Degradation Kinetics and Secondary Organic Aerosol Formation from Eugenol by Hydroxyl Radicals

Changgeng Liu¹,², Yongchun Liu¹,³,⁴,a,*, Tianzeng Chen¹,⁴, Jun Liu¹,⁴, Hong He¹,³,⁴,*

¹State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
²School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, China
³Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
⁴University of Chinese Academy of Sciences, Beijing 100049, China

*a Currently at: Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Correspondence to: Yongchun Liu (liuyc@buct.edu.cn) and Hong He (honghe@rcees.ac.cn)
Abstract. Methoxyphenols are an important organic component of wood-burning emissions and considered to be potential precursors of secondary organic aerosols (SOA). In this work, the rate constant and SOA formation potential for the OH-initiated reaction of 4-allyl-2-methoxyphenol (eugenol) were investigated for the first time in an oxidation flow reactor (OFR). The rate constant was $(8.01 \pm 0.40) \times 10^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$ as determined by the relative rate method. The SOA yield first increased and then decreased as a function of OH exposure, and was also dependent on eugenol concentration. The maximum SOA yields (0.11–0.31) obtained at different eugenol concentrations could be expressed well by an one-product model. The carbon oxidation state (OS$_C$) increased linearly and significantly as OH exposure rose, indicating that a high oxidation degree was achieved for SOA. In addition, the presence of SO$_2$ (0–198 ppbv) and NO$_2$ (0–109 ppbv) was conducive to increasing SOA yield, for which the maximum enhancement values were 38.57% and 19.17%, respectively. The N/C ratio (0.032–0.043) indicated that NO$_2$ participated in the OH-initiated reaction, subsequently forming organic nitrates. The results could be helpful for further understanding the SOA formation potential from the atmospheric oxidation of methoxyphenols and the atmospheric aging process of smoke plumes from biomass-burning emissions.
1 Introduction

Wood combustion is a major contributor to atmospheric fine particulate matter (PM) (Bruns et al., 2016), which could contribute approximately 10–50% of the total organic fraction of atmospheric aerosols (Schauer and Cass, 2000). In some regions with cold climates, wood smoke-associated aerosols are estimated to account for more than 70% of PM$_{2.5}$ in winter (Jeong et al., 2008; Ward et al., 2006). Recently, significant potential of secondary organic aerosol (SOA) formation from wood smoke emissions has been reported (Bruns et al., 2016; Gilardoni et al., 2016; Tiitta et al., 2016; Ciarelli et al., 2017; Ding et al., 2017). In addition, the organic compounds derived from wood combustion and their oxidation products may contribute significantly to global warming due to their light-absorbing properties (Chen and Bond, 2010). It has been reported that wood smoke particles are predominant in the inhalable size range (Bari et al., 2010) and that their extracts are mutagenic (Kleindienst et al., 1986). Exposure to wood smoke can result in adverse health effects associated with acute respiratory infections, tuberculosis, lung cancer, cataracts, etc. (Bolling et al., 2009). Therefore, wood combustion has multifaceted impacts on climate, air quality, and human health.

Methoxyphenols produced by lignin pyrolysis are potential tracers for wood smoke, and their emission rates are in the range of 900–4200 mg kg$^{-1}$ fuel (Schauer et al., 2001; Simpson et al., 2005; Nolte et al., 2001). The highest level of methoxyphenols in the atmosphere always appears during a wood smoke-dominated period, with observed values up to several mg m$^{-3}$ (Schauer and Cass, 2000; Schauer et al., 2001; Simpson et
Methoxyphenols are semi-volatile aromatic compounds with low molecular weight, and many of them are found to mainly exist in the gas phase at typical ambient temperature (Simpson et al., 2005; Schauer et al., 2001). Thus, methoxyphenols can be chemically transformed through gas-phase reactions with atmospheric oxidants (Coeur-Tourneur et al., 2010a; Lauraguais et al., 2012, 2014a, 2014b, 2015, 2016; Yang et al., 2016; Zhang et al., 2016; El Zein et al., 2015). The corresponding rate constants control their effectiveness as stable tracers for wood combustion and atmospheric lifetimes. In recent years, the rate constants for the gas-phase reactions of some methoxyphenols with hydroxyl (OH) radicals (Coeur-Tourneur et al., 2010a; Lauraguais et al., 2012, 2014b, 2015), nitrate (NO$_3$) radicals (Lauraguais et al., 2016; Yang et al., 2016; Zhang et al., 2016), chlorine atoms (Cl) (Lauraguais et al., 2014a) and ozone (O$_3$) (El Zein et al., 2015) have been determined. Some studies have indicated significant SOA formation from 2,6-dimethoxyphenol (syringol) and 2-methoxyphenol (guaiacol) with respect to their reactions with OH radicals (Sun et al., 2010; Lauraguais et al., 2012, 2014b; Ahmad et al., 2017; Yee et al., 2013; Ofner et al., 2011). Although biomass-burning emissions have been indicated to have great SOA formation potential via atmospheric oxidation (Bruns et al., 2016; Gilardoni et al., 2016; Li et al., 2017; Ciarelli et al., 2017; Ding et al., 2017), SOA formation and growth from methoxyphenols are still poorly understood. Besides, the observed SOA levels in the atmosphere cannot be well explained by the present knowledge on SOA formation, which reflects the fact that a large number of precursors are not taken into account in the SOA-formation reactions.
4-Allyl-2-methoxyphenol (eugenol), a type of methoxyphenols, is a typical compound produced by lignin pyrolysis with a branched alkene group, and is widely detected in the atmosphere (Schauer et al., 2001; Simpson et al., 2005; Bari et al., 2009). Its average emission concentration and factor in beech burning are 0.032 μg m\(^{-3}\) and 1.52 μg g\(^{-1}\) PM, respectively, which are both higher than those (0.016 μg m\(^{-3}\) and 0.762 μg g\(^{-1}\) PM) of guaiacol (Bari et al., 2009). It has even been detected in human urine after exposure to wood smoke (Dills et al., 2006). Eugenol has been observed to mainly distribute in the gas phase in wood smoke emissions (Schauer et al., 2001), and its gas/particle-partition coefficient is lower than 0.01 (Zhang et al., 2016), thus indicating the importance of its gas-phase reactions in the atmosphere. For this reason, the aim of this work was to determine the rate constant and explore the SOA formation potential for eugenol in the gas-phase reaction with OH radicals using an Oxidation Flow Reactor (OFR). In addition, the effects of SO\(_2\) and NO\(_2\) on SOA formation were investigated. To our knowledge, this work represents the first determination of the rate constant and SOA yield for the gas-phase reaction of eugenol with OH radicals.

