Interactive comment on “Ozone source apportionment during peak summer events over southwestern Europe” by Maria Teresa Pay et al.

Anonymous Referee #2
Received and published: 16 October 2018

We thank the Referee #2 for his/her thorough and constructive comments and suggestions, which have contributed to improve the quality of our paper. All his/her comments have been implemented and commented accordingly in the revised version of the manuscript.

Please, find below the item-by-item response. For more details on the review process, we have uploaded the manuscript with track-changes.

1. Reviewer #2: In the introduction, the authors provide a good background of the ozone related issues in the Iberian Peninsula including an overview of meteorological conditions typically associated to high ground-level O₃ concentrations along with a number of relevant references. They also briefly discuss the trends and justify the need for their research. The topic is timely and interesting not only from the scientific point of view but also considering the legal implications and the need to identify potential interventions that may help alleviate O₃ pollution in the Mediterranean Basin. Given the limitations of brute force methods for source apportionment studies of secondary pollutants, the authors apply the Integrated Source Apportionment Method (ISAM) implemented within the Community Multiscale Air Quality (CMAQ) with 4x4 km² resolution for the whole Iberian Peninsula during a 10-day specific episode in summer 2012. The rationale and approach is clear but it would be interesting to explicitly state the main purpose of the study since this is relevant to understand whether the experiment design is appropriate and what are the limitations that can be expected from potential conclusions.

Authors: We thank the Reviewer for their assessment of the scope and methodology of the manuscript. We have rewritten some parts of the abstract and the introduction to clarify the main propose of the study as follows:

In the abstract (Page 1 – Line 19-21):
“The main goal of this study is to provide a first quantitative estimation of the contribution of the main anthropogenic activity sectors to peak O₃ events in Spain relative to the contribution of imported (regional and hemispheric) O₃. We also assess the potential of our source apportionment method to improve O₃ modelling.”

In the introduction (Page 4 – Line 25-34):
“The integrated source apportionment tools combined with high-resolution emission and meteorological models can help unravelling the sources responsible for peak summer events of O₃ in the Western Mediterranean Basin. Quantifying the contribution of emission sources during acute O₃ episodes is a prerequisite for the design of future mitigation strategies in the region. In this framework, the main goal of this study is to provide a quantitative estimation of the contribution of the main anthropogenic activity sectors compared to the imported concentration (regional and hemispheric) to peak O₃ events in Spain. We also assess the potential of our source apportionment method to improve O₃ modelling. Our study applies for the first time a countrywide O₃ source apportionment at high resolution over the Iberian Peninsula during the period between July 21st and 31st, 2012. We use the CMAQ-ISAM within the CALIOPE air quality forecast system for Spain (www.bsc.es/caliope), which runs at a horizontal resolution of 4x4 km² over the IP. The system is fed by the HERMESv2.0 emission model, which provides disaggregated emissions based on local information and state-of-the-art bottom-up approaches for the most polluting sectors.”
2. Reviewer #2: P3.Line 18: when discussing the possible reasons for the observed increase of O3 in some urban areas in the Iberian Peninsula, the authors assume a VOC-limited situation. Reductions on NOx emissions have necessarily reduced NO titration but I suggest them to remove that assumption regarding the VOC-NOx regime because it may be an oversimplification and not necessarily true in all cases/seasons.

Authors: We agree with the reviewer. We have removed the assumption regarding the VOC-NOx regime as follows:

Page 3–Line 17-19: “The reasons behind the urban O3 upward trend are not clear yet due to the complex VOC-NOx regime; part of the O3 increase may have resulted from the reduction of NO emissions relative to NO2 and therefore to a lower NO titration effect in VOC-limited situations.”

3. Reviewer #2: P4.Line 29: the authors claim that the period analysed (between July 21st and 31st) is representative of typical summer synoptic conditions in that particular region. That is quite a strong statement and it would require substantial discussion and evidence to demonstrate to what extent that is true. Regardless of that, although the period may be characteristic in terms of synoptic conditions, O3 dynamics as previously stated, is strongly conditioned by both long-range transport and local conditions, including emissions of O3 precursors, initial chemical conditions, etc. Although the paper constitutes a valuable contribution to the understanding of O3 pollution in the Iberian Peninsula, I think that it cannot be assumed that the outcomes of the study may provide a source apportionment comprehensive description. Consequently, the insight to support the design abatement policies is limited and caution should be used to avoid extracting incorrect conclusions.

Authors: Our characterization of the study period (July 21st and 31st, 2012) is based on the circulation type classification performed in Valverde et al. (2014, Circulation-type classification derived on a climatic basis to study air quality dynamics over the Iberian Peninsula. Int. J. Climatol. 35 (8)). Specifically, the classification in Valverde et al. (2014) is designed to study air quality dynamics over the Iberian Peninsula using an objective synoptic classification method over the present climate (1983–2012). According to the classification in Valverde et al. (2014), our study episode starts with an Iberian Thermal Low (ITL) (21-25th July, 2012), followed by a northwestern advection from the Atlantic (NWad) (26-29th July, 2012) and finishing with another ITL (30-31st July, 2012). ITL and NWad are circulation types that typically affect the Iberian Peninsula, which represent the 44% of the days in the IP both taking place in summer and alternate each other (Valverde et al., 2014).

We have provided a summary of these evidences to support the representativeness of the episode in the revised version of the manuscript as follows:

Page 9–Line 25: “Our characterization of the study period is based on the circulation type classification performed in Valverde et al. (2014), who developed an objective synoptic classification method over the period 1983–2012, specifically designed to study air quality dynamics over the IP. [...]. According to the circulation type classification in Valverde et al. (2014), the selected episode started with the development of the ITL (July 21st-25th), followed by a NWad-venting period (July 26th-29th) and ended with the development of another ITL (July 30th-31st).”
On the other hand, we want to remark that our study is a first quantitative O\textsubscript{3} source apportionment study, and the representativeness of our results is limited because they are focused in just one episode. We have clarified this limitation in the manuscript in the Section 4 as follows:

Page 20–Line 1: “Our study has provided a first estimation of the main sources responsible for high O\textsubscript{3} concentration in the Western Mediterranean Basin during the period July 21st -31st, 2012.”

Page 22–Line 22-23: “[…] future studies should preferentially cover multiple summer periods in order to improve representativeness.”

Furthermore, we want to highlight that the main goal of this study is not the design abatement policies, but it is to provide a first quantitative estimation of the contribution of the main anthropogenic activity sectors to peak O\textsubscript{3} events in Spain relative to the contribution of imported O\textsubscript{3}. Actually, source apportionment techniques alone cannot be used to the design abatement strategies. Subsequent source sensitivity analyses tailoring the identified main contribution sources could predict how O\textsubscript{3} will respond to reductions in precursor emissions. Both, source apportionment and source sensitivity are complementary and essential studies to define the most efficient O\textsubscript{3} abatement strategies in the Western Mediterranean Basin. Therefore, this study has provide a perspective about the potential use of source apportionment methods for regulatory studies in non-attainment regions as a prerequisite for the design of future mitigation strategies. We have added some remarks about this point as follows:

Page 4 – Line 28-30 (Section 1. Introduction): “In this framework, the main goal of this study is to provide a first quantitative estimation of the contribution of the main anthropogenic activity sectors compared to the imported concentration (regional and hemispheric) to peak O\textsubscript{3} events in Spain.”

Page 22–Line 23-27 (Section 4. Discussion and conclusions): “We note that our results cannot predict whether emission abatement will have either a positive or negative effect in O\textsubscript{3} changes due to the non-linearity of the O\textsubscript{3} generation process. Subsequent source sensitivity analyses tailoring the identified main contribution sources could predict how O\textsubscript{3} will respond to reductions in precursor emissions, which are essential to define the most efficient O\textsubscript{3} abatement strategies in the Western Mediterranean Basin.”

Page 23-Line 4-7 (Section 4. Discussion and conclusions): “This work has quantified the local and imported contributions to O\textsubscript{3} during an episode in a particular area in southwestern Europe. In addition, we have provided a perspective about the potential use of source apportionment method for regulatory studies in non-attainment regions. Further O\textsubscript{3} source apportionment studies targeting other nonattainment regions in Europe are necessary prior to design local mitigation measures that complement national and European-wide abatement efforts.”

4. Reviewer #2: An illustrative description of the CALIOPE and HERMES systems is provided in section 2.1. along with a number of relevant references. The authors state, however that emissions are based on 2009 since that is the most recent year with updates information on local emission activities. That statement is hard to understand and it may deserve further clarification. In addition, this section would benefit from a more consistent discussion on how this methodological choice may impact the results and to what extent potential inconsistencies with meteorology and boundary conditions for that specific modelling period are compatible with the research specific
aim (which is not clearly identified). This issue may be acceptable to gain a general understanding of O3 contribution over a long period of time but for a short, high-O3 episode this may be a potential flaw that should be carefully addressed.

Authors: Our methodological choice has been to use a detailed bottom-up emission inventory instead of a typical top-down regional emission inventory. Bottom-up emissions, estimated using source-specific emission factors and activity statistics, accurately characterise pollutant sources and allow obtaining more realistic results than the ones reported by top-down or regional emission inventories. However, they require very large efforts to be compiled and consequently the updating processes cannot be implemented year-to-year.

In HERMESv2 emissions are based on 2009 data, which was the closest year with updated information on local emission activities in HERMES at the time this work started.

To understand the impact of the use of 2009 data to study year 2012 we revised the EMEP Centre on Emission Inventories and Projections (EMEP-CEIP), which collects and reviews the national emission inventories from Parties to the Convention on Long-range Transboundary Air Pollution (CLRTAP). Between 2009 and 2012 total NOx and NMVOC emissions in Spain decreased by -10.6% and -10.7%, respectively (EMEP CEIP, 2019). For NOx, around 80% of this reduction is linked to a reduction of road transport emissions, whereas in the case of NMVOC ~50% of the reduction is due to a decrease of industrial emissions. NOx emissions from shipping in Europe have also decreased in the period 2009-2012 by 15%.

For our modelling study, we consider these differences as small and acceptable, and not creating any major inconsistency. The difference of 10-15 % in emissions for certain precursors between 2009 and 2012 is within the typically larger ranges of uncertainty in emission inventories. We also note that all our results are thoroughly evaluated and critically assessed using observations.

In any case, we have followed the reviewer’s suggestion, and we have discussed in the manuscript the potential impact of these differences when the contribution of each emission sector is analysed:

Page 17–Line 32-33: “[…] This factor, added to the 15% decrease of NOx shipping emissions observed in Europe between 2009 (HERMESv2.0 base year) and 2012 (EMEP CEIP, 2019) could explain the discrepancies observed.”

Page 18–Line 12-14: “[…] it has been estimated that between 2009 and 2012 energy production in coal-fired power plants increased from 13.1% to 19.4% (UNESA, 2012), which implied an increase of NOx emissions from the power industry sector of around 19.5% (EMEP CEIP, 2019).”

The Section 4 of the revised version of the manuscript includes now a comment on the methodological implication of using 2009 emissions for O3 source apportionment studies in an episode in 2012 as follows:

Page 5-Line 31-32: “HERMESv2.0 is currently based on 2009 data, which is the closest year with updated information on local emission activities in HERMES at the time this work started.”

Page 21-Line 31: “Our methodological choice has been to use a detailed bottom-up emission inventory instead of a typical top-down regional emission inventory. Bottom-up emissions, estimated using source-specific emission factors and activity statistics, accurately characterise pollutant sources and allow obtaining more realistic results than the ones reported by top-down or regional emission inventories. To understand
the impact of the use of 2009 data to study year 2012, we revised the EMEP Centre on Emission Inventories and Projections (EMEP-CEIP), which collects and reviews the national emission inventories from Parties to the Convention on Long-range Transboundary Air Pollution. Between 2009 and 2012, total NOx and NMVOC emissions in Spain decreased by -10.6% and -10.7%, respectively (EMEP CEIP, 2019). For NOx, around 80% of this reduction is linked to a reduction of road transport emissions, whereas in the case of NMVOC ~50% of the reduction is due to a decrease of industrial emissions. For our modelling study, we consider these differences as small and acceptable, and not creating any major inconsistency. The difference of 10-15 % in emissions for certain precursors between 2009 and 2012 is within the typically larger ranges of uncertainty in emission inventories.*

Reference:
EMEP CEIP, 2019. Officially reported emission data. Available at: http://www.ceip.at/ms/ceip_home1/ceip_home/data_viewers/official_tableau/ (last access February 2019)

5. Reviewer #2: VOC emissions are particularly relevant input for this analysis. However, our current understanding of VOC emission is limited, especially in urban areas (Lewis, 2018) which makes it difficult to accurately apportion contributions to tropospheric O3.

Authors: For the estimation of the main VOC contributors in Spanish urban areas, namely the road transport (SNAP07) and the use of solvents (SNAP06), the HERMESv2.0 emission model uses a combination of bottom-up approaches and downscaling methodologies. The sectors road transport and solvents together account for more than 80% of total VOC emissions in Barcelona and Madrid cities (Soret et al., 2014).

For traffic, HERMESv2.0 estimates VOC emissions according to the Tier 3 method described in the EMEP/EEA guidelines, which is fully incorporated in COPERT 4. Speciation factors to map total VOC to the CB05 chemical mechanism species are also obtained from the EMEP/EEA guidelines.

For the solvent sector, emissions are estimated performing a downscaling methodology of the original Spanish National Emission Inventory due to the lack of specific information on activity data and emission factors. The Spanish inventory, developed by the Spanish Ministry of the Agriculture, Food and Environment (MAPAMA, personal communication), represents the official Spanish contribution to the EMEP emission inventory. It reports total annual emissions of primary pollutants by NUTS 2 level and SNAP elemental activity and it is based on the EMEP/EEA guidelines combined with local activity data (see the corresponding Inventory Informative Report, IIR, for more information: http://www.ceip.at/ms/ceip_home1/ceip_home/status_reporting/2018_submissions/).

HERMESv2 assigns a specific spatial proxy, temporal and speciation profile to each pollutant activity after defining it as point, lineal or area source. The speciation treatment of the original emissions is done using the profiles reported by the SPECIATE database (https://www.epa.gov/air-emissions-modeling/speciate-version-45-through-40). More details on the methods used to estimate VOC emissions from these two sectors can be found in Guevara et al. (2013).

