Supplementary Information for

Primary emissions versus secondary formation of fine particulate matter in the top polluted city, Shijiazhuang, in North China

Ru-Jin Huang¹, Yichen Wang¹, Junji Cao¹, Chunshui Lin¹,², Jing Duan¹, Qi Chen³, Yongjie Li⁴, Yifang Gu¹, Jin Yan¹, Wei Xu¹,², Roman Fröhlich⁵, Francesco Canonaco⁵, Carlo Bozzetti⁵, Jurgita Ovadnevaite², Darius Ceburnis², Manjula R. Canagaratna⁶, John Jayne⁶, Douglas R. Worsnop⁶, Imad El-Haddad⁵, André S. H. Prévôt⁵, Colin D. O'Dowd²

¹Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
²School of Physics and Centre for Climate and Air Pollution Studies, National University of Ireland Galway, Galway, Ireland
³State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
⁴Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau, China
⁵Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
⁶Aerodyne Research, Inc., Billerica, MA, USA

Correspondence to: R.-J. Huang (rujin.huang@ieecas.cn)
Fig. S1. PMF profiles of OA sources for 4-, 5-, and 6-factor solutions.
Fig. S2. Scattering plot of OOA$_1$+OOA$_2$ in the 6-factor solution vs OOA in the 5-factor solution.

Note: The resolved two secondary factors in the 6-factor solution, referred to as “OOA$_1$” and “OOA$_2$”, have the similar contributions from oxygenated fragment-related m/z (m/z 44) and the strong correlation with each other ($R^2 = 0.72$). The sum of the contributions of OOA$_1$ and OOA$_2$ matches the OOA contribution from 5-factor solution ($R^2 = 0.92$ and slope = 1.1).
Fig. S3. ME-2 profiles of OA sources. The COA profile is from that of Crippa et al. (2013), and the HOA profile is from that of Ng et al. (2011b). The others are unconstrained factors.
Fig. S4. The relative contributions of OA factors to the m/z's.
Fig. S5. The maps of potential source contribution function (PSCF) analysis for BBOA, CCOA, and OOA.