2 Experimental section

The detailed schematic description of the experimental system used in this work is shown in Figs. S1 and S2. The gas-phase reactions were conducted in the OFR, whose detailed description has been presented elsewhere (Liu et al., 2014). Before entering into the OFR, gas-phase species were mixed thoroughly in the mixing tube. The
reaction time in the OFR was 26.7 s, calculated according to the illuminated volume (0.89 L) and the total flow rate (2 L min⁻¹). OH radicals were generated by photolysis of O₃ in the presence of water vapor using a 254 nm UV lamp (Jelight Co., Inc.), and their formation reactions have been described elsewhere (Zhang et al., 2017). The concentration of OH radicals was governed by O₃ concentration and relative humidity (RH). O₃ concentration was controlled by changing the unshaded length of a 185 nm UV lamp (Jelight Co., Inc.). O₃ was produced by passing zero air through an O₃ generator (Model 610-220, Jelight Co., Inc.), and its concentration was in the range of 0.94–9.11 ppmv in this work measured with an O₃ analyzer (Model 205, 2B Technology Inc.). RH and temperature in the OFR were (44.0 ± 2.0)% and (301 ± 1) K, respectively, measured at the outlet of the OFR. The steady-state concentrations of OH radicals were determined using SO₂ as the reference compound in separate calibration experiments. It is a widely-used method for calculating OH exposure in the OFR, but could not well describe the potential OH suppression caused by the added external OH reactivity (Zhang et al., 2017; Lambe et al., 2015; Simonen et al., 2017; Li et al., 2015; Peng et al., 2015, 2016). The decay of SO₂ from its reaction with OH radicals (9 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹) (Davis et al., 1979) was measured by a SO₂ analyzer (Model 43i, Thermo Fisher Scientific Inc.). The concentration of OH radicals ([OH]) in this work ranged from approximate 4.5 × 10⁹ to 4.7 × 10¹⁰ molecules cm⁻³, and the corresponding OH exposures were in the range of 1.21–12.55 × 10¹¹ molecules cm⁻³ s or approximate 0.93 to 9.68 d of equivalent atmospheric exposure.
An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was applied to perform online measurement of the chemical composition of particles and the non-refractory submicron aerosol mass (DeCarlo et al., 2006). The size distribution and concentration of particles were monitored by a scanning mobility particle sizer (SMPS), consisting of a differential mobility analyzer (DMA) (Model 3082, TSI Inc.) and a condensation particle counter (CPC) (Model 3776, TSI Inc.). Assuming that particles are spherical and non-porous, the average effective particle density could be calculated to be 1.5 g cm$^{-3}$ using the equation $\rho = d_{va}/d_{m}$ (DeCarlo et al., 2004), where d_{va} is the mean vacuum aerodynamic diameter measured by HR-ToF-AMS and d_{m} is the mean volume-weighted mobility diameter measured by SMPS. The mass concentration of particles measured by HR-ToF-AMS was corrected by SMPS data in this work using the same method as Gordon et al. (2014). Eugenol and reference compounds were measured by a proton-transfer reaction time-of-flight mass spectrometer (PTR-QiTof-MS) (Ionicon Analytik GmbH). More experimental details were described in the supplementary information.

3 Results and discussion

3.1 Rate constant

In order to investigate the possible photolysis of eugenol and reference compounds at 254 nm UV light in the OFR, the comparative experiments were conducted with UV lamp turned on and turned off. The normalized mass spectra of eugenol and reference compounds in the dark and light were shown in Fig. S3. The results showed that no
significant decay (<5%) by photolysis was observed and could be neglected. According to the results reported by Peng et al. (2016), the photolysis of phenol and 1,3,5-trimethylbenzene could be ignored when the ratio of exposure to 254 nm and OH is lower than $1 \times 10^6 \text{ cm s}^{-1}$, of which value in this work also met this condition. In addition, the initial concentration of eugenol was determined with UV lamp turned on. Therefore, the effect of photolysis could be neglected in this work.