Despite the efforts in providing detailed emission input data, it is true that there are still a lot of uncertainties and room for improvement in the estimation of urban VOC emission
inventories, as stated recently by several works (Liu et al., 2017; McDonald et al., 2018; Lewis, 2018). Most of these uncertainties are due to the lack of in-situ observational data, which is key for the development of local speciation profiles and for the evaluation of modelled concentrations of VOC. In order to overcome this problem, continuous monitoring of urban VOC should be performed in Spanish cities, following the example of other regions in which O\textsubscript{3} is also a major problem such as Mexico City (Jaime-Palomera et al., 2016). On the other hand, the use of satellite observations of formaldehyde (HCHO) columns to constrain urban VOC emissions could be also pointed out as a future task to improve the representativeness of urban emission inventories (Zhu et al., 2014).

Urban VOC emissions are particularly relevant emissions for this analysis, and uncertainties in the estimation of urban VOC emission inventories makes also uncertain their contribution to tropospheric O\textsubscript{3} source apportionment studies.

In the reviewed version of the manuscript, we have added a comment on the urban VOC emission uncertainty as follows:

Page 6-Line 13-20: “Urban VOC emissions could be a relevant source for O\textsubscript{3} concentration. Over Spanish urban areas, HERMESv2.0 estimates VOC emissions from road transport and the use of solvents (Fig. 1) following bottom-up approaches (Guevara et al., 2013). However, uncertainties in the estimation of urban VOC emission inventories, as stated recently by several works (Pan et al., 2015; Liu et al., 2017; McDonald et al., 2018; Lewis, 2018) makes uncertain the urban VOC contribution to tropospheric O\textsubscript{3} concentrations. In order to overcome this problem, continuous monitoring of urban VOC should be performed in Spanish cities, following the example of other regions in which O\textsubscript{3} is also a major problem such as Mexico City (Jaime-Palomera et al., 2016). In addition, the use of formaldehyde satellite observations to constrain urban VOC emissions could be also pointed out as a future task to improve the representativeness of urban emission inventories (Zhu et al., 2014).”

References:

6. Reviewer #2: It is also widely accepted that biogenic VOCs play a major role on atmospheric photochemistry. For this study, the authors rely on the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.04 (P5.Line 30). This version was revised and extended through version 2.1 (Guenther et al., 2012) that also includes some code fixes. I’d strongly suggest the authors to perform a sensitivity run to understand whether using an outdated version of MEGAN may introduce relevant biases into their simulation. Species tagging and emission categories selection described in section 2.3 seem sensible although VOC emission shares should be reviewed taking into account the previous comment.

Authors: Although we use the MEGANv2.0.4 model, we have used the most updated emission factors (version 2011) from the MEGANv2.1 model (http://lar.wsu.edu/megan/guides.html). In the Section 2 of the supplement we discuss the behaviour of our biogenic emissions using this configuration. Figure S2 shows the isoprene concentration at the Montseny station during the DAURE experimental campaign (Seco et al., 2011; http://cires.colorado.edu/jimenez-group/wiki/index.php/DAURE). This evaluation indicates that modelled isoprene concentrations with updated emission factors are in reasonably good agreement with observations.

We have improved the description of the upgraded MEGAN version used in this study as follows:

Page 6 - Line 9-11: “In this study, we have updated MEGANv2.0.4 with emission factors from last MEGANv2.1 (http://lar.wsu.edu/megan/guides.html). In Sect. 2 of the supplement, we provide a comparison with measurements from the DAURE campaign (Pandolfi et al., 2014) showing the reasonably good behaviour of our modelled isoprene”

References:

We are currently working on upgrading our modelling system with MEGANv3 (https://bai.ess.uci.edu/megan/versions/megan3).

References:

Seco, R., Peñuelas, J., Filella, I., Llusìà, J., Molowny-Horas, R., Schallhart, S., Metzger, A., Müller, M., and Hansel, A.: Contrasting winter and summer VOC mixing ratios at a forest site

7. Reviewer #2: I'm also concerned about a potential double counting and/or erroneous spatio-temporal allocation of VOCs emissions from agriculture since plant functional types considered in MEGAN include crops. From previous literature, a share of 70% of total VOCs from SNAP 11 (nature) seems too high and may support that shortcoming. Please, double check this potential issue since it may bring about a considerable bias to the outcomes of the study.

Authors: We are not double counting crops emissions. Emissions from agriculture (SNAP10) only include VOC from manure management and field burning of agricultural residues. We only include VOC emissions from cultivated crops estimated by MEGAN.

We have added a clarification in the revised version of the manuscript as follows:

Page 6 - Line 7-9: “Note that we configured MEGAN to compute VOC emissions from cultivated crops; the agriculture emission module in HERMESv2.0 estimates the VOC from manure management and field burning of agricultural residues.”

8. Reviewer #2: The study makes advantage of a remarkably dense network of monitoring sites in the area of study to assess model performance through the computation of a series of common statistics (appendix B). The results however are difficult to interpret in their current form. Please, see corresponding suggestion in the results section.

Authors: The presentation of the evaluation has been improved following the reviewer’s suggestions in the results section. See Table 2 and Appendix B in the revised version of the manuscript.

9. Reviewer #2: The authors discuss that the episode at hand concentrated an important percentage of exceedances in Spain (if I understood correctly; the first paragraph may be reviewed for the sake of clarity). However, the inspection of panel a) in Fig 2. Does not seem to indicate that this episode was particularly severe since the distribution of MDA8 is not dissimilar to those of previous years, even when they reflect the concentrations over a 6 month period. In addition, the outliers apparently have moderated values. It would be interesting to make the point for such comparison. I'm not completely sure that it is sound to identify a high pollution episode at national level since O3 largely depends on regional features. If O3 levels were actually high all over the modelling domain, the influence of exported ozone (influenced by synoptic conditions) may be too high and thus, the representativeness of the results and the potential implications policy-wise, rather limited. Please, reflect on that.

Authors: Figure 2a supports the reviewer’s comment that the selected episode is not the most severe between 2000-2012 that affected all of Spain. However, it comprises a period with high MDA8 O3 concentrations measured at rural background stations, actually the 75th percentile of those values were above the Target Value, similar to the particularly severe summer of 2003 (Solberg et al., 2008).
This episode is also interesting because it affected Europe (EEA, 2013), for which 33% and 12% of the total number of exceedances were observed for the information threshold and the Target Value in 2012, respectively. The \(\text{O}_3 \) regional context of the episode allows us to study the influence of the imported \(\text{O}_3 \) to Spain.

In the revised version of the manuscript, we have provided a more clear description of the relevance of the episode as follows:

Page 9 - Line 4-23: “Our first estimation of the origin of peak \(\text{O}_3 \) events in Spain focuses on the episode July 21st -31st, 2012. Figure 2a illustrates the relevance of the episode showing the observed MDA8 \(\text{O}_3 \) concentrations trends at the Spanish EIONET stations during the (extended) summers (i.e., from April to September) from 2000 to 2012, together with the concentrations recorded during the episode. Although the selected episode is not the most severe between 2000 and 2012 at national scale, it comprises a period with high MDA8 \(\text{O}_3 \) concentrations measured at rural background stations, actually the 75th percentile of those values were above the Target Value, similar to the particularly severe summer of 2003 (Solberg et al., 2008).

This episode is also interesting because it was widespread and affected big parts of Europe (EEA, 2013). Only during this period 33% and 12% of the total number of exceedances for the information threshold and the Target Value in 2012, respectively, were measured. The \(\text{O}_3 \) regional context of the episode allows us to study the influence of the imported \(\text{O}_3 \) to Spain.

The maps of the 90th percentile of the measured MDA8 \(\text{O}_3 \) concentrations over Spain (Fig. 2b) shows high concentration spots all over the domain. The exceedances of the Target Value were found in the surroundings of large urban areas (Madrid, Barcelona, Valencia, Seville) and along Spanish valleys (i.e., Ebro Valley, Guadalquivir Valley).

There were more than 100 exceedances of the \(\text{O}_3 \) Target Value in most of the days during the episode, with relative maxima on July 25th, 28th and 31st attributed to the change in the synoptic conditions (Fig. S3). Figure 3 shows the meteorological patterns (temperature at 2m, wind at 10m, precipitation, mean sea level pressure and geopotential height at 500 hPa) modelled by WRF-ARW during the three distinctive days over the outer EU12 domain.”

We agree with the reviewer that other \(\text{O}_3 \) episodes should be studied to extract statistically robust conclusions on the main source contribution to \(\text{O}_3 \) events in Spain. To remark that this work is a first quantitative \(\text{O}_3 \) source apportionment study, and the representativeness of our results is limited because they are focused in just one episode, we have added some comments (Section 4) as follows:

Page 20–Line 1-2: “Our study has provided a first estimation of the main sources responsible for high \(\text{O}_3 \) concentration in the Western Mediterranean Basin during the period July 21st -31st, 2012.

Page 22–Line 24-25: “[...] future studies should preferentially cover multiple summer periods in order to improve representativeness.”

Page 22–Line 22-27: “For regulatory applications, further source apportionment studies should target not only emissions from activity sectors, but also the source regions where the emission abatement strategies should be applied. In addition, future studies should preferentially cover multiple summer periods in order to improve representativeness. We note that our results cannot predict whether emission abatement will have either a positive or a negative effect in \(\text{O}_3 \) changes due to the
non-linearity of the O₃ generation process. Subsequent source sensitivity analyses tailoring the identified main contribution sources could predict how O₃ will respond to reductions in precursor emissions, which are essential to define the most efficient O₃ abatement strategies in the Western Mediterranean Basin.”

10. Reviewer #2: They also claim that the episode affected the central and north of the IP, but Fig. 2c shows high concentration spots all over the domain (or maybe the colour scale is not clear enough). It is also hard to see what the influence of Madrid and Barcelona plumes is (something consistent, to my understanding, with dominant stagnant conditions). Please, try to clarify.

Authors: Following the review’s recommendation, in the revised version of the manuscript we have improved the colour scale in the aforementioned Figure (now Fig. 2b) to better distinguish the variability of the O₃ concentrations. In addition, we have clarified the explanation about the spatial coverage of the episode as follows: Page 9 - Line 16-18: “The maps of the 90th percentile of the measured MDA8 O₃ concentrations over Spain (Fig. 2b) show high concentration spots all over the domain. The exceedances of the Target Value were found in the surroundings of large urban areas (Madrid, Barcelona, Valencia, Seville) and along Spanish valleys (i.e., Ebro Valley, Guadalquivir Valley).”

11. Reviewer #2: Fig 3 illustrates the meteorological conditions through some WRF-ARW outputs. I understand that a thorough model evaluation is not the main purpose of the paper but a minimal check (also through a statistic evaluation) of the credibility of the meteorological simulation (mainly wind fields) may substantially help the authors to gain a better insight of their results. For instance, that would help them to contrast hypotheses such as the one made in P10.Line 25. and following, where they attribute O3 nighttime overestimation to the underestimation of vertical mixing during nighttime stable conditions. In that case, a comparison of observed (where available) and modelled PBLH may be useful.

Authors: According to the reviewer’s comment, we have included in Sect. 4 of the supplement an evaluation of wind speed (WS) and direction (WD) at 10 m and temperature at 2 m (T2M) using METeorological Aerodrome Report stations (METAR).

For the selected episode, there were 50 METAR stations located at airports (see location in Fig. S5). Table S2 shows the scores following the methodology explained in “Section 2.4 Evaluation method” for concentrations.

The modelled T2M shows the best behaviour when compared with observations (r=0.91) (Table S2). The model slightly underestimates T2M (-0.2 °C), especially for maximum and minimum temperatures (1.0°C and 0.4 °C for p25 and p75, respectively) (Fig. S5). The model reproduces the WS (r=0.42-0.70) with an overestimation of ~0.3 ms⁻¹ on average. The overestimation is particularly marked during nighttime (Fig. S5), coincident with low-level wind speeds. These biases may contribute to the underestimation of surface concentrations of O₃ precursors. The wind direction shows a lower correlation coefficient (0.1, 0.43).

We did not evaluate the PBL height in this study, but Bank et al. (2012) used daytime radiosounding and PBL height estimations from backscatter lidar to perform a comprehensive evaluation of PBL parametrization from WRF in the North-East Iberian Peninsula. This study
found that there is a systematic underestimation of PBL height simulated by WRF. These results are consistent with Vautard et al. (2012), who found that models generally underpredict PBL heights at nighttime.

Overall, nighttime meteorology remains a challenge for meteorological models. The nighttime systematic overestimation of wind and underestimation of PBL height is a potential source of large error compensation for the modelling of NO\textsubscript{2} and O\textsubscript{3} nighttime concentrations.

The revised version of the manuscript includes a discussion of the meteorological evaluation in the evaluation section as follows:

“Section S4 in the supplement discusses the meteorological evaluation results and their impact on the pollutant concentrations. Not surprisingly, temperature shows the best behaviour when compared with observations (Table S2). The modelled wind speed is overestimated, particularly during nighttime (Fig. S5), coincident with low-level wind speed. The nighttime overestimation of wind is a source of error in modelled NO\textsubscript{2} and O\textsubscript{3} nighttime concentrations (Vautard et al., 2012; Bessagnet et al., 2016)”

References:

12. Reviewer #2: As for the discussion of the general meteorological conditions, I’m not sure that the attempt to discriminate between ITL and NWadv situations is nor illustrative or needed. The discussion is hard to follow and the application of deterministic CTM may make that effort redundant.

Authors: Several studies in the Iberian Peninsula (IP) have addressed the causes of O\textsubscript{3} episodes looking at the circulation of air masses (Millán, 2014, and references therein). Specifically, recently, some studies found relevant to discriminate by synoptic situations for studying the phenomenology of summer O\textsubscript{3} over Catalunya (Querol et al., 2017), Madrid (Querol et al., 2018) and overall in whole Spain (Valverde et al., 2016).

As these authors claim, we believe that distinguishing by synoptic conditions is relevant to understand the O\textsubscript{3} origin in Spain. Stagnant conditions are characterized by weak synoptic winds, intense solar radiation, and the development of the Iberian Thermal Low, which forces the convergence of surface winds from the coast towards the central IP during the day and enhancing mesoscale process, which favours the accumulation of pollutants. In contrast,
northwestern advections transport air masses from the Atlantic towards the north and west of the IP, favouring the contribution of imported O$_3$ concentrations.

