21st century with respect to the years of 2006-2015 from the RCP8.5_FixAerosol2005 experiment. (b) and (c) are similar to (a) but for the wind speed at near-surface and 500-hPa levels, respectively. (d) Changes in the light precipitation days (daily accumulated precipitation < 10 mm) at the end of the 21st century with respect to the current state. (e) is similar to (d) but for the heavy precipitation days (> 10 mm). Dots in the figure mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. Units: %.
Figure 6. Changes in the stagnant conditions across China due to the GHG-induced warming. (a) Distribution of the relative changes of the stagnation days at the end of the 21st century against the current state (2006-2015). Dots mean the changes are significant at the 95% confidence level using Student T-test for all years and ensembles. (b) Variations of the regional averaged stagnation days over eastern China. Ensemble variance (1 sigma) is shown in red shadings. (c), (d), (e), and (f) are similar to (b), but for the results of four Chinese economic zones, i.e., JJJ, YRD, PRD, and SCB. Units: %.