The rate constant for the gas-phase reaction of eugenol with OH radicals was determined by the relative rate method, which can be expressed as the following equation (Coeur-Tourneur et al., 2010a; Yang et al., 2016; Zhang et al., 2016):

$$\ln \left(\frac{C_{E0}}{C_{Et}} \right) = \ln \left(\frac{C_{R0}}{C_{Rt}} \right) k_E / k_R$$

(1)

where C_{E0} and C_{Et} are the initial and real-time concentrations of eugenol, respectively. k_E is the rate constant of the eugenol reaction with OH radicals. C_{R0} and C_{Rt} are the initial and real-time concentrations of reference compound, respectively. k_R is the rate constant of the reference compound with OH radicals, of which values for m-xylene and 1,3,5-trimethylbenzene are 2.20×10^{-11} and $5.67 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, respectively (Kramp and Paulson, 1998; Coeur-Tourneur et al., 2010a).

Data obtained from the reactions were plotted in the form of Eq. (1) and were well fitted by linear regression ($R^2 > 0.97$, Fig. 1). A summary of the slopes and the rate constants are listed in Table 1. The errors in k_E/k_R are the standard deviations generated from the linear regression analysis and do not include the uncertainty in the rate constants of the reference compounds. The rate constants are $(7.54 \pm 0.28) \times 10^{-11}$ and
(8.47 ± 0.51) × 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, \text{ respectively}, \text{ when using} \ 1,3,5-\text{trimethylbenzene} \text{ and} \ m-\text{xylene} \text{ as reference compounds. According to the US EPA AOP WIN model based on the structure activity relationship (SAR) (US EPA, 2012) the rate constant was calculated to be 6.50 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} (\text{Table 1}), \text{ which is lower than that obtained in this work. Inaccurate performance of the AOP WIN model has been observed for other multifunctional organics due to the inaccurate representation of the electronic effects of different functional groups on reactivity (Coeur-Tourneur et al., 2010a; Lauraguais et al., 2012). This suggests that it is necessary to determine the rate constants of multifunctional organics through lab experiments. The rate constant determined in this work can be used to calculate the atmospheric lifetime of eugenol with respect to its reaction with OH radicals. Assuming a typical [OH] for a 24 h average value to be 1.5 × 10^6 \text{ molecules cm}^{-3} (\text{Mao et al., 2009}), \text{ the corresponding lifetime of eugenol was calculated to be 2.31 h with the average rate constant of} \ 8.01 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}. \text{ This short lifetime indicates that eugenol is too reactive to be used as a tracer for wood smoke emissions, and also implies the possible fast conversion of eugenol from gas-phase to secondary aerosol during the transportation process.}

The rate constant obtained in this work is about 2 orders of magnitude faster than that for eugenol with NO_3 radicals (1.6 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}) (\text{Zhang et al., 2016}), which suggests that the OH-initiated reaction of eugenol might be the main chemical transformation in the atmosphere. The rate constants of the OH-initiated reactions of
guaiacol, 2,6-dimethylphenol, and syringol were 7.53×10^{-11}, 6.70×10^{-11}, and 9.66×10^{-11} cm3 molecule$^{-1}$ s$^{-1}$, respectively (Coeur-Tourneur et al., 2010a; Thuner et al., 2004; Lauraguais et al., 2012). The reactivity of eugenol toward OH radicals is slightly higher than those of guaiacol and 2,6-dimethylphenol, while slightly slower than that of syringol. The presence of two methoxyl groups (−OCH$_3$) in syringol activates the electrophilic addition of OH radicals to the benzene ring by donating electron density through the resonance effect (Lauraguais et al., 2016). The activation effect of the methoxyl group is much larger than those of alkyl groups (McMurry, 2004). In a recent study, the reported energy barrier of NO$_3$ electrophilic addition to eugenol was about 2-fold than that of 4-ethylguaiacol, indicating that the activation effect of the allyl group (−CH$_2$CH=CH$_2$) is lower than that of the ethyl group (−CH$_2$CH$_3$) (Zhang et al., 2016). These results are in accordance with the activation effects of the substituants toward the electrophilic addition of OH radicals (McMurry, 2004).

3.2 Effects of eugenol concentration and OH exposure on SOA formation

In this work, a series of experiments were conducted in the OFR with different eugenol concentrations. The SOA yield was determined as the ratio of the SOA mass concentration (M_0, μg m$^{-3}$) to the reacted eugenol concentration (Δ[eugenol], μg m$^{-3}$) (Kang et al., 2007). The experimental conditions and maximum SOA yields are listed in Table 2. Fig. S4 shows the plots of the SOA yield versus OH exposure at different eugenol concentrations. Higher concentrations resulted in higher amounts of condensable products and subsequently increased SOA yield (Lauraguais et al., 2012).
SOA mass also directly influences the gas/particle partitioning, because SOA can serve as the adsorption medium for oxidation products, and higher SOA mass generally results in higher SOA yield (Lauraguais et al., 2012, 2014b). In the OFR, in all cases the SOA yield first increased and then decreased as a function of OH exposure (Fig. S4). This trend is the most common phenomenon observed in PAM reactor studies (Lambe et al., 2015; Ortega et al., 2016; Simonen et al., 2017). In this work, according to the SO$_2$ decay in the presence of eugenol and the OFR exposure estimator (v2.3) developed by Jimenez's group based on the estimation equations reported in the previous work (Li et al., 2015; Peng et al., 2015, 2016), the maximum reduction of OH exposure by eugenol in the OFR was approximately 30%. Although OH suppression by eugenol was not well determined in the OFR for the positive influence of SO$_2$ on SOA formation, OH radicals were expected to be the main oxidant due to the fast reaction rate constant of eugenol toward OH radicals obtained in this work. The decrease of SOA yield at high OH exposure is possibly contributed from the C–C bond scission of gas-phase species by further oxidation or heterogeneous reactions involving OH radicals, which would generate a large amount of fragmented molecules that could not condense on aerosol particles (Lambe et al., 2015; Ortega et al., 2016; Simonen et al., 2017).