In addition, distinguishing by synoptic conditions allows assessing the performance of the deterministic model (WRF and CMAQ) to reproduce the synoptic transport and chemistry. For example the time series of source apportionment results in the northwest of the Iberian Peninsula (Fig. 9) show that:

Page 18 – line 16-22: “The time series show that the model reproduces reasonably well the observed O$_3$ variability under different synoptic conditions. O$_3$ reaches the highest concentration (~100/150 µgm$^{-3}$ in urban/rural areas) under stagnant conditions (July 24th-27th) when the contribution of anthropogenic sources from all activity sectors is the highest (60-70%). O$_3$ concentrations decrease down to ~70 µgm$^{-3}$ under NW advective conditions (e.g., July 28th-30th) when the imported O$_3$ shows the highest contribution (80-90%). Saavedra et al. (2012) found that stationary anticyclones over the NWIP play an important role in the occurrence of high O$_3$ concentrations. Our results show that under these stagnant conditions O$_3$ concentrations are due largely to in situ production (photochemistry) from on-road traffic, shipping, power plants, and industry in almost the same proportion.”

References:

13. Reviewer #2: The results of the statistical evaluation for CMAQ outputs are summarized in Table 2. Some suggestions for this table:
 - Please include in the caption whether the exceedance column refers to observed or modelled values (the missing one may be also included either way)
 - Two or three decimal points for r may be used
 - MNB (%) may be more illustrative than MB (that can be derived directly from MM – MO)
- It may be misleading to pool together the statistics for different types of monitoring stations. As the authors discuss, it is arguable that outputs from a 4x4 km² model exercise should be compared against observations at traffic locations.
- It is unclear why some monitoring sites wouldn’t fit into any of the categories considered. Please elaborate and state the rationale to include them in the analysis. It may be interesting to put these results into perspective by comparing them with those from other modelling exercises based on similar model suites in the IP or elsewhere (besides referring to previous applications of CALIOPE itself).

Authors: The revised version of the manuscript includes all the reviewer’s suggestions regarding Table 2.

As the reviewer indicates, it is arguable that outputs from a 4x4 km² model exercise should be compared against observations at traffic locations. Actually, traffic station may not be representative of a 4x4 km² grid. Despite this limitation, we included traffic stations in our analysis discussing the model limitations as follows:

Page 11 – Line 27-28: “Underestimation of NO₂ traffic peaks is a common problem in Eulerian mesoscale models (Pay et al., 2014), as emission heterogeneity is lost in the grid cell-averaging process, which is especially critical in urban areas”.

The stations without a category corresponded to suburban background (SB) stations. The revised version of the manuscript includes now the SB category in both the discussion and Table 2. Note that now all the stations fit any of the five categories (i.e., IN, TR, UB, SB and RB), so the exceedance/station numbers in the IN/TR/UB/SB/RB rows do sum up to the numbers in the “ALL” rows.

It is difficult to compare the present evaluation results with other modelling studies because of the different period, domain, resolution, model setup, etc. However, we agree with the reviewer that it may be interesting to put these evaluation results into perspective. In this sense, we have added the following paragraph in the revised version of the manuscript:

Page 12 – Line 8-16: “The comparison with previous CALIOPE studies (Baldasano et al., 2011; Pay et al., 2014) indicates that r is in the same range for O₃ (0.6-0.7) and NO₂ (0.4-0.5) at individual stations; the same applies to RMSE (15-29 μgO₃ m⁻³ and 10-20 μgNO₂ m⁻³). Modelled O₃ shows higher performance at traffic stations in large cities, since stations influenced by road transport emissions (i.e., high-NOₓ environments) are better characterized with a more pronounced daily variability (Baldasano et al., 2011). At European scale, several model intercomparisons (Giornado et al. 2015; Bessagnet et al., 2016) indicate that O₃ concentrations in summer agree with the surface observations with r between 0.5 and 0.6. NO₂ hourly variability is overall underestimated due to uncertainties in the emission and meteorological modelling and model resolution. These studies highlight the limitations of models to simulate meteorological variables that affect the NO₂ hourly variability, and therefore the model performance for O₃ in high-NOₓ environments and downwind.”

References:

the Mediterranean and the Middle East. Tellus B 64, 18539. http://dx.doi.org/10.3402/tellusb.v64i0.18539.

14. Reviewer #2: P11.L10-14. The description of the performance-based categories is hard to follow and it is already condensed in Fig. 5. Please, simplify or simply remove that passage. I’d suggest the authors to re-compute statistics and assessment with the alternative BVOC emissions model run mentioned earlier.

Authors: We agree with the reviewer. In the revised version of the manuscript, we have removed that passage on the description of the model performance based on bias categories as it is condensed in Fig. 5.

As explained before, we did not perform the BVOC emission sensitivity test with MEGAN comparing v2.0.4 and v2.1, because evaluation of MEGAN with updated emission factors indicates that modelled isoprene concentrations are in reasonably good agreement with observations. We foresee this BVOC emission sensitivity test and its effect on O3 during the upgrade of our modelling system with MEGANv3 (https://bai.ess.uci.edu/megan/versions/megan3).

15. Reviewer #2: If mention to specific cities or areas is made (e.g. Ebro Valley, Lleida Plain), please identify them in any of the maps in the manuscript.

Authors: We have improved Figure 2 to identify the cities and areas that appear throughout the manuscript.

16. Reviewer #2: The information summarized in Fig. 7 is interesting although the concept of “receptor regions” is unclear. It seems reasonable in terms of geographical location but differences regarding contributions from different sectors are not evident, especially if the results are put into the perspective of the typical uncertainties of
modelling exercises that can be inferred from the model evaluation previously presented.

Authors: The O₃ receptors are defined as air quality stations located in regions with similar meteorological and O₃ patterns, main source contributors and geographical patterns. The O₃ receptor regions defined in this work are consistent with Diéguez et al. (2014) and Querol et al. (2016), who proposed a similar regionalization based only on observations from air quality stations.

Fig. 7 shows the contribution from different sectors by O₃ receptor region ordered by decreasing concentration of imported O₃. Differences between sectors are more evident in the normalized contribution (Fig. 7b).

We agree with the referee that the results of the source apportionment have an associated uncertainty. However, this uncertainty cannot be precisely quantified because of the lack of apportioned O₃ observations. We note that in sect 3.4 we extensively evaluate and discuss our results using O₃, NO₂ and wind speed and direction observations. We show that for some cases we can clearly identify a particular sector to be responsible for the O₃ mismatch.

17. Reviewer #2: It is interesting noting a relatively large contribution from the SNAP 8 sector. The share of mobile sources is particularly important in the SIP area, which would be consistent with the discussion regarding the influence of shipping. However, other areas such as GV or even CIP present a non-negligible contribution. Could the authors elaborate on that?

Authors: The SNAP8 sector accounts for international shipping, airport service and agricultural machinery. The O₃ contribution from non-road transport in the central of the Iberian Peninsula may arise from the international shipping routes, Madrid’s airports and the agricultural machinery operating in the surrounding rural areas. The current study has not distinguished these subsectors but it maybe useful for future source apportionment studies. We have clarified the definition of the SNAP8 sector and its contribution in the CIP as follows:

Table 1: “SNAP8: Non-road transport (international shipping, airport and agricultural machinery)”

Page 16- Line 18-20: “The O₃ contribution from non-road transport in this region may arise from the Madrid’s airports and the agricultural machinery operating in the surrounding rural areas mainly.”

Page 20 – Line 28-29: “The non-road transport sector (including international shipping, airport and agricultural machinery) is as significant as road transport inland (10-19% of the daily mean O₃ concentration during the peaks).”

18. Reviewer #2: Maybe the discussion in section 3.4 is too profuse and should be substantially shortened. I encourage the authors to summary here their findings and
provide the region-by-region discussion as supplementary material, including Fig. 8 and Fig. 9. Oppositely, the rationale for the station sub-set selection may deserve further explanation. In general, the section is abundant in hypotheses and subjective interpretation that are not clearly supported by evidence. Personally, I don't think this contribution really benefits from such approach. The paper may be restricted to a more solid and consistent analysis and discussion of the findings from the application of CMAQ-ISAM. That is novel and interesting enough and further attempts to relate the results with detailed regional dynamics and atmospheric patterns may very well be addressed in future specific studies (using more specific methods and data, e.g. better resolved emission inventories).

Authors: We have summarized that part following the reviewer's suggestion. Please, have a look at the revised version of the manuscript.

However, we have kept the region-by-region discussion because the main purpose of the present study is the estimation of the contribution of the anthropogenic activity sectors and the imported concentration to peak O\textsubscript{3} events in Spain. In addition, this region-by-region discussion has provided a perspective about the potential use of source apportionment analysis for improving the O3 modelling and designing future mitigation strategies at regions with a high on-road traffic contribution (i.e., CIP and NEIP in Fig. 8) and a high contribution from industry and energy production (i.e., NWIP and Guadalquivir Valley in Fig. 9).

19. Reviewer #2: The authors claim that the modelling exercise presented allowed an in-depth evaluation of the modelling system applied. This relates to my last comment regarding the results section. The paper may lack a well-defined objective and presents a huge amount of information without a clear purpose. For example, if the main interest was to assess the modelling system capabilities and identify options for improvement, the results and analysis should gravitate towards a more detailed statistical analysis within a better defined methodological framework. I acknowledge a valuable study but I think the authors should revise their manuscript under a clearly defined scientific question avoiding an excessive spread in their discussion that may lead to inconsequential or cursory analyses and reflect that also in this section. As for the discussion on model uncertainty I find particularly important to take into account the observations regarding biogenic emissions, although the mismatch between emissions and meteorological conditions may also hinder the discriminating power of the results.

Authors: We have rewritten the objective in the abstract and the introduction to clarify the objective of the study as follows:

In the abstract (Page 1 – Line 19-21):
“The main goal of this study is to provide a first quantitative estimation of the contribution of the main anthropogenic activity sectors to peak O\textsubscript{3} events in Spain relative to the contribution of imported (regional and hemispheric) O\textsubscript{3}. We also assess the potential of our source apportionment method to improve O\textsubscript{3} modelling”

In the introduction (Page 4 – Line 25-30):
“The integrated source apportionment tools combined with high-resolution emission and meteorological models can help unravelling the sources responsible for peak summer events of O\textsubscript{3} in the Western Mediterranean Basin. Quantifying the contribution of emission sources during acute O\textsubscript{3} episodes is a prerequisite for the design of future mitigation strategies in the region. In this framework, the main goal of this study is to provide a first quantitative estimation of the contribution of the main anthropogenic
activity sectors compared to the imported concentration (regional and hemispheric) to peak O\textsubscript{3} events in Spain. We also assess the potential of our source apportionment method to improve O\textsubscript{3} modelling.“

Under clearly defined scientific objectives, we have substantially shortened Section 4 to avoid an excessive spread in the discussion. A new version of Section 4 is available in the revised manuscript.

As suggested by the reviewer we have included a comment on the uncertainty of biogenic emissions and emissions reference year as follows:

Page 22 – Line 10-12: “Another relevant and uncertain source for O\textsubscript{3} concentration is the urban VOC emissions. Future research works should be devoted to continuous monitoring of urban VOC and take advantage of satellite observations to improve speciation and spatial variability of urban VOC emissions.”

20. Reviewer #2: In any case, caution should apply since the timespan of the period analysed makes it difficult to extract general conclusions. This is particularly important for the regulatory implications that may be derived from this study. As the authors conclude, I find reasonable to base recommendations for abatement strategies in more specific, regional scale, detailed analyses. Consequently, I’d keep such conclusions to a minimum in this contribution.

Authors: As discussed before, we agree that the representativeness of our results is limited because they are focused in just one episode. Future studies should preferentially cover multiple summer periods in order to improve representativeness.

Although, the main goal of this study is not the design abatement policies, these source apportionment results has provide a perspective about the potential use of these methods for regulatory studies in non-attainment regions as a prerequisite for the design of future mitigation strategies. We have added a short comment on this in the discussion section:

Page 23-Line 4-7: “This work has quantified the local and imported contributions to O\textsubscript{3} during an episode in a particular area in southwestern Europe. In addition, we have provided a perspective about the potential use of source apportionment method for regulatory studies in non-attainment regions. Further O\textsubscript{3} source apportionment studies targeting other nonattainment regions in Europe are necessary prior to design local mitigation measures that complement national and European-wide abatement efforts.”

21. Reviewer #2: Please revise equations 1 to 4 for a better readability

Authors: We have increased the size of the font in the equation for better readability.

22. Reviewer #2: P7.Line 4: SNAP3 and 4

Authors: We note that SNAP34 is not a typo error. We have defined sector SNAP34 all together as mentioned in Table 1 as manufacturing industries. We follow the same reporting approach as the one proposed by the TNO_MACC emission inventories, in which SNAP 3
and SNAP 4 emissions are merged to SNAP 34. This does not mean that we deal with SNAP3
and SNAP4 emissions all together. Emissions from each point source are estimated
individually and applying specific activity and emission factors, as well as speciation and
temporal profiles. It is just a matter of reporting format.

23. Reviewer #2: P8.Lines 12-13: the brackets are not needed: “In Spain, around 60% of
the annual exceedances also occurred during this period. (As shown in Querol et al.
(2016) July is typically the month with the highest number of O₃ exceedances in Spain.)
The”
Authors: We have removed this statement for simplicity.

24. Reviewer #2: P11.Line 11: “for 93% of the stations” instead of “for the 93% of
stations”
Authors: We have amended this issue in the revised version of the manuscript.

Authors: We have rewritten this statement as follows “stagnant conditions”.

26. Reviewer #2: P20.Line 8: “O₃at” is missing a space
Authors: We have amended this issue in the revised version of the manuscript.

27. Reviewer #2: P34.Line 5 (Fig. 2 caption): I guess the authors mean “Number of
stations” instead of “Number of days”
Authors: we have rewritten the caption of Figure 2 following the reviewer’s suggestions as
follows:

Figure 2-caption: “Number of the Spanish EIONET stations days exceeding the O₃
Target Value (120 µg/m³) per episode day”
Interactive comment on “Ozone source apportionment during peak summer events over southwestern Europe” by Maria Teresa Pay et al.
Anonymous Referee #3
Received and published: 29 December 2018

1. Reviewer #3: The paper gives important contribution to address the source apportionment study regarding ozone episode occurred in Spain. The paper is well structured and presents a complete analysis of the modelling results. However, there are some major points that should be addressed before recommended for publication. Besides that, English should be revised along the manuscript, there is some inconsistencies and grammatical errors. See below major and minor comments.

Authors: We thank the reviewer #3 for the comments and suggestions for improvement. We have corrected errors and omissions, and introduced as much as possible the reviewer’s suggestions.

Please, find below the item-by-item response. For more details on the review process, we have uploaded the manuscript with track-changes.

2. Reviewer #3: Abstract; Line 15 (Page 4/Line 2): there is recently studies that showed that source-apportionment methods are not adequate to investigate plans and mitigation measures, in particular for non-linear pollutants like ozone, and that for that purpose “scenario analysis” based on “brute-force” are recommended. Authors should revise the text along the manuscript where it is mentioned the purpose of “designing plans”, which should not be the final objective of this source-apportionment study. (see Clappier, A., Belis, C., Pernigotti, D., Thunis, P. Source apportionment and sensitivity analysis: two methodologies with two different purposes. Geosci. Model Dev. Discuss. 10, 4245-4256 (2017))

Authors: We totally agree with the reviewer’s point of view and with the content of Clappier et al., (2017). The main goal of this study is not the design abatement policies, but it is to provide a first quantitative estimation of the contribution of the main anthropogenic activity sectors to peak O₃ events in Spain relative to the contribution of imported O₃.

Actually, source apportionment techniques alone cannot be used to the design abatement policies. Subsequent source sensitivity analyses tailoring the identified main contribution sources could predict how O₃ will respond to reductions in precursor emissions. Both, source apportionment and source sensitivity are complementary and essential studies to define the most efficient O₃ abatement strategies in the Western Mediterranean Basin. The manuscript highlights now this idea in different sections that we recap as follows:

Page 4 – Line 26-30: “Quantifying the contribution of emission sources during acute O₃ episodes is a prerequisite for the design of future mitigation strategies in the region. In this framework, the main goal of this study is to provide a first quantitative estimation of the contribution of the main anthropogenic activity sectors compared to the imported concentration (regional and hemispheric) to peak O₃ events in Spain.”

Page 22–Line 23-27: “We note that our results cannot predict whether emission abatement will have either a positive or negative effect in O₃ changes due to the non-linearity of the O₃ generation process. Subsequent source sensitivity analyses tailoring the identified main contribution sources could predict how O₃ will respond to reductions in precursor emissions, which are essential to define the most efficient O₃ abatement strategies in the Western Mediterranean Basin.”
Page 23-Line 4-7: “This work has quantified the local and imported contributions to O₃ during an episode in a particular area in southwestern Europe. In addition, we have provided a perspective about the potential use of source apportionment method for regulatory studies in non-attainment regions. Further O₃ source apportionment studies targeting other nonattainment regions in Europe are necessary prior to design local mitigation measures that complement national and European-wide abatement efforts.”

In order to be clear in the source apportionment applications and limitations of certain methods, we have added in the revised version of the manuscript a comment taking into account the recent findings in Clappier et al. (2017) as follows:

Page 4-Line 7-11: “Brute force is simple to implement, as it does not require additional coding in the CTM. However, as it quantifies the contribution of each source based on its absence, it does not reproduce actual atmospheric conditions, and therefore it is susceptible to inaccuracies in the prediction of O₃ peaks under non-linear regimes (Cohan and Napelenok, 2011). Actually, brute force is not suitable to retrieve source contribution when the relationship between emissions and concentration is non-linear, but it is useful for analysing the concentration responses to emission abatement scenarios (Clappier et al., 2017).”

3. Reviewer #3: Page 4/Line 7-9: please review this sentence according to what has been commented before.

Authors: The statement in Page 4/Line 7-9 has been expanded following the reviewer’s suggestion as shown in the previous authors’ answer (see Page 4-Line 9-13).

4. Reviewer #3: Page 5/Line 26: the authors should comment about the representativeness of the 2009 emissions to the 2012 SA study presented. From 2009 to 2012 several changes happened in society and economy which was reflected in emission data.

Authors: Our methodological choice has been to use a detailed bottom-up emission inventory instead of a typical top-down regional emission inventory. Bottom-up emissions, estimated using source-specific emission factors and activity statistics, accurately characterise pollutant sources and allow obtaining more realistic results than the ones reported by top-down or regional emission inventories. However, they require very large efforts to be compiled and consequently the updating processes cannot be implemented year-to-year.

In HERMESv2 emissions are based on 2009 data, which was the closest year with updated information on local emission activities at the time this work started.

To understand the impact of the use of 2009 data to study year 2012 we revised the EMEP Centre on Emission Inventories and Projections (EMEP-CEIP), which collects and reviews the national emission inventories from Parties to the Convention on Long-range Transboundary Air Pollution (CLRTAP). Between 2009 and 2012 total NOₓ and NMVOC emissions in Spain decreased by -10.6% and -10.7%, respectively (EMEP CEIP, 2019). For NOₓ, around 80% of this reduction is linked to a reduction of road transport emissions, whereas in the case of NMVOC ~50% of the reduction is due to a decrease of industrial emissions. NOₓ emissions from shipping in Europe have also decreased in the period 2009-2012 by 15%.
For our modelling study, we consider these differences as small and acceptable, and not creating any major inconsistency. The difference of 10-15% in emissions for certain precursors between 2009 and 2012 is within the typically larger ranges of uncertainty in emission inventories. We also note that all our results are thoroughly evaluated and critically assessed using observations.

In any case, we have followed the reviewer’s suggestion, and we have discussed in the manuscript the potential impact of these differences when the contribution of each emission sector is analysed:

Page 17–Line 32-33: “[…] This factor, added to the 15% decrease of NOx shipping emissions observed in Europe between 2009 (HERMESv2.0 base year) and 2012 (EMEP CEIP, 2019) could explain the discrepancies observed.”

Page 18–Line 12-14: “[…] it has been estimated that between 2009 and 2012 energy production in coal-fired power plants increased from 13.1% to 19.4% (UNESA, 2012), which implied an increase of NOx emissions from the power industry sector of around 19.5% (EMEP CEIP, 2019).”

The Section 4 of the revised version of the manuscript includes now a comment on the methodological implication of using 2009 emissions for O₃ source apportionment studies in an episode in 2012 as follows:

Page 5-Line 31-32: “HERMESv2.0 is currently based on 2009 data, which is the closest year with updated information on local emission activities at the time this work started.”

Page 21-Line 31: “Our methodological choice has been to use a detailed bottom-up emission inventory instead of a typical top-down regional emission inventory. Bottom-up emissions, estimated using source-specific emission factors and activity statistics, accurately characterise pollutant sources and allow obtaining more realistic results than the ones reported by top-down or regional emission inventories. To understand the impact of the use of 2009 data to study year 2012, we revised the EMEP Centre on Emission Inventories and Projections (EMEP-CEIP), which collects and reviews the national emission inventories from Parties to the Convention on Long-range Transboundary Air Pollution. Between 2009 and 2012, total NOx and NMVOC emissions in Spain decreased by -10.6% and -10.7%, respectively (EMEP CEIP, 2019). For NOx, around 80% of this reduction is linked to a reduction of road transport emissions, whereas in the case of NMVOC ~50% of the reduction is due to a decrease of industrial emissions. For our modelling study, we consider these differences as small and acceptable, and not creating any major inconsistency. The difference of 10-15% in emissions for certain precursors between 2009 and 2012 is within the typically larger ranges of uncertainty in emission inventories.”

Reference:
EMEP CEIP, 2019. Officially reported emission data. Available at: http://www.ceip.at/ms/ceip_home1/ceip_home/data_viewers/official_tableau/ (last access February 2019)

5. Reviewer #3: Page 7, Line 9: SNAP2 activity can be a particular important source for ozone precursors. Authors should comment about that when they mentioned that SNAP2 is aggregated with other activity sectors.
Authors: One limitation of the current version of CMAQ-ISAMv5.0.2 is that the number of tagged sources increases the computational time. In the current version of CMAQv5.0.2 the increase of the computational resources does not decrease the computational time. A more computationally efficient version of the ISAM will be released with the final version of CMAQv5.3 in Spring 2019. Based on that limitation, we configured our first study tagging the energy, industrial, road transport and non-road transport sectors (Fig. 1b), which account for 92% of the total NOx emissions in Spain. The remaining emission sectors are lumped in the OTHER tag. This selection criterion is explained in the manuscript as follows:

Page 7- Line 20-23: “The selected (tagged) SNAP categories in this study are the energy, industrial, road transport and non-road transport sectors (Fig. 1b), which account for the 92% of the total NOx emissions in Spain. An additional tracer (OTH) gathers the remaining emission categories that were not explicitly tracked (i.e., SNAP2, 5, 6, 9, 10 and 11).”

We have seen in other studies performed over different domains (e.g., Portugal) that SNAP2 can be an important contributor to O3 precursors. We have mentioned this fact in the manuscript as follows:

From Page 13- Line 33 to Page 14-Line 2: “The high OTHR concentration around the biggest cities in Portugal may be related to precursors emitted by the residential sector (SNAP2 and 9) and biogenic emissions, as found in other source apportionment studies over Portugal (Borrego et al., 2016; Karamchandani et al., 2017).”

6. Reviewer #3: Page 7, Lines 25-30: in the scope of FAIRMODE – Forum for Air Quality Modelling in Europe – tools were developed, namely the DELTA-Tool, to evaluate air quality models and conclude about their suitability to be used for legislation purposes. The authors should consider the application of this tool to evaluate model performance instead of calculating the traditional statistical indicators. In any case, authors should justify why they decided not using this tool.

Authors: The evaluation with the Delta tool has been taken into account in previous evaluation studies of the CALIOPE system, although it has not been shown in the manuscript. We have added this comment to complement this information:

Page 11-Line 2-6: “CALIOPE has been evaluated in detail elsewhere (Pay et al., 2014 and references therein). Furthermore, the system has been evaluated using the tool developed by the Forum for Air Quality Modelling in Europe, named DELTA-Tool (Thunis and Cuvelier, 2014) to support and harmonize the model evaluation in the frame of the Air Quality Directive. Valverde et al. (2016a; 2016b) used the DELTA-Tool v4.0 and showed that the CALIOPE system accomplishes the quality objectives as defined in the Air Quality Directive for 78% to 91% of the NO2 and O3 monitoring stations in summer conditions in 2012.”

References:

7. Review #3: Page 13, Lines 16-17: this information (model performance in terms of O3 peaks) should be presented and discussed in the model validation section.

Authors: The information provided in these lines is not a dedicated evaluation analysis on O3 peaks. It is devoted to provide a general perspective on source apportionment results shown in Figure 7. In order to make it clear, we have rewritten this sentence as follows:

Page 14-Line 15-16: “Figure 7 indicates that during exceedances of the MDA8 target value there is a good agreement (r = 0.79) between the sum of apportioned O3 and the observed concentrations over the receptor regions.”

8. Reviewer #3: Page 13, Line 22: this sentence should be completed with information about the area where this impact (up to 8%) is verified.

Authors: The reviewer is right. We have rewritten the sentence as follows:

Page 14 – Line 20-21: “Shipping emissions in the MED region contributed up to 8% of the total O3”.

9. Reviewer #3: Page 15, Lines 4-5: The authors should quantify how “model reproduces reasonably well”

Authors: We agree with the reviewer and we have quantified the model performance at this station as follows:

Page 15-Line 33: “At the urban station, the model reproduces the O3 traffic cycle (r = 0.66 and MB=22.5 µgm−3) featuring the typical low O3 concentrations (< 40 µgm-3) in the early morning and in the afternoon due to O3 titration (Fig. 8a).”

10. Reviewer #3: Page 15, Lines 9-10: Please clarify the sentence “The NO2 overestimation correlates with the highest road transport contribution”. Page 15, Lines 11-12: Please explain why: “The results point towards a poor representation of the vertical mixing during the stagnant conditions”

Authors: In order to clarify this sentence, we have rewritten this paragraph as follows:

Page 16-Line 2-5: “O3 was overestimated (MB type D) during daytime peaks due to the overestimation of the NO2 morning peaks during stagnant conditions, coincident with the highest road transport contribution for both pollutants. The results point towards a poor representation of the meteorological condition in the city during the stagnant conditions as shown in the meteorological evaluation (Sect. 4 in the supplement)”
11. Reviewer #3: Page 16, Lines 4-10: this should be placed in the model validation section.

Authors: We agree with the reviewer that evaluation results should be addressed in the dedicated section. However, the interpretation of the source apportionment results benefits from model evaluation, and at the same time the source apportionment results support enhanced model evaluation. We have added a comment on this in the Section 2.4 Evaluation method to clarify this issue as follow:

Page 8-Line 24-27: “Evaluation results are discussed together with the source apportionment results. On the one side, the interpretation of the source apportionment results benefits from model evaluation. On the other side, the source apportionment results support enhanced model evaluation as it allows identifying potential errors in emission estimates for specific sectors and/or in the chemical boundary conditions.”

12. Reviewer #3: Page 16, Lines 13-14: how can the authors conclude that the model is able to reproduce all these different processes? Can the authors support better this statement?

Authors: As shown in Fig. 8d, modelled O\textsubscript{3} peaks (> 120 μgm-3) are in a good agreement with observations (Fig. 8d), which suggests that overall the model reproduces the main transport paths, photochemical processes, and relative contributions from different sources. We have rewritten this statement as follows:

Page 16-Line 32: “At the rural station, modelled O\textsubscript{3} peaks (> 120 μgm-3) are in a good agreement with observations (Fig. 8d), which suggests that overall the model reproduces the main transport paths, photochemical processes, and relative contributions from different sources.”

13. Reviewer #3: Page 18, Line 4: since only one rural station is analysed, the authors should not generalize as “In rural background areas”

Authors: The reviewer is right; we have rewritten the sentence accordingly:

Page 18-Line 8-9: “Despite the O\textsubscript{3} biases during stagnant conditions, the modelled O\textsubscript{3} concentration is in general agreement with observations at the rural background station (Fig. 9d)”

14. Reviewer #3: Page 18, Lines 30-33 to Page 19: the authors analyse the vertical profile in a single point, but this will be not representativeness of the all study domain. Authors should change the text according to this limitation and comment it, or increase the number of points analysed.