SOA yield can be described using a widely-used semi-empirical model on the basis of the absorptive gas-particle partitioning of semi-volatile products, in which the overall SOA yield (Y) is given by (Odum et al., 1996):
where α_i is the mass-based stoichiometric coefficient for the reaction producing the semi-volatile product i, $K_{om,i}$ is the gas-particle partitioning equilibrium constant, and M_0 is the total aerosol mass concentration.

The SOA yield data in Table 2 can be plotted in the form of Eq. (2) to obtain the yield curve for eugenol (Fig. 2). The simulation of experimental data indicated that an one-product model could accurately reproduce the data ($R^2 = 0.98$), while the use of two or more products in the model did not significantly improve the fitting quality.

Odum et al. (1996) reported that the SOA yield data from the oxidation of aromatic compounds could be fitted well using a two-product model. However, an one-product model was also efficient for describing the SOA yields from the oxidation of aromatics including methoxyphenols (Lauraguais et al., 2012, 2014b; Coeur-Tourneur et al., 2010b). The success of simulation with an one-product model in this work is likely to indicate that the products in SOA have similar values of α_i and $K_{om,i}$, i.e., that the obtained $\alpha_i (0.36 \pm 0.02)$ and $K_{om,i} (0.013 \pm 0.002 \text{ m}^3 \text{ ug}^{-1})$ represent the average values.

In this work, considering that the composition of SOA was not determined, the volatility basis set (VBS) approach was not applied to simulate SOA yields. Fig. S5 shows a plot of the SOA mass concentration (M_0) versus the reacted eugenol concentration ($\Delta[$eugenol$]$). Its slope was 0.37 as obtained using linear least-squares fitting, which is very close to the α_i value (0.36). This suggests that the low-volatility products formed in the reaction almost completely disperse on the particle phase according to the
theoretical partition model (Lauraguais et al., 2012, 2014b). In other words, SOA yield
was approximately an upper limit for eugenol oxidation in the OFR. In view of the
residence time in this work, it seems to be in contradiction with the recommendation of
longer residence time made by Ahlberg et al. (2017), who found that the condensation
of low-volatility species on SOA in the OFR was often kinetically limited at low mass
concentrations. In our recent experiments (not published), the SOA yields for guaiacol
oxidation by OH radicals obtained under the similar experimental conditions as this
work, could be comparable to those obtained in the chamber studies (Fig. S6). This
suggests that the effect of kinetic limitations on SOA condensation for the OH-initiated
oxidation of methoxyphenols in this system might be not important.

Elemental ratios (H/C and O/C) could provide insights into SOA composition and
chemical processes along with aging (Bruns et al., 2015). As shown in Fig. 3, O/C ratio
of SOA increases and H/C ratio decreases with increasing OH exposure, because
oxygen-containing functional groups are formed in the oxidation products. In addition,
the organic mass fractions of m/z 44 (CO$_2^+$) and m/z 43 (mostly C$_2$H$_4$O$^+$), named f_{44}
and f_{43}, respectively, could also provide information about the nature of SOA formation.

Fig. S7 shows the evolution of f_{44} and f_{43} versus OH exposure at low (272 μg m$^{-3}$) and
high (1328 μg m$^{-3}$) concentrations of eugenol. The values of f_{44} were much higher than
those of f_{43}, and increased significantly as a function of OH exposure, suggesting that
SOA formed in the experiments became more oxidized. The f_{44} value in this work
ranges up to 0.26, which is consistent with that observed for ambient low-volatility (LV-
The average carbon oxidation state (OSC) proposed by Kroll et al. (2011) is considered a more accurate indicator of the oxidation degree of atmospheric organic species than the O/C ratio alone, because it takes into account the saturation level of the carbon atoms in the SOA. OSC is defined as $\text{OS}_C = 2\text{O}/\text{C} - \text{H}/\text{C}$ (Kroll et al., 2011), calculated according to the elemental composition of SOA measured by HR-ToF-AMS.

In this work, the OSC values obtained at low (272 μg m$^{-3}$) and high (1328 μg m$^{-3}$) concentrations of eugenol were compared. As shown in Fig. 3, OSC values for low concentration (0.035−1.78) were much larger than those for high concentration (0.0036−1.09), and increased linearly ($R^2 > 0.96$) with OH exposure of $(1.21−12.55) \times 10^{11}$ molecules cm$^{-3}$ s. The results are well supported by the evolution of SOA mass spectra obtained by HR-ToF-AMS at the same eugenol concentrations (Fig. S8).