Authors: The Figure 10 does not show a vertical profile, but it shows the O\textsubscript{3} distribution over a vertical cross section crossing the IP from the west to the east at the centre of the domain (approximately at a latitude of 40.38º N). Although Figure 10 is not representative of the whole
domain of study, it helps to understand the vertical variability of both pollutants with the PBL dynamics as schematized by Millán et al. (1996). We have clarified this point in the manuscript as follows:

Page 19-Line 1-3: “Figure 10 shows the vertical cross-sections at 6, 12, and 18 UTC for O3 and NO2 at a constant latitude (40.38° N) on July 25th, 28th and 30th. It helps to understand the vertical variability of both pollutants according to the dynamics of the PBL as schematized by Millán et al. (1996).”

15. Reviewer #3: Figure 2: please review the figure caption “Number of days exceeding the O3 target value (120 ug.m-3) by each day of the episode”

Authors: We have rewritten the caption of Figure 2 following the reviewer’s suggestions as follows:

Figure 2-caption: “Number of stations exceeding the O3 Target Value (120 µg/m³) per episode day”

Note that in the reviewed version this figure corresponds to the Figure S3 in the Supplement.

16. Review #3: Page 1/Line 20: write 4x4 km2 instead of 4x4 km (please correct this along the manuscript)

Authors: We have amended that.

17. Reviewer #3: Authors should refer the modelling system (CALIOPE) in the abstract.

Authors: The suggestion of the reviewer has been included in the new version of the manuscript as follows:

Abstract (Page 1-Line 21-24): “Our study applies and thoroughly evaluates a countrywide O3 source apportionment method implemented in the CALIOPE air quality forecast system for Spain at high resolution (4 x 4 km²) to understand and quantify the origin of peak O3 events over a 10-day period covering the most frequent synoptic summer conditions in the Iberian Peninsula.”

Authors: We have added Monteiro et al. (2016) to the list of studies as an example of a large ozone episode occurred in IP region.

19. Reviewer #3: Page 7, Line 23: please indicate how many stations measure both O3 and NO2 pollutants.
Authors: We have mentioned this information latter on when we introduce the NO2/O3 source apportionment time series:

Page 8-Line 20-22: “This work will only discuss in detail the source apportionment plots at key O3 receptor regions, given the high number of stations (260) that simultaneously measure O3 and NO2.”

20. Reviewer #3: Page 10, Lines 17, 24, 29: please add “average” when mentioning “hourly O3” (the values presented are an average of different locations and not an “hourly O3 data”

Authors: The suggestion of adding “average” when mentioning “hourly concentration” has been implemented in the whole manuscript.

Authors: The reviewed version of the manuscript includes the reference Borrego et al., (2016) over northern Portugal to support the fact that, under stagnant conditions, imported O3 is depleted and O3 photochemical production is enhanced around the largest industrial/urban areas.

Page 13-Line 4-6: “In a source attribution study over northern Portugal, Borrego et al. (2016) also found a reduction of imported O3 and the subsequent O3 formation by local sources under similar meteorological conditions.”

22. Reviewer #3: Page 14, Line 30: please review the English.

Authors: The reviewed version of the manuscript has rewritten this paragraph as follows:

Page 15-Line 28-29: “The following sections analyse the source apportionment results at key regions (see Fig. 5) with a high on-road traffic contribution (i.e., CIP and NEIP) and a high contribution from industry and energy production (i.e., NWIP and Guadalquivir Valley).”

Authors: The reviewed version of the manuscript include the reference Russo et al. (2018) to discuss the uncertainties on shipping emissions over Europe:
A recent review on the state-of-the-art of marine traffic emissions (Russo et al., 2018) indicates that STEAM appears as the most reliable and detailed emissions inventory since it is based on Automatic Identification System data and specific vessel information, with a resolution of 2.5 x 2.5 km2 (Jalkanen et al., 2016). A comparative analysis indicates that EMEP gridded inventories are overestimated, in particular over hotspots in the Mediterranean shipping routes, and underestimated in secondary routes.

References:

Authors: We have amended that the suggestion.

25. Reviewer #3: Figure 3: Please review the units used along the manuscript, like “m/s”

Authors: We have harmonized the use of units as ms$^{-1}$.
Ozone source apportionment during peak summer events over southwestern Europe

María Teresa Pay¹, Gotzon Gangoiti², Marc Guevara¹, Sergey Napelenok³, Xavier Querol⁴, Oriol Jorba¹, Carlos Pérez García-Pando¹

¹Earth Sciences Department, Barcelona Supercomputing Center, BSC, c/Jordi Girona, 29, 08034 Barcelona, Spain
²Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, ETSI-Bilbao School of Engineering, Alda. de Urquijo s/n, E-48013 Bilbao, Spain.
³U.S. EPA, Research Triangle Park, NC, USA.
⁴Institute of Environmental Assessment and Water Research, IDAEA-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain.

Correspondence to: María Teresa Pay (maria.pay@bsc.es)

Abstract. It is well established that in Europe, high O₃ concentrations are most pronounced in southern/Mediterranean countries due to the more favorable climatological conditions for its formation. However, the contribution of the different sources of precursors to O₃ formation within each country relative to the imported (regional and hemispheric) O₃ is poorly quantified. This lack of quantitative knowledge prevents local authorities from effectively designing plans that reduce the exceedances of the O₃ Target Value set by the European Air Quality Directive. O₃ source attribution is a challenge because the concentration at each location and time results not only from local biogenic and anthropogenic precursors, but also from the transport of O₃ and precursors from neighbouring regions, O₃ regional and hemispheric transport and stratospheric O₃ injections. The main goal of this study is to provide a first quantitative estimation of the contribution of the main anthropogenic activity sectors to peak O₃ events in Spain relative to the contribution of imported (regional and hemispheric) O₃. We also assess the potential of our source apportionment method to improve O₃. Our study applies and thoroughly evaluates a countrywide O₃ source apportionment method implemented in the CALIOPE air quality forecast system for Spain at high resolution (4 x 4 km²) over the Iberian Peninsula (IP) to understand and quantify the origin of peak O₃ events over a 10-day period covering the most frequent synoptic conditions characterized by typical summer conditions in the Iberian Peninsula (IP). The method tags both O₃ and its gas precursor emissions from source sectors within one simulation and each tagged species is subject to the typical physical processes (advection, vertical mixing, deposition, emission and chemistry) as the actual conditions remain unperturbed. We quantify the individual contributions of the largest NOₓ local sources to high O₃ concentrations compared to the contribution of imported O₃. We show for the first time that imported O₃ is the largest input to the ground-level O₃ concentration in the IP, accounting for 46% to 68% of the daily mean O₃ concentration during exceedances of the European Target Value. The hourly imported O₃ increases during typical northwestern advections (70-90%, 60-80 µg/m³), and decreases during typical stagnant conditions (30-40%, 30-60 µg/m³) due to the local NO titration effect. During stagnant conditions, the local anthropogenic precursors control the O₃ peaks in areas downwind of the main urban and industrial regions (up to 40% in hourly peaks). We also show that ground-
level O₃ concentrations are strongly affected by vertical mixing of O₃-rich layers present in the free troposphere, which result from local/regional layering and accumulation, and continental/hemispheric transport. Indeed, vertical mixing largely explains the presence of imported O₃ at ground level in the Iberian Peninsula. Our results demonstrate the need for detailed quantification of the local and remote contributions to high O₃ concentrations for local O₃ management, being the O₃ source apportionment an essential analysis prior to the design of O₃ mitigation plans in any non-attainment area. To achieve the European O₃ objectives in southern Europe and after the estimated relative importance of the imported O₃ to local generation from anthropogenic precursors, requires not only strong ad hoc local actions should be complemented by but also decided national and European-wide strategies.

1 Introduction

Tropospheric ozone (O₃) is an air pollutant of major public concern as it harms human health (WHO, 2013) and sensitive vegetation (Booker et al., 2009), and contributes to climate change (Jacob and Winner, 2009). O₃ is formed in the atmosphere through nonlinear photochemical reactions among carbon monoxide (CO), peroxy radicals generated by the photochemical oxidation of volatile organic compounds (VOC), and nitrogen oxides (NOₓ) (Crutzen, 1973). Therefore, meteorological stagnation, high temperature, and low precipitation enhance tropospheric O₃ formation (Demuzere et al., 2009; Otero et al., 2016). Atmospheric circulation also controls the short and long-range transport of O₃ affecting its lifetime in the atmosphere (Monks et al., 2015). For example, the transport of precursors emitted in urban and industrialized areas may cause O₃ production downwind (Holloway et al., 2003).

According to the European Environmental Agency (EEA) around 95-98% of the population in Europe during 2013-2015 were exposed to O₃ concentrations that exceeded the guidelines of the World Health Organization (WHO) (EEA, 2017). These guidelines establish a maximum daily 8-hour averaged (MDA8) O₃ concentration of 100 µgm⁻³ never to be exceeded. The European Air Quality Directive (2008/50/EC) is less restrictive as it sets an O₃ Target Value of 120 µgm⁻³ for the MDA8 concentration, which can be exceeded up to 25 days per calendar year averaged over three years.

Southern European countries around the Mediterranean Basin are particularly exposed to exceedances of the O₃ Target Value in summer due to the influence of frequent anticyclonic and clear-sky conditions that favour photochemical O₃ formation in the troposphere (EEA, 2017). In addition, its geographic location also makes the Basin a receptor of the long-range transport of pollution from Europe, Asia and even North America (Lelieveld et al., 2002; Gerasopoulos, 2005). The importance of long-range transport on surface O₃ has been studied in the Mediterranean Basin, indicating that the emission sources within the Basin have a dominating influence on surface O₃, while remote sources are more important than local sources for O₃ mixing ratios at higher altitudes (Richards et al., 2013; Safieddine et al., 2014). Recent studies suggest that the upper O₃-rich air masses could increase the surface O₃ concentration in the Mediterranean Basin (Kalabokas et al., 2017;
Further detailed and quantitative studies on the mechanism linking upper O$_3$-rich layer with increases of the ground-level O$_3$ concentration in episodes need further clarification particularly regarding the contribution of O$_3$ transported at regional and hemispheric scales.

Several studies in the Iberian Peninsula (IP) have addressed the causes of O$_3$ episodes looking at the circulation of air masses (Millán, 2014, and references therein). In the Atlantic region, the blocking anticyclones over Western Europe favour the inter-regional transport of O$_3$ in the area and its accumulation for several days during the most severe episodes (Alonso et al., 2000; Gangoiti et al., 2002, 2006; Valdenebro et al., 2011; Saavedra et al., 2012; Monteiro et al., 2016). On the other hand, in the Mediterranean coast, the typical summer synoptic meteorological conditions with a lack of strong synoptic advection, combined with the orographic characteristics and the sea and land breezes, favour episodes where high levels of O$_3$ are accumulated by recirculation of air masses loaded with O$_3$ precursors (Millán et al., 1997 and 2000; Toll and Baldasano, 2000; Gangoiti et al., 2001; Pérez et al., 2004; Jiménez et al., 2006; Gonçalves et al., 2009; Millán, 2014, Querol et al., 2017; Querol et al., 2018). The coupling between synoptic and mesoscale processes governing the levels of O$_3$ in the Western Mediterranean Basin need further research in order to understand the O$_3$ intercontinental contribution. Furthermore, from our understanding there is a lack of research quantifying the contribution of the activity sources to the O$_3$ local formation during peak events in this region.

O$_3$ analyses in the Western Mediterranean Basins show that regional background O$_3$ levels have remained high without significant changes (EEA, 2016; EMEP-CCC, 2016; Querol et al., 2016). However, they have increased at traffic and urban background sites (EEA, 2016; Querol et al., 2016; Sicard et al., 2016; Saiz-López et al., 2017). The reasons behind the urban O$_3$ upward trend are not clear yet due to the complex VOC-NOx regime; part of the O$_3$ increase may have resulted from the reduction of NO emissions relative to NO$_2$ and therefore to a lower NO titration effect in VOC-limited situations. The reasons behind the urban O$_3$ upward trend are not clear yet; it might be a result of the reduction of NO emissions relative to NO$_2$ and therefore a lower NO titration effect or the fact that urban O$_3$ formation is VOC limited, and a reduction in NO$_x$ emissions might enhance O$_3$ formation. The most intense O$_3$ events in the last decade, measured by the number of exceedances of the O$_3$ Target Value are recorded over areas downwind of large urban and industrial hot spots (Monterio et al., 2012; Querol et al., 2016; EEA, 2016). Overall, the number of these type O$_3$ events occur in June-July and during summer heatwaves (i.e., 2003 and 2015).

According to the European Air Quality Directive, in zones exceeding the O$_3$ Target Value, Member States must develop plans to attain compliance by reducing the emission of O$_3$ precursors. Abatement of tropospheric O$_3$ concentration in the Western Mediterranean Basin has been insufficient so far (Querol et al., 2018). Effective planning requires an accurate quantitative knowledge of the sources of these precursors and their respective contributions to the exceedances of the O$_3$ Target Value (Querol et al., 2016; Borrego et al., 2015). However, source attribution of surface O$_3$ concentration remains a
challenge, because the concentration at each location and time results not only from local biogenic and anthropogenic precursors, but also from the transport of O₃ and its precursors from neighbouring regions, O₃ hemispheric transport (UNECE, 2010), and stratospheric O₃ injections (Monks et al., 2015).

At present, there are no methods based on observations that distinguish the origin of O₃. Despite their inherent uncertainties, Chemical Transport Models (CTMs) allow apportioning the contribution of any source (by sector and/or region) to O₃ concentrations. The most widely used approach is the “brute force” method, which consists on running an ensemble of simulations zeroing out the sources one by one and then comparing them with a baseline simulation that accounts for all of the sources. Several O₃ source apportionment studies at European scale have applied the brute force method to quantify the contribution of one or two emission sectors. For example, road transport emissions with the EMEP model (Reis et al., 2000), biogenic and anthropogenic emissions with the Polyphemus model (Sartelet et al. 2012), transport-related emissions including road transport, shipping, and aviation with the WRF-CMAQ model (TRANSPHORM, 2014), and ship emissions with CAMx (Aksoyuglu et al., 2016). This approach Brute force is simple to implement, as it does not require additional coding in the CTM. However, as it quantifies the contribution of each source based on its absence, it does not reproduce actual atmospheric conditions, and therefore it is susceptible to inaccuracies in the prediction of O₃ peaks under non-linear regimes (Cohan and Napelenok, 2011). Actually, brute force is not suitable to retrieve source contributions when the relationship between emissions and concentration is non-linear. Despite these limitations, brute force but it is useful for analysing the concentration responses to emission abatement scenarios (Clappier et al., 2017).

Recently, CTMs include algorithms that tag multiple pollutants by source (region and/or sector) all the way through the pollutant’s lifetime, from emission to deposition. This integrated source apportionment approach has several advantages. First, it allows identifying the main sources contributing to high O₃ levels under actual atmospheric conditions, which is a preliminary step towards designing refined and efficient emission abatement scenarios. Second, as we show below, it supports enhanced model evaluation and therefore potential model improvements by identifying problems in emission estimates (sectors or regions) or chemical boundary conditions. The Integrated Source Apportionment Method (ISAM) within the Community Multiscale Air Quality (CMAQ) model has shown promising results for O₃ tagging, exhibiting less noise in locations where brute force results are demonstrably inaccurate (Kwok et al., 2013, 2015). Recent ISAM experiments have quantified that the contribution of traffic in the cities of Madrid and Barcelona to the daily O₃ peaks downwind of the urban areas is particularly significant (up to 80-100 µgm⁻³) (Valverde et al., 2016a). O₃ tagging methods are also included in other regional and global models applied over Europe (Karamchandani et al., 2017; Butler et al., 2018).

The integrated source apportionment tools combined with high-resolution emission and meteorological models can help unravelling the sources responsible for peak summer events of O₃ in the Western Mediterranean Basin. Quantifying the contribution of emission sources during acute O₃ episodes is a prerequisite for the design of future mitigation strategies in the
region. In this framework, the main goal of this study is to provide a first quantitative estimation of the contribution of the main anthropogenic activity sectors compared to the imported concentration (regional and hemispheric) to peak \(O_3 \) events in Spain. We also assess the potential of our source apportionment method to improve \(O_3 \) modelling. Our study applies for the first time a countrywide \(O_3 \) source apportionment at high resolution over the Iberian Peninsula to investigate the local sources responsible for high \(O_3 \) concentration compared to the imported (regional and hemispheric) \(O_3 \) during a typical summer episode. Our analysis focuses on the period between July 21st and 31st, 2012, which is representative of the typical summer synoptic conditions in the region. We use the CMAQ-ISAM within the CALIOPE air quality forecast system for Spain (www.bsc.es/caliope), which runs at 4-km horizontal resolution of 4x4 km\(^2\) over the IP. The system is fed by the HERMESv2.0 emission model, which provides disaggregated emissions based on local information and state-of-the-art bottom-up approaches for the most polluting sectors.

The paper is organized as follows. In Section 2 we introduce the CALIOPE system, the set-up of ISAM and the HERMESv2.0 emission model for \(O_3 \) source apportionment studies, and the methodology used to quantify evaluate the model. In Section 3 we demonstrate the representativeness of the selected episode, we evaluate the model, and we provide an analysis of the source-sector contribution to the Spanish \(O_3 \) under the different synoptic patterns occurring during the study period. In Section 4, we discuss our findings, the regulatory implications, and future research.

2 Methodology

2.1 Air quality model

We used the CALIOPE air quality modelling system (www.bsc.es/caliope) to simulate the \(O_3 \) dynamics over the IP during the selected episode. CALIOPE is described elsewhere (Baldasano et al., 2008; Pay et al., 2014; Valverde et al., 2016a; and reference therein). The system consists of the HERMESv2.0 emission model (Guevara et al, 2013), the WRF-ARWv3.6 meteorological model (Skamarock and Klemp, 2008), the CMAQ v5.0.2 chemical transport model (Byun and Schere, 2006) and the BSC-DREAM8bv2 mineral dust model (Basart et al., 2012). CALIOPE first runs over Europe at 12-km resolution (12x12 km\(^2\), named EU12 domain) and then over the IP at 4-km resolution (4x4 km\(^2\), named IP4 domain) [Fig. S1]. In the present work, the system is configured with 38 sigma layers up to 50 hPa, both for WRF and CMAQ. The planetary boundary layer is characterized with approximately 11 layers, where the bottom layer’s depth is ~39 m. The EU12 domain uses meteorological initial and boundary conditions from the Final Analyses provided by the National Centers of Environmental Prediction (FNL/NCEP) at 0.5\(^\circ\) by 0.5\(^\circ\). The first 12 h of each meteorological run are treated as cold start, and the next 23 h are provided to the chemical transport model. Boundary conditions for reactive gases and aerosols come from the global MOZART-4/GEOS-5 model at 1.9\(^\circ\) by 2.5\(^\circ\) (Emmons et al., 2010). CMAQ uses the CB05 gas-phase mechanism with active chlorine chemistry, an updated toluene mechanism (CB05TUCL; Whitten et al., 2010; Sarwar et al., 2012), and the sixth generation CMAQ aerosol mechanism including sea salt, aqueous/cloud chemistry and the ISORROPIA II
thermodynamic equilibrium module (AERO6; Reff et al., 2009; Appel et al., 2013). Table S1 depicts the remaining CALIOPE configuration options.

For the IP4 domain, HERMESv2.0 estimates emissions for Spain with a temporal and spatial resolution of 1 h and up to 1 km by 1 km, according to the Selected Nomenclature for Air Pollution (SNAP), which are then aggregated to 4-km resolution (Guevara et al., 2013). HERMESv2.0 is suitable for source apportionment studies thanks to its level of detail in the calculation of the emission fluxes by source (Guevara et al., 2014). HERMESv2.0 is currently based on 2009 data, which is the most recent year with updated information on local emission activities in HERMES at the time this work started. For neighbouring countries and international shipping activities, HERMESv2.0 uses the annual gridded national emission inventory provided by the European Monitoring and Evaluation Programme (EMEP) disaggregated to 4-km resolution using a SNAP-sector-dependent spatial, temporal and speciation treatment (Ferreira et al., 2013). The VOC and NOx emissions from vegetation, which are critical in the formation of O3, are estimated with the Model of Emissions of Gas and Aerosols from Nature (MEGANv2.0.4; Guenther et al., 2006) using temperature and solar radiation from the WRF model. HERMESv2.0 is suitable for source apportionment studies thanks to its level of detail in the calculation of the emission fluxes by source (Guevara et al., 2014).

HERMESv2.0 integrates the Model of Emissions of Gas and Aerosols from Nature (MEGANv2.0.4; Guenther et al., 2006) to estimate VOCs and NOx emissions from vegetation, which play a major role on O3 photochemistry, using temperature and solar radiation from the WRF model. Note that we configured MEGAN to compute VOC emissions from cultivated crops; the agriculture emission module in HERMESv2.0 estimates the VOC from manure management and field burning of agricultural residues. In this study, we have updated MEGANv2.0.4 with emission factors from MEGANv2.1 (http://lar.wsu.edu/megan/guides.html). In Sect. 2 of the supplement, we provide a comparison with measurements from the DAURE campaign (Pandolfi et al., 2014) showing the reasonably good behaviour of our modelled isoprene.

Urban VOC emissions could be a relevant source of O3 concentration. Over Spanish urban areas, HERMESv2.0 estimates VOC emissions from road transport and the use of solvents (Fig. 1) following bottom-up approaches (Guevara et al., 2013). However, uncertainties in the estimation of urban VOC emission inventories, as stated recently by several works (Pan et al., 2015; Liu et al., 2017; McDonald et al., 2018; Lewis, 2018) makes uncertain the urban VOC contribution to tropospheric O3 concentrations. In order to overcome this problem, continuous monitoring of urban VOC should be performed in Spanish cities, following the example of other regions in which O3 is also a major problem such as Mexico City (Jaimes-Palomera et al., 2016). In addition, the use of formaldehyde satellite observations to constrain urban VOC emissions could be also pointed out as a future task to improve the representativeness of urban emission inventories (Zhu et al., 2014).
2.2 Ozone source apportionment method

We applied ISAM to quantify contributions from different SNAP categories to the surface O₃ over the IP. The ISAM O₃ tagging method is a mass balance technique that tags both O₃ and its gas precursor emissions (NOₓ and VOC) from each source sector within one simulation (Kwok et al., 2013, 2015). Each tagged species undertakes typical physical processes (advection, vertical mixing, deposition, emission and chemistry) without perturbing the actual conditions. The O₃ rate of change for each tag in any grid cell is calculated as follows (Eq. 1):

\[
\frac{dC_{\text{tag}}}{dt} = P_{\text{tag}} \cdot D \frac{v_{\text{tag}}}{\Sigma_{\text{tag}} C'}
\]

(1)

Where \(C_{\text{tag}} \) represents the O₃ concentration related to a tagged source of interest, \(P_{\text{tag}} \) is the chemical production rate of O₃ formed by the precursors emitted for each tag, and D is the total chemical destruction rate of O₃ in this grid cell. Different ratios of NOₓ/VOC cause the formation of O₃ in each grid cell, which is controlled either by NOₓ- or VOC-limited conditions. ISAM uses the ratio \(\text{H}_2\text{O}_2/\text{HNO}_3 \) to determine whether O₃ is NOₓ- or VOC-sensitive (above or below 0.35, respectively) (Zhang et al., 2009). The bulk O₃ concentration in each model grid cell (\(P_{\text{bulk}} \)) is equal to the sum of O₃ tracers that were produced in either NOₓ or VOC-sensitive conditions (Eq. 2),

\[
P_{\text{bulk}} = \sum_{\text{tag}} P_{\text{tag}} = \sum_{\text{tag}} P_{\text{tag}}^N + \sum_{\text{tag}} P_{\text{tag}}^V
\]

(2)

where \(P_{\text{tag}}^N \) and \(P_{\text{tag}}^V \) are the O₃ produced under NOₓ- and VOC-limited conditions, respectively according Eqs. 3 and 4:

\[
P_{\text{tag}}^{\text{new},N} = P_{\text{tag}}^{\text{old},N} + P_{\text{bulk}}^{\text{new}} \frac{\Sigma_{\text{NO}_x\text{tag}}}{\Sigma_{\text{NO}_x\text{tag}}} \]

(3)

\[
P_{\text{tag}}^{\text{new},V} = P_{\text{tag}}^{\text{old},V} + P_{\text{bulk}}^{\text{new}} \frac{\Sigma_{\text{VOC}_{x\text{tag}}} \times \text{MIR}_y}{\Sigma_{\text{VOC}_{x\text{tag}}} \times \text{MIR}_y} \]

(4)

\(\text{NO}_x\text{tag} \) and \(\text{VOC}_{x\text{tag}} \) are the concentrations of the \(x \) nitrogen and \(y \) VOC species in CB05 that participate in the photochemical O₃ formation for each source sector tag and grid cell. MIR \(_y\) is the maximum incremental reactivity factor of each \(y \) species of VOC emitted by each source sector tag, corresponding to the O₃ generating potential of each single VOC species (Carter, 1994).
2.3 Ozone tagged species

Table 1 summarizes the O\textsubscript{3} tagged sources in the present study and Fig. 1a depicts the HERMESv2.0’s estimates of the contribution by each SNAP category to the total emissions of O\textsubscript{3} precursors in Spain. The largest NO\textsubscript{x} sources are road transport (SNAP7; 42%), non-road transport (SNAP8; 19%), manufacturing industries (SNAP34; 16%), and energy production (SNAP1; 16%). VOC are dominated by biogenic sources (SNAP11; 70%) and to a lesser extent by the agricultural sector (SNAP10; 11%), solvent and other product uses (SNAP6; 9%) and road transport (SNAP7; <7%). The selected (tagged) SNAP categories in this study are the energy, industrial, road transport and non-road transport sectors (Fig. 1b), which account for the 92% of the total NO\textsubscript{x} emissions in Spain. An additional tracer (OTHR) gathers the remaining emission categories that were not explicitly tracked (i.e., SNAP2, 5, 6, 9, 10 and 11).

In addition to the selected sources, we tracked the contributions of the chemical boundary conditions (BCON) and the initial conditions (ICON). BCON represents both the O\textsubscript{3} directly transported through the IP4 domain boundaries and the formation of O\textsubscript{3} resulting from precursors that are also transported through the boundaries. BCON O\textsubscript{3} comes from the EU12 parent domain, which includes the O\textsubscript{3} produced in Europe and the O\textsubscript{3} transported at global scale (both tropospheric and stratospheric O\textsubscript{3}) provided by the MOZART-4/GEOS model (Fig. S1). Hereinafter, we name BCON O\textsubscript{3} as the imported O\textsubscript{3} to the IP4 domain. Tagging the O\textsubscript{3} initial allows quantifying the number of spin-up days to minimize the impact of model initialization. For the present run, we required 6 days of spin-up to set the contribution of initial conditions to less than 1% of the net hourly O\textsubscript{3} concentration over 95% of the available O\textsubscript{3} stations.

2.4 Evaluation method

We evaluate the simulated concentrations against air quality measurements from the Spanish monitoring stations that are part of the European Environment Information and Observation Network (EIONET; https://www.eionet.europa.eu/). The EIONET network provides a relatively dense geographical coverage of the Spanish territory. During the July 21st-31st episode we used the measurements from 347 stations for O\textsubscript{3} and 357 stations for NO\textsubscript{2} with a temporal coverage above 85% on an hourly basis. Fig. S2 shows the distribution of the stations for O\textsubscript{3} and NO\textsubscript{2}.

The evaluation based on discrete statistics includes the correlation coefficient (r), Mean Bias (MB), Normalized Mean Bias (NMB) and the Root Mean Square Error (RMSE) (Appendix B). We used the package “openair” (Carslaw and Ropkins, 2012) for R (v3.3.2; R Core Team, 2016) to compute the statistics. We calculate statistics on an hourly basis for O\textsubscript{3} and NO\textsubscript{2}, as well as for the regulatory MDA8 in the case of O\textsubscript{3}. The evaluation also takes into account the station type, following the categories established by the EEA (i.e., rural background, suburban background, urban background, industrial and traffic).
There are no direct evaluation methods for apportioned pollutants. Instead, we designed a diagnostic plot for source apportionment analysis at each individual receptor, including a time series of measured and observed O₃ and NO₂ concentrations together with the simulated tagged sources. In addition, this plot includes the simulated wind speed and direction. These plots are helpful as they compare the modelled O₃ and NO₂ with the observations, while highlighting the sources and circulation patterns at least partly responsible for the model behaviour. This work will only discuss in detail the source apportionment plots at key O₃ receptor regions, given the high number of stations (260) that simultaneously measure O₃ and NO₂.

Evaluation results will be discussed together with the source apportionment results. On the one side, the interpretation of the source apportionment results benefits from model evaluation. On the other side, the source apportionment results support enhanced model evaluation as it allows identifying potential errors in emission estimates for specific sectors and/or in the chemical boundary conditions.