Similar trends have been observed in the smog chamber and PAM reactor (Simonen et al., 2017; Ortega et al., 2016). The OSC value in this work extends as high as 1.78, which is in good agreement with that observed for ambient LV-OA, up to 1.9 (Kroll et al., 2011). Recently, Ortega et al. (2016) reported that the OSC value for SOA formed from ambient air in an OFR ranged up to 2.0; and Simonen et al. (2017) determined a high OSC value (> 1.1) for SOA formed from the OH-initiated reaction of toluene in a PAM reactor with an OH exposure of 1.2×10^{12} molecules cm$^{-3}$ s. In general, the OSC values for the PAM reactor are higher than those for smog chambers due to the high OH exposure in the PAM reactor (Simonen et al., 2017; Ortega et al., 2016; Lambe et
Higher OS\textsubscript{C} value indicates greater age, where the SOA components are further oxidized through heterogeneous oxidation, adding substantial oxygen and reducing hydrogen in the molecules in the particle-phase to increase OS\textsubscript{C} values despite the overall loss of SOA mass (Ortega et al., 2016).

3.3 Effect of SO\textsubscript{2} on SOA formation

As shown in Fig. 4, the presence of SO\textsubscript{2} favored SOA formation, and the sulfate concentration increased linearly ($R^2 = 0.99$) as a function of OH exposure. The maximum SOA yield enhancement of 38.57\% was obtained at OH exposure of 5.41×10^{11} molecules cm-3 s, and then decreased with the increase of OH exposure due to the fragmented molecules formed through the oxidation of gas-phase species by high OH exposure (Lambe et al., 2015; Ortega et al., 2016; Simonen et al., 2017). The SOA yield and sulfate concentration both increased linearly ($R^2 > 0.97$) as SO\textsubscript{2} concentration increased from 0 to 198 ppbv at OH exposure of 1.21×10^{11} molecules cm-3 s (Fig. S9).

Compared to the initial SOA yield (0.049) obtained in the absence of SO\textsubscript{2}, the SOA yield (0.066) obtained in the presence of 198 ppbv SO\textsubscript{2} was enhanced by 34.69\%. In previous studies, Kleindienst et al. (2006) reported that the SOA yield from \textalpha-pinene photooxidation increased by 40\% in the presence of 252 ppbv SO\textsubscript{2}; Liu et al. (2016b) recently found that the SOA yield from 5 h photochemical aging of gasoline vehicle exhaust was enhanced by 60–200\% in the presence of ~150 ppbv SO\textsubscript{2}.

As shown in Figs. 4 and S7, the increase of sulfate concentration was favorable for SOA formation. In this system, it is difficult to completely remove trace NH\textsubscript{3}, thus the
formed sulfate was the mixture of sulfuric acid (H$_2$SO$_4$) and a small amount of ammonium sulfate ((NH$_4$)$_2$SO$_4$). The in situ particle acidity was calculated as the H$^+$ concentration ([H$^+$], 40.23−648.39 nmol m$^{-3}$) according to the AIM-II model for the H−NH$_4^+$−SO$_4^{2−}$−NO$_3^{−}$−H$_2$O systems (http://www.aim.env.uea.ac.uk/aim/model2/model2_a.php; Liu et al., 2016b). The detailed description of the calculation method has been represented elsewhere (Liu et al., 2016b). The elevated concentration of sulfate in the particle phase with the increases of SO$_2$ concentration and OH exposure is an important reason for the enhanced SOA yields (Kleindienst et al., 2006; Liu et al., 2016b). Cao and Jang (2007) indicated that SOA yields from the oxidation of toluene and 1,3,5-trimethylbenzene increased by 14−36% in the presence of acid seeds, with [H$^+$] of 240−860 nmol m$^{-3}$ compared to those obtained in the presence of nonacid seeds. Similar results concerning the effect of particle acidity on SOA yields were reported in other studies (Kleindienst et al., 2006; Liu et al., 2016b; Jaoui et al., 2008; Xu et al., 2016). However, Ng et al. (2007b) found that particle acidity had a negligible effect on SOA yields from photooxidation of aromatics, possibly due to the low RH (~5%) used in their work. The water content of aerosol plays an essential role in acidity effects (Cao and Jang, 2007). Under acidic conditions, the gas-phase oxidation products of eugenol would be partitioned more quickly into the particle-phase and further oxidized into low volatility products, or produce oligomeric organics by acid-catalyzed heterogeneous reactions, subsequently enhancing SOA yields (Cao and Jang, 2007; Jaoui et al., 2008; Liu et al., 2016b; Xu et al., 2016). In addition, the formed sulfate not only serves as the
substrate for product condensation and likely participates in new particle formation (NPF) (Jaoui et al., 2008; Wang et al., 2016), but also enhances the surface areas of particles to facilitate heterogeneous reactions on aerosols (Xu et al., 2016). These roles of sulfate are also favorable for increasing SOA yields. Recently, Friedman et al. (2016) have indicated that SO₂ could participate in the oxidation reactions of α- and β-pinene and perturbs their oxidation in the OFR, but this possible effect could be ignored in this work due to the relatively high RH and the negligible S/C ratio observed by HR-ToF-AMS (Friedman et al., 2016).