3 Results

3.1 Description of the ozone episode

In 2012, the largest O₃-episode in Europe occurred between July 21st and 31st. That period alone comprised 33% of the total number of exceedances of the information threshold, and 12% of the number of exceedances of the O₃ Target Value in 2012 (EEA, 2013). In Spain, around 60% of the annual exceedances also occurred during this period. (As shown in Querol et al. (2016) July is typically the month with the highest number of O₃ exceedances in Spain.) The episode affected the central and north of the IP (Fig. 2c), in particular the 90th percentile of the MDA8 O₃ concentration exceeded the Target Value at the surroundings of the Madrid Metropolitan Area (MMA), and an area located north of the Barcelona Metropolitan Area (BMA), which correspond to hotspots and the tail end of large urban and/or industrial plumes.

Figure 2a shows the observed MDA8 O₃ concentrations trends at the Spanish EIONET stations during the (extended) summers (i.e., from April to September) from 2000 to 2012, together with the values recorded during the selected episode. We have categorized the MDA8 O₃ concentrations by station type. Rural background stations show the highest MDA8 O₃ concentrations during the episode followed by industrial, traffic and urban stations, which is consistent with the observed previous summer patterns. More specifically, the episode shares a similar 75th percentile (75p) of the MDA8 O₃ concentrations at rural background stations above the Target Value with the particularly severe summer of 2003 (Solberg et al., 2008). Note that the MDA8 O₃ concentrations at rural and urban background sites barely changed between 2000 and 2012, which suggests that the benefits from European emission controls may have been significantly counterbalanced by increasing background O₃ (Monks et al., 2015). In contrast, the MDA8 O₃ concentrations at TR and IN sites slightly
increased, likely because of a lower O\textsubscript{3} titration due to the preferential abatement of NO vs. NO\textsubscript{2}. However, we need more research on O\textsubscript{3} source apportionment to confirm this hypothesis (Querol et al., 2016; Sicard, et al., 2016).

Our first estimation of the origin of peak O\textsubscript{3} events in Spain focuses on the episode July 21st -31st, 2012. Figure 2a illustrates the relevance of the episode showing the observed MDA8 O\textsubscript{3} concentrations trends at the Spanish EIONET stations during the (extended) summers (i.e., from April to September) from 2000 to 2012, together with the concentrations recorded during the episode. Although the selected episode is not the most severe between 2000 and 2012 at national scale, it comprises a period with high MDA8 O\textsubscript{3} concentrations measured at rural background stations, actually the 75th percentile of those values was above the Target Value, similar to the particularly severe summer of 2003 (Solberg et al., 2008).

This episode is also interesting because it was widespread and affected big parts of Europe (EEA, 2013). Only during this period 33\% and 12\% of the total number of exceedances for the information threshold and the Target Value in 2012, respectively, were measured. The O\textsubscript{3} regional context of the episode allows us to study the influence of the imported O\textsubscript{3} to Spain.

The maps of the 90th percentile of the measured MDA8 O\textsubscript{3} concentrations over Spain (Fig. 2b) show high concentration spots all over the domain. The exceedances of the Target Value were found in the surroundings of large urban areas (Madrid, Barcelona, Valencia, Seville) and along Spanish valleys (i.e., Ebro Valley, Guadalquivir Valley).

Figure 2b shows the number of observed exceedances of the O\textsubscript{3} Target Value per day during the selected episode. There were more than 100 exceedances of the O\textsubscript{3} Target Value in most of the days during the episode, with relative maxima on July 25th, 28th and 31st attributed to the change in the synoptic conditions (Fig. 3). Figure 3 shows the meteorological patterns (2m temperature, 10m wind, precipitation, mean sea level pressure and geopotential height at 500 hPa) modelled by WRF-ARW during the three distinctive days over the outer EU12 domain.

Our characterization of the study period is based on the circulation type classification proposed in Valverde et al. (2014), who developed an objective synoptic classification method over the period 1983–2012, specifically designed to study air quality dynamics over the IP. Stagnant conditions and northwestern advections are the most frequent summer synoptic circulation patterns over the IP, occurring ~44\% of the days in a year (Jorba et al., 2004; Valverde et al., 2014).

Stagnant conditions are characterized by reduced surface pressure gradients and weak synoptic winds, intense solar radiation, and the development of the Iberian Thermal Low (ITL). The ITL forces the convergence of surface winds from the coastal areas towards the central plateau enhancing sea breezes and mountain-valley winds and subsidence over the Western Mediterranean Basin as described by (Millán et al., 1997, 2000; Millán 2014). In contrast, northwestern advections (NWad) transport air masses from the Atlantic towards the north and west of the IP and they are characterized by atmospheric
instability and intense ventilation. Periods of accumulation and venting of pollutants follow the same sequence of pressure
ridgeing and throughing respectively, of the lower and middle troposphere of the IP during the warm season (Querol et al., 2017, 2018). According to the circulation type classification in Valverde et al. (2014), the selected episode started with the development of an accumulation-the ITL period (July 21st-25th), followed by a NWad-venting period (July 26th-29th) and ended with the development of another ITL (July 30th-31st).

Figure 4 shows the 90th percentile (90p) of the simulated hourly O₃ and NO₂ concentrations corresponding to the three distinctive days with the relative maxima of exceedances. In the northern Spanish Mediterranean areas, intense O₃ episodes often affect the plains and valleys located 60 km north of the BMA-Barcelona Metropolitan Area (BMA) in summer (Toll and Baldasano, 2000; Gonçalves et al., 2009; Valverde et al., 2016a; Querol et al., 2017). High NOₓ concentrations from the BMA combined with high summer biogenic VOC levels are driven inland by mesoscale processes (sea breezes and mountain-valley winds), channelled by north-south valleys towards an intra-mountain plains located 60 km north of the BMA. This happened on July 31st when the highest 90p of the hourly O₃ concentrations (160-180 µgm⁻³) in Spain occurred over the N-north and NW-northwest of the BMA. Occasionally, as it happened on July 25th, anticyclonic winds over the western Mediterranean Sea deflect the sea-breeze flow enriched with precursors from the BMA towards the Gulf of Lion where it reaches the highest 90p of the hourly O₃ concentrations (160-180 µgm⁻³) in the IP Mediterranean region. Eastern Spanish Mediterranean areas show similar O₃ dynamics, with inland regions depicting the highest O₃ peaks (140-160 µgm⁻³) when low-pressure gradients/stagnant conditions cover central and eastern IP.

In the centre of the IP, intense O₃ episodes occurred during the development of the ITL, where the affected area depends on the synoptic conditions (Querol et al., 2018). Under the absence of synoptic forcing (e.g., July 25th), the MMA had the highest 90p of the hourly O₃ concentrations (~140-160 µgm⁻³). In contrast, when mountain valley winds are reinforced with synoptic westerlies (e.g., July 31st) (Fig. 3) the urban NOₓ plume is channelled along the mountain ranges in Madrid towards the northeast and the highest 90p of the hourly O₃ concentrations are found along the valley (~140-160 µgm⁻³).

In the northern and northeastern of the IP, the 90p of the hourly O₃ concentrations show a significant increase when the blocking anticyclone over Western Europe is combined with the development of the ITL (e.g. July 25th). The stagnant conditions favour the accumulation of O₃ precursors around main cities and industrial areas and enhance the local O₃ formation.

The NWad pattern (e.g., July 28th) significantly decreases the 90p of the hourly O₃ concentrations in the central and northeastern of the IP. The northwesterly winds decrease the temperature and therefore the O₃ formation. As consequence, O₃ levels are reduced in the plumes from the BMA and the MMA, although they are still significant in the latter. Overall, the
90p of the hourly O₃ concentrations during the NWadv pattern were ~100 µgm⁻³ in most background areas. In contrast, during the ITL it was above 120 µgm⁻³.

3.2 Statistical evaluation

CALIOPE has been evaluated in detail elsewhere (Pay et al., 2014 and references therein). Furthermore, the system has been evaluated using the DELTA-Tool (Thunis and Cuvelier, 2014) tool developed by the Forum for Air Quality Modelling in Europe, named DELTA-Tool (Thunis and Cuvelier, 2014) to support and harmonize the model evaluation in the frame of the Air Quality Directive. Valverde et al. (2015; 2016) used the DELTA-Tool v4.0 and showed that the CALIOPE system accomplishes the quality objectives as defined in the Air Quality Directive for 78% of the NO₂ and 91% of the NO₂ and O₃ monitoring stations in summer conditions during the summer of 2012. Here, we evaluate the updated version of CALIOPE using ISAM to quantify the system’s ability to reproduce O₃ and NO₂ concentrations during the selected episode. Table 2 compiles the quartiles of the statistics calculated by station type. (Note that there are stations not fitting any of the four categories (i.e., IN, TR, UB and RB), so the exceedance/station numbers in the IN/TR/UB/RB rows do not sum up to the numbers in the “ALL” rows.)

The model slightly overestimates the average hourly and MDA8 O₃ concentrations with MB of +12 µgm⁻³ and +6 µgm⁻³, respectively. The r is above 0.6 in more than 50% of the stations and above 0.7 in 25% of them. The MB for average hourly and MDA8 O₃ concentrations are lower at RB stations (+4 µgm⁻³) than at IN, TR and UB stations (between +6 and +16 µgm⁻³) in 50% of the stations. As expected, the highest number of exceedances of the O₃ Target Value was recorded at RB stations (260 exceedances) followed by IN stations (204 exceedances).

At RB stations, average hourly O₃ is overestimated (+4 µgm⁻³) and MDA8 O₃ is underestimated (-4 µgm⁻³), which indicates that nighttime O₃ is overestimated. The nighttime overestimation is a common feature of CTMs and it is typically attributed to the underestimation of vertical mixing during nighttime stable conditions and to underestimation of the O₃ titration by NO (Bessagnet et al., 2016; Sharma et al., 2017).

CALIOPE underestimates the average hourly NO₂ concentrations with -7 µgm⁻³ at TR stations and -2 µgm⁻³ at RB stations. This partly explains the high overestimation of the average hourly and MDA8 O₃ concentration at TR and UB stations, as well as the systematic overestimation of average hourly O₃ concentration at nighttime (due to a lack of O₃ titration by NO).

The average hourly NO₂ concentration at TR stations feature the highest r (with 25% of stations above 0.6), which proves the reasonably accurate representation of temporal emission in urban areas by the HERMESv2.0 (Guevara et al, 2014; Baldasano et al., 2011). In contrast, the RMSE is highest at TR stations, which results from the underestimation of NO₂ peaks during traffic rush hours. Underestimation of NO₂ traffic peaks is a common problem in Eulerian mesoscale models (Pay et al., 2014), as emission heterogeneity is lost in the grid cell-averaging process, which is especially critical in urban
areas. Next generation microscale models will potentially solve this problem (Lateb et al., 2016). Besides the dilution of the emission in the grid, meteorology also may play an important role in the low performance of NO$_2$ and O$_3$ in hotspot areas. Several inter-comparison studies (e.g., EURODELTA and AQMEII) agree on the limitations of models to simulate meteorological variables that affect the average hourly NO$_2$ temporal variability, which controls model performance for O$_3$ in high NO$_x$ environments and areas downwind (Bessagnet et al., 2016; Solazzo et al., 2017).

Figure 5 classifies the average hourly and MDA8 O$_3$ concentrations at the air quality stations into four MB categories that account for the 93% of the stations. There are two categories with the lowest hourly O$_3$ MB (±10 μg m$^{-3}$): type A with a MDA8 O$_3$ MB between -40 and -10 μg m$^{-3}$ and type B with MDA8 O$_3$ MB of ±10 μg m$^{-3}$. There are two categories with the highest hourly O$_3$ MB (between 10 and 40 μg m$^{-3}$): type C with a MDA8 O$_3$ MB of ±10 μg m$^{-3}$ and the type D with MDA8 O$_3$ MB between 10 and 40 μg m$^{-3}$. In addition, Fig. S2 depicts the MB, RMSE and r for hourly and MDA8 O$_3$ and hourly NO$_2$ concentrations. The best performances for O$_3$ (type B) are found at the 28% of the stations, located in the surroundings of the MMA, the BMA and most of the northern Mediterranean stations, which is consistent with the highest r (0.6 < r < 0.9) found in the centre and north of the IP (Fig S3, Fig S4). The highest O$_3$ overestimations (type D) are present at 36% of the stations, mainly located in highly industrialized areas in Spain (Guadalquivir Valley, Strait of Gibraltar, Valencia) and inside the MMA. Next sections analyze the origin of these O$_3$ biases using the source apportionment time series.

The comparison with previous CALIOPE studies (Baladasano et al., 2011; Pay et al., 2014) indicates that r is in the same range for O$_3$ (0.6-0.7) and NO$_2$ (0.4-0.5) at individual stations; the same applies to the RMSE (15-29 μgO$_3$ m$^{-3}$ and 10-20 μgNO$_2$ m$^{-3}$). Modelled O$_3$ shows higher performance at traffic stations in large cities, since stations influenced by road transport emissions (i.e., high-NOx environments) are better characterized with a more pronounced daily variability (Baladasano et al., 2011). At European scale, several model intercomparisons (Giorando et al. 2015; Bessagnet et al., 2016) indicate that O$_3$ concentrations in summer agree with the surface observations with r between 0.5 and 0.6. NO$_2$ hourly variability is overall underestimated due to uncertainties in the emission estimates and meteorological modelling input and model resolution. These studies highlight the limitations of models to simulate meteorological variables that affect the NO$_2$ hourly variability, and therefore the model performance for O$_3$ in high-NO$_x$ environments and downwind. The comparison with previous CALIOPE studies (Baladasano et al., 2011; Pay et al., 2014) indicates that r is in the same range for O$_3$ (0.6-0.7) and NO$_2$ (0.4-0.5) at individual stations; the same applies to RMSE (15-29 μgO$_3$ m$^{-3}$ and 10-20 μgNO$_2$ m$^{-3}$). Modelled O$_3$ shows higher performance at traffic stations in large cities, since stations influenced by road transport emissions (i.e., high-NO$_x$ environments) are better characterized with a more pronounced daily variability (Baladasano et al., 2011).

Section S4 in the supplement discusses the meteorological evaluation results and their impact on the pollutant concentrations. Not surprisingly, temperature shows the best behaviour when compared with observations (Table S2). The modelled wind speed is overestimated, particularly during nighttime (Fig. S5), coincident with low-level wind speed.
nighttime overestimation of wind is a source of large error compensation for the modelling error in simulated NO\textsubscript{2} and O\textsubscript{3} nighttime concentrations (Vautard et al., 2012; Bessagnet et al., 2016).