3.4 Effect of NO₂ on SOA formation

It is well known that high NOₓ concentration almost always plays a negative role in NPF and SOA formation because the reaction of NO with RO₂ radicals results in the formation of more volatile products compared to the reaction of HO₂ with RO₂ radicals (Sarrafzadeh et al., 2016). Previous studies reported that nitro-substituted products were the main products for SOA formed from OH-initiated reactions of phenol precursors including methoxyphenols, in the presence of NOₓ (Finewax et al., 2018; Ahmad et al., 2017; Lauraguais et al., 2012, 2014b). Thus, the effect of NO₂ on SOA formation from eugenol oxidation by OH radicals was investigated. As shown in Fig. 5, the nitrate concentration measured by HR-ToF-AMS increased as a function of OH exposure in the presence of 40 ppbv NO₂, but it was much lower than the sulfate concentration (Fig. 4) even though the OH rate constant for NO₂ was faster than that for SO₂ (Davis et al., 1979; Atkinson et al., 1976). The possible explanation is that the formed HNO₃ mainly

substrate for product condensation and likely participates in new particle formation (NPF) (Jaoui et al., 2008; Wang et al., 2016), but also enhances the surface areas of particles to facilitate heterogeneous reactions on aerosols (Xu et al., 2016). These roles of sulfate are also favorable for increasing SOA yields. Recently, Friedman et al. (2016) have indicated that SO₂ could participate in the oxidation reactions of α- and β-pinene and perturbs their oxidation in the OFR, but this possible effect could be ignored in this work due to the relatively high RH and the negligible S/C ratio observed by HR-ToF-AMS (Friedman et al., 2016).

3.4 Effect of NO₂ on SOA formation

It is well known that high NOₓ concentration almost always plays a negative role in NPF and SOA formation because the reaction of NO with RO₂ radicals results in the formation of more volatile products compared to the reaction of HO₂ with RO₂ radicals (Sarrafzadeh et al., 2016). Previous studies reported that nitro-substituted products were the main products for SOA formed from OH-initiated reactions of phenol precursors including methoxyphenols, in the presence of NOₓ (Finewax et al., 2018; Ahmad et al., 2017; Lauraguais et al., 2012, 2014b). Thus, the effect of NO₂ on SOA formation from eugenol oxidation by OH radicals was investigated. As shown in Fig. 5, the nitrate concentration measured by HR-ToF-AMS increased as a function of OH exposure in the presence of 40 ppbv NO₂, but it was much lower than the sulfate concentration (Fig. 4) even though the OH rate constant for NO₂ was faster than that for SO₂ (Davis et al., 1979; Atkinson et al., 1976). The possible explanation is that the formed HNO₃ mainly

substrate for product condensation and likely participates in new particle formation (NPF) (Jaoui et al., 2008; Wang et al., 2016), but also enhances the surface areas of particles to facilitate heterogeneous reactions on aerosols (Xu et al., 2016). These roles of sulfate are also favorable for increasing SOA yields. Recently, Friedman et al. (2016) have indicated that SO₂ could participate in the oxidation reactions of α- and β-pinene and perturbs their oxidation in the OFR, but this possible effect could be ignored in this work due to the relatively high RH and the negligible S/C ratio observed by HR-ToF-AMS (Friedman et al., 2016).

3.4 Effect of NO₂ on SOA formation

It is well known that high NOₓ concentration almost always plays a negative role in
exists in the gas phase, and the relatively high temperature (301 ± 1 K) is not favorable for gaseous HNO$_3$ distribution in the particle phase (Wang et al., 2016). It has been indicated that the temperature range for the greatest loss of nitrate is 293–298 K (Keck and Wittmaack, 2005). As illustrated in Fig. 5, the SOA yield enhancement and N/C ratio both increased firstly and then decreased with rising OH exposure. The increase of NO$_2$ concentration (40–109 ppbv) is beneficial to SOA yields (0.053–0.062), N/C ratio (0.032–0.041), and nitrate formation (4.29–6.30 μg m$^{-3}$) (Fig. S10). Compared to the presence of 41 ppbv SO$_2$, the maximum SOA yield enhancement (19.17%) in the presence of 40 ppbv NO$_2$ is lower. For most aromatic precursors, the addition of ppbv levels of NO$_2$ should have a negligible effect on SOA formation, because the rate constants of OH-aromatic adducts with O$_2$ and NO$_2$ are on the order of approximate 10$^{-16}$ and 10$^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$, respectively (Atkinson and Arey, 2003). But, for phenol precursors only about 0.5 ppbv NO$_2$ is enough to compete with O$_2$ for the reaction with OH-aromatic adducts (Finewax et al., 2018). Therefore, the enhancement effect of NO$_2$ on SOA formation might be relevant to the special case of phenols or methoxyphenols but not other aromatic precursors.

It is noteworthy that the N/C ratio is in the range of 0.032–0.043, suggesting that NO$_2$ participated in the OH reaction of eugenol, through the addition to the OH-eugenol adduct (Peng and Jimenez, 2017). Recently, Hunter et al. (2014) found that NO$_2$ participated in the OH reactions of cyclic alkanes, and the N/C ratios were in the range of 0.031–0.064, higher than those obtained in this work. The nitro-substituted products
are reported to be the main reaction products of the OH reactions of guaiacol and syringol in the presence of NO₂ (Lauraguais et al., 2014b; Ahmad et al., 2017). The N-containing products might be also formed through the reactions involving with NO₃ radicals, which are possibly generated by the reaction between NO₂ and O₃ in this system (Atkinson, 1991). But, the specific contribution of NO₃ radicals could not be quantified in this work. The relative low volatility of these products could reasonably contribute to SOA formation (Duporté et al., 2016; Liu et al., 2016a). In addition, higher NO₂/NO ratio favors the formation of nitro-substituted products, which are potentially involved in NPF and SOA growth (Pereira et al., 2015). Ng et al. (2007a) also indicated that NOₓ could be beneficial to SOA formation for sesquiterpenes, due to the formation of low volatility organic nitrates and the isomerization of large alkoxy radicals, resulting in less volatile products. The decrease in the N/C ratio at high OH exposure suggested that more volatile products were generated through the oxidation of particle-phase species by OH radicals.