3.3 Source-sector ozone contributions during peak episodes

Figure 6 shows the 90th percentile of the average hourly O\textsubscript{3} concentration over the IP tagged by source type (Table 1) for different days (July 25th, 28th and 31st). (Fig. S3 - Fig. S6 in the supplementary material shows similar plots for NO\textsubscript{2}.) The imported O\textsubscript{3} is by far the largest contributor showing a 90th percentile ranging from 70 to 120 µgm-3 in the east/north/centre of the IP on July 25th /28th /31st, respectively. The imported O\textsubscript{3} enters the study domain through the IP4 domain boundaries and it can only be transported, scavenged deposited or depleted by O\textsubscript{3} precursors. Therefore, areas with low imported O\textsubscript{3} concentrations (< 50 µgm-3) are good indicators of (1) the accumulation of specific O\textsubscript{3} precursors that deplete imported O\textsubscript{3}, and (2) the subsequent O\textsubscript{3} photochemical production that occur mostly under stagnant conditions and around the largest industrial/urban areas. The 90th percentile of the hourly imported O\textsubscript{3} concentration shows the lowest values in two different conditions and regions. First, on July 25th in the northwestern IP and Portugal, extremely low winds/stagnant conditions allow the accumulation of local pollutants that titrate imported O\textsubscript{3} concentrations down to 30-70 µgm-3; at the same time O\textsubscript{3} is locally produced due to traffic emission downwind of major northern cities (La Coruña, Gijón, Bilbao) (60-120 µgm-3), shipping activities (up to 40 µgm-3) and the generation of energy and industrial processes (10-20 µgm-3). Second, on July 31st in the northeast of the IP, when the pollutants transported from the Gulf of Lion and Catalonia towards the Mediterranean act as a sink of imported O\textsubscript{3}, reducing its concentration down to 60 µgm-3. As a result, there is a local O\textsubscript{3} formation up to 120-160 µgm-3 along the Ebro Valley and the Lleida Plain. Borrego et al. (2016) also found a reduction of imported O\textsubscript{3} and the subsequent O\textsubscript{3} formation by local sources under similar meteorological conditions.

After the imported O\textsubscript{3}, the largest contributor to O\textsubscript{3} is the road transport sector. Downwind of the major urban areas in Spain (i.e., Madrid, Barcelona, Bilbao, Seville, Valencia, Gijón, Pontevedra), on-road traffic contributed to the 90th percentile of the hourly O\textsubscript{3} concentrations as much as 60-120 µgm-3, and affected different areas depending on the synoptic/mesoscale regimes (Fig. 6). In the northeast of the BMA, the 90th percentile of the hourly O\textsubscript{3} concentration from the road transport sector reaches its maximum when the stagnant conditions affects the centre and eastern IP (e.g., July 31st). As noted above, mesoscale winds carry traffic O\textsubscript{3} precursors from the BMA inland, channelled by north-south valleys towards the intra-mountain plain in the north. Over the MMA, the 90th percentile of the hourly O\textsubscript{3} concentration from the road transport sector showed the maximum when the ITL was combined with the synoptic westerlies (e.g., July 31st), carrying high O\textsubscript{3} as far as to the Ebro Valley, as shown in Fig 4.

Regarding the contribution from the non-road transport sector, the Atlantic regions of the IP show the highest 90th percentile of the average hourly O\textsubscript{3} concentration (25-40 µgm-3) on July 25th. The stagnant condition favoured the accumulation of precursors.
from the Atlantic shipping route and the formation of O_3 within the region. The Spanish Mediterranean region shows the highest 90p of the average hourly O_3 concentrations from the non-road transport sector in front of the southeastern coasts of the IP (~180 µgm$^{-3}$) when the westerlies in the Strait of Gibraltar injected precursors from international shipping into the Mediterranean Basin (e.g., July 28th and 31st). Note that during days with high 90p of the average hourly O_3 concentration from non-road transport, the imported O_3 concentration shows the lowest 90p due to the NO titration effect over emission areas.

The elevated point source emission sectors (i.e., energy and industry) contributed less to O_3 than the traffic sector, but their contributions were significant reaching 15-25 µgm$^{-3}$ of the 90p of the average hourly O_3 concentrations (Fig. 6). The north and northeastern of the IP, the Mediterranean coast, and the Guadalquivir Valley are the most affected regions under stagnant conditions.

The contribution of the remaining sectors (OTHR) to the 90p of the average hourly O_3 concentrations was similar to that of the elevated point sources (15-25 µgm$^{-3}$), but it reached up to 30 µgm$^{-3}$ in areas downwind of Oporto and Lisbon (Fig. 6). OTHR includes the formation of O_3 from the remaining anthropogenic and biogenic sources (accounting for less than 8% of total NO$_x$ emissions, but 93% of total VOC). The high OTHR concentration around the biggest cities in Portugal may be related to precursors emitted by the residential sector (SNAP2 and 9) and biogenic emissions, as found in other source apportionment studies over Portugal (Borrego et al., 2016; Karamchandani et al., 2017).

3.4 Regionalization of source-sector contributions

The analysis of the source-sector contributions to O_3 allowed us to identify ten O_3 receptor regions with similar characteristics in terms of meteorological and O_3-geographical patterns, O_3 dynamics and main source contributors (Fig. 4 and 6). The receptor regions defined in our work are consistent with Diéguez et al. (2014) and Querol et al. (2016), who proposed a similar regionalization based on observations from air quality stations. The O_3 receptor regions are consistent with Diéguez et al. (2014) and Querol et al. (2016), who proposed a similar regionalization based on observations from air quality stations.

Figure 7a shows the absolute O_3 contribution of each tagged source at air quality stations by region along with the modelled and observed daily mean concentration during exceedances of 120 µgm$^{-3}$ of the observed MDA8 ozone. Figure 7b indicates that during exceedances of the MDA8 target value there is a good agreement with the modelled and observed concentrations.
between the sum of apportioned O_3 and the observed concentrations over the receptor regions. Fig. 7b shows the respective fractional mean O_3 contribution. (Table S2 compiles de numerical values of Fig. 7.) We have excluded the ICON O_3 in Table S2 because its contribution is negligible after six days of spin-up. The spatial r between modelled and observed daily mean O_3 concentration during exceedances of the MDA8 target value is 0.79, which indicates that CALIOPE is able to reproduce reasonably well the spatial variability of O_3 during peak episodes in Spain.

The MED region represented by stations in the Balearic Islands shows the highest imported O_3 contribution (76%) because it is relatively far away from important anthropogenic NO$_x$+VOC sources in the IP. Under the ITL influence (July 25th and 31st), MED received air masses enriched with on-road traffic precursors from southern France and the NEIP, which enhanced O_3 production up to 7%. Shipping emissions in the MEDMediterranean region contributed up to 8% of the total O_3.

After MED, there is a cluster of regions along the Spanish Mediterranean coast (i.e., NEIP, EV and EIP) showing imported O_3 contributions between 60 and 68 % of the daily mean O_3 under exceedances. This is explained by their proximity to the eastern boundary and the frequent mesoscale phenomena enhancing the recirculation and accumulation of imported O_3 along the Spanish Mediterranean coasts. The contribution of road and non-road transport is similar (~11-16%) because these regions have both important roads and maritime trade routes. Note that the SIP region, which is also located in the Spanish Mediterranean coast, shows a daily mean imported O_3 concentration lower than the regions along the Spanish Mediterranean coastother Mediterranean regions (~57%) and the highest non-road transport contribution in Spain (19%). The main sink of imported O_3 are precursors resulting from dense shipping traffic through the Strait of Gibraltar, which have substantial impact in the O_3 production downwind (either in the Alboran Sea or the Gulf of Cadiz).

The regions including the largest metropolitan areas in Spain are the CIP (Madrid) and the NEIP (Barcelona). Both regions show an imported O_3 contribution of ~60% and a similar contribution from the road transport sector (18 and 16%, respectively). However, the NEIP shows a slightly higher contribution from non-road transport (13 vs 10%) due to the influence of international shipping near coastal areas.

The northern and northwestern regions of the IP (NIP and NWIP) had relatively lower imported O_3 contributions (56-59%). The contribution of non-road transport was ~10-12%, slightly lower than in the Mediterranean coast, and that of road transport was also significant (~14-15%). The contribution from the industrial sector was one of the highest in the country (~5%) due to the influence of the large industrial facilities located in several areas of Galicia, Cantabria, Asturias, and the Basque Country the north of Spain. The contribution from the energy sector in the NWIP region was the highest in Spain (~5%) due to emissions from large coal-fired power plants located in the area, including Az Pontes, Mierama, Aboño, Guardo, and Compostilla.
The WIP had the lowest daily mean O_3 concentrations during days exceeding the O_3 Target Value (93.5 $\mu g m^{-3}$) and a high imported O_3 contribution (~63%). NO_x emissions in the WIP region are moderate (Fig. 4), which could explain the low daily mean O_3 concentration. There is a significant contribution from traffic (14% for road transport and 11% for non-road transport) and industrial and energetic sectors (7%) to the daily mean O_3 concentrations. These anthropogenic contributions suggest that O_3 in the WIP may be produced by precursors transported from the surrounding cities (Oporto, Lisbon and Madrid) and the highly industrialized areas in the NWIP and the NIP (Fig. 6).

The Guadalquivir Valley had the lowest imported O_3 contribution of the IP (~46%) and the highest daily O_3 concentration during days of exceedance. The relatively low imported O_3 contribution resulted from the titration effect driven by the high NO_x emissions from industrial and urban hotspots in the region. The on-road traffic was the highest anthropogenic contributor to O_3 (~18%) due to the emissions from three major cities (Sevilla, Huelva, and Cordoba). Although O_3 in Huelva may be overestimated (as discussed later), shipping is the second most important contributor to O_3 in the Guadalquivir Valley (~17%) due to the important fluvial transport along the Guadalquivir River. (The Guadalquivir River is one of the most important routes for merchandise transport in Europe.) In fact, the non-road transport sector is the highest contributor (~17-19%) in Southern Spain, both in the Guadalquivir Valley and the SIP, also due to the dense maritime routes across the Strait of Gibraltar.

The following sections analyse the source apportionment results at eight stations located in key regions (see Fig. 5). We analyse two regions with high on-road traffic contribution (CIP and NEIP), and two regions with high contribution from industry and energy production (NWIP and Guadalquivir Valley).

3.4.1 The centre of the Central Iberian Peninsula

Figure 8 show the source apportionment time series of the average hourly O_3 and NO_2 concentrations at two stations in the CIP, an urban station in Madrid (station 1 in Fig. 8a), and another one located in Guadalajara (station 2 in Fig. 8b), which is a medium size city affected by Madrid’s urban plume. The model reproduces reasonably well the main processes and source contributions, with a significant imported O_3 contribution in both stations.

At the urban station, the model reproduces the O_3 traffic cycle ($r = 0.66$ and MB=22.5 $\mu g m^{-3}$) featuring the typical low O_3 concentrations (< 40 $\mu g m^{-3}$) in the early morning and in the afternoon due to O_3 titration (Fig. 8a). However, O_3 was overestimated (MB type D) during daytime peaks due to the overestimation of the NO_2 morning peaks during stagnant conditions, coincident with the highest road transport contribution for both pollutants. The results point towards a poor
representation of the meteorological conditions in the city during the stagnant conditions as shown in the meteorological evaluation (Sect. 4 in the supplement).

At the urban station downwind (Fig. 8b) the modelled O$_3$ shows a positive bias (MB type B) due to the underestimation of NO$_2$ concentration. Note that the uncertainty of traffic NO$_2$ traffic emissions in medium size cities is larger than in the largest urban areas (i.e. Madrid, Barcelona) because data is generally unavailable in smaller cities. Specific data is not available and emissions are estimated using emission factors that depend on population density (Baldasano et al., 2011).

Despite the limitation, the source apportionment results show that imported O$_3$ is the main contributor in both stations, but O$_3$ formation from NO$_2$ to traffic increases significantly during peaks in both stations. The highest O$_3$ concentrations (~160 µgm$^{-3}$) are modelled when westerly winds channelled along the Tajo valley carry the polluted air masses in a NE direction through the Tajo Valley. This results in an O$_3$ contribution of ~70 µgm$^{-3}$ from the road transport sector in areas downwind (see wind vectors in Fig. 8b on July 28th and 31st). The O$_3$ contribution from the industrial sector (whose precursors could come from facilities in the south of the MMA, Fig. 4) reinforces the O$_3$ peaks up to ~10 µgm$^{-3}$, meanwhile the contribution from non-road transport increases systematically the background O$_3$ concentration by ~15 µgm$^{-3}$. The O$_3$ contribution from non-road transport in this region may arise mainly from the Madrid’s airports and the agricultural machinery operating in the surrounding rural areas.

In Madrid, the model reproduces the O$_3$ traffic cycle featuring the typical low O$_3$ concentrations (< 40 µgm$^{-3}$) in the early morning and in the afternoon due to O$_3$ titration (Fig. 8a). However, O$_3$ was overestimated (MB-type D) during daytime peaks due to the overestimation of the NO$_2$ morning peaks during stagnant conditions. The NO$_2$ overestimation correlates with the highest road transport contribution. The NO$_2$ overestimation in Madrid is inconsistent with the overall underestimation of NO$_2$ in urban areas due to the dilution effect. The results point towards a poor representation of the vertical mixing during the stagnant conditions. In urban areas downwind (Fig. 8b) the modelled O$_3$ shows a positive bias (MB-type B) due to the underestimation of NO$_2$. While traffic NO$_2$ emissions in the largest urban areas (i.e. Madrid, Barcelona) are estimated at the road link level using specific data such as daily average traffic, mean speed circulation and real-world vehicle fleet composition profiles, in medium size cities this information is not available and traffic emissions are estimated using emission factors that depend on population density (Guevara et al., 2013), which implies having a larger uncertainty in the results.

The O$_3$ contribution from the industrial sector (whose precursors could come from facilities in the southern MMA, Fig. 4) reinforces the O$_3$ peaks up to ~10 µgm$^{-3}$, meanwhile the contribution from non-road transport increases systematically the
19 The O₃ concentration from non-road transport in this region may arise from the Atlantic shipping route, Madrid’s