The \(\text{NO}^{+}/\text{NO}_2^{+} \) ratios measured by HR-ToF-MS are widely used to identify inorganic and organic nitrates. The \(\text{NO}^{+}/\text{NO}_2^{+} \) ratios for inorganic nitrates have been reported to be in the range of 1.08−2.81 (Farmer et al., 2010; Sato et al., 2010). The ratio ranged from 2.06 to 2.54 in this work as determined by HR-ToF-AMS using ammonium nitrate as the calibration sample. However, the \(\text{NO}^{+}/\text{NO}_2^{+} \) ratios during oxidation of eugenol in the presence of 40 ppbv NO₂ were 3.98−6.09. They were higher than those for inorganic nitrates and consistent with those for organic nitrates.
(3.82−5.84) from the photooxidation of aromatics (Sato et al., 2010). The abundance of organic nitrates could be estimated from the N/C ratios determined in this work. Assuming that the oxidation products in the SOA retain 10 carbon atoms, the yields of organic nitrates are in the range of 32−43%, which are comparable to those reported in earlier studies (Liu et al., 2015; Hunter et al., 2014). Liu et al. (2015) reported that the nitrogen-containing organic mass contributed 31.5 ± 4.4% to the total SOA derived from m-xylene oxidation by OH radicals. Hunter et al. (2014) estimated the organic nitrate yields of SOA to be 31−64%, formed in the OH-initiated reactions of acyclic, monocyclic, and polycyclic alkanes. This range obtained in this work should be the upper limit due to the possibility of C−C bond scission of gas- and particle-phase organics oxidized by high OH exposure. Besides, the maximum yield of nitrates for a single reaction step is expected to be approximately 30% (Ziemann and Atkinson, 2012), this suggests that multiple reaction steps are needed.

3.5 Atmospheric implications

Biomass burning not only serves as a major contributor of atmospheric POA, but also has great SOA formation potential through atmospheric oxidation (Bruns et al., 2016; Gilardoni et al., 2016; Li et al., 2017; Ciarelli et al., 2017; Ding et al., 2017). Recent studies have indicated that SOA formed from biomass burning plays an important role in haze pollution in China (Li et al., 2017; Ding et al., 2017). Residential combustion (mainly wood burning) could contribute approximately 60−70% to SOA formation in winter at the European scale (Ciarelli et al., 2017). In addition, methoxyphenols are the
major component of OA from biomass burning (Bruns et al., 2016; Schauer and Cass, 2000). Based on our results and those of previous studies (Sun et al., 2010; Lauraguais et al., 2012, 2014b; Ahmad et al., 2017; Yee et al., 2013; Ofner et al., 2011), it should pay more attention on the SOA formation from the OH oxidation of biomass burning emissions and its subsequent effect on haze evolution, especially in China with nationwide biomass burning and high daytime average [OH] in the ambient atmosphere \((5.2-7.5) \times 10^6 \text{ molecules cm}^{-3}\) (Yang et al., 2017). Meanwhile, the potential contributions of SO\(_2\) and NO\(_2\) to SOA formation should also be taken into account, because the concentrations of NO\(_x\) and SO\(_2\) could be up to close 200 ppbv in the severely polluted atmosphere in China (Li et al., 2017). Although eugenol concentrations in this work are higher than those in the ambient atmosphere, the results obtained in this work could provide new information for SOA formation from the atmospheric oxidation of methoxyphenols, and might be useful for SOA modeling, especially for air quality simulation modeling of the specific regions experiencing serious pollution caused by fine particulate matter.

N-containing products formed from the oxidation of methoxyphenols could contribute to water-soluble organics in SOA (Lauraguais et al., 2014b; Yang et al., 2016; Zhang et al., 2016), which have been widely detected in atmospheric humic-like substances (HULIS) (Wang et al., 2017). Due to their surface-active and UV-light-absorbing properties, HULIS could influence the formation of cloud condensation nuclei (CCN), solar radiation balance, and photochemical processes in the atmosphere
The high reactivity of methoxyphenols toward atmospheric radicals suggests that SOA was formed from their oxidation processes with relatively high oxidation level, subsequently leading to SOA with strong optical absorption and hygroscopic properties (Lambe et al., 2013; Massoli et al., 2010). Therefore, SOA formed from the reactions of methoxyphenols with atmospheric oxidants might have important effects on air quality and climate. In addition, the experimental results from this study would help to further the understanding of the atmospheric aging process of smoke plumes from biomass-burning emissions.

4 Conclusions

For the first time, the rate constant and SOA formation for the gas-phase reaction of eugenol with OH radicals were investigated in an OFR. The second-order rate constant of eugenol with OH radicals was \((8.01 \pm 0.40) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\), measured by the relative rate method, and the corresponding atmospheric lifetime was 2.31 h. In addition, the significant SOA formation of eugenol oxidation by OH radicals was observed. The maximum SOA yields (0.11–0.31) obtained at different eugenol concentrations could be expressed well by an one-product model. SOA yield was dependent on OH exposure and eugenol concentration, which firstly increased and then decreased as a function of OH exposure due to the possible C–C bond scission of gas-phase species by further oxidation or heterogeneous reactions involving OH radicals. The OSC and O/C ratio both increased significantly as a function of OH exposure, suggesting that SOA became more oxidized. The presence of SO2 and NO2 was helpful
to increase SOA yield, and the maximum enhanced yields were 38.57% and 19.17%, respectively. The observed N/C ratio of SOA was in the range of 0.032–0.043, indicating that NO\textsubscript{2} participated in the OH-initiated reaction of eugenol, consequently producing organic nitrates. The experimental results might be helpful to further understand the atmospheric chemical behavior of eugenol and its SOA formation potential from OH oxidation in the atmosphere.

Data availability

The experimental data are available upon request to the corresponding authors.

Competing interests

The authors declare that they have no conflict of interest.

Aknowledgements

This work was financially supported by the National Key R&D Program of China (2016YFC0202700), the National Natural Science Foundation of China (21607088), China Postdoctoral Science Foundation funded project (2017M620071), and the Applied Basic Research Project of Science and Technology Department of Sichuan Province (2018JY0303). Liu Y. would like to thank Beijing University of Chemical Technology for financial supporting. Authors would also acknowledge the experimental help provided by Dr. Xiaolei Bao from Hebei Provincial Academy of Environmental Sciences, Shijiazhuang, China.

Lauraguais, A., El Zein, A., Coeur, C., Obeid, E., Cassez, A., Rayez, M.-T., and Rayez, J.-C.: Kinetic study of the gas-phase reactions of nitrate radicals with...

Table 1. Rate constant for gas-phase reaction of eugenol with OH radicals and associated atmospheric lifetime.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>References</th>
<th>k_E/k_a</th>
<th>k_E</th>
<th>k_E(average)</th>
<th>(\tau_{OH})</th>
<th>(\tau_{OH}) /h</th>
</tr>
</thead>
<tbody>
<tr>
<td>eugenol ((C_{10}H_{12}O_{2}))</td>
<td></td>
<td>1,3,5-trimethylbenzene</td>
<td>1.33 ± 0.05</td>
<td>7.54 ± 0.28</td>
<td>6.50°</td>
<td>8.01 ± 0.40</td>
<td>2.31</td>
</tr>
<tr>
<td>m-xylene</td>
<td></td>
<td></td>
<td>3.85 ± 0.23</td>
<td>8.47 ± 0.51</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Units of 10^{-11} cm^3 molecule^{-1} s^{-1}.
- Atmospheric lifetime in hours. \(\tau_{OH}=1/k_E[OH]\), assuming a 24 h average \([OH]=1.5 \times 10^6\) molecules cm^{-3} (Mao et al., 2009).

Table 2. Experimental conditions and results.

<table>
<thead>
<tr>
<th>Expt.</th>
<th>[eugenol]_0 (µg m^{-3})</th>
<th>(\Delta) [eugenol] (µg m^{-3})</th>
<th>M_0 (µg m^{-3})</th>
<th>Y_{max}</th>
<th>OH Exposure (10^{11} molecules cm^{-3} s)</th>
<th>(\tau_{OH}) (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>272</td>
<td>265</td>
<td>29</td>
<td>0.11</td>
<td>5.41</td>
<td>4.17</td>
</tr>
<tr>
<td>#2</td>
<td>351</td>
<td>339</td>
<td>54</td>
<td>0.16</td>
<td>5.41</td>
<td>4.17</td>
</tr>
<tr>
<td>#3</td>
<td>485</td>
<td>474</td>
<td>83</td>
<td>0.18</td>
<td>5.41</td>
<td>4.17</td>
</tr>
<tr>
<td>#4</td>
<td>636</td>
<td>625</td>
<td>145</td>
<td>0.23</td>
<td>5.41</td>
<td>4.17</td>
</tr>
<tr>
<td>#5</td>
<td>874</td>
<td>858</td>
<td>241</td>
<td>0.28</td>
<td>7.37</td>
<td>5.68</td>
</tr>
<tr>
<td>#6</td>
<td>1327</td>
<td>1304</td>
<td>399</td>
<td>0.31</td>
<td>8.91</td>
<td>6.87</td>
</tr>
</tbody>
</table>

- Initial eugenol concentrations.
- Reacted eugenol concentrations.
- SOA concentrations.
- Maximum SOA yields.
- Corresponding OH exposure of maximum SOA yields.
- Corresponding atmospheric aging time of maximum SOA yields, calculated using a typical [OH] in the atmosphere in this work \((1.5 \times 10^6\) molecules cm^{-3}) (Mao et al., 2009).
Figure 1. Relative rate plots for gas-phase reaction of OH radicals with eugenol.

Figure 2. Maximum SOA yield as a function of SOA mass concentration (M_0) formed from the OH reactions at different eugenol concentrations. The solid line was fit to the experimental data using an one-product model. Values for k_i and $K_{om,i}$ used to generate the solid line are (0.36 ± 0.02) and (0.013 ± 0.002), respectively.
Figure 3. OSC, H/C, and O/C vs. the OH exposure for SOA formed at two eugenol concentrations (272 and 1328 μg m$^{-3}$).

Figure 4. Evolution of the enhanced SOA yield and sulfate formation as a function of OH exposure in the presence of 41 ppbv SO$_2$ at average eugenol concentration of 273 μg m$^{-3}$.
Figure 5. Evolution of the enhanced SOA yields, nitrate formation, and N/C ratio as a function of OH exposure in the presence of 40 ppbv NO$_2$ at average eugenol concentration of 273 μg m$^{-3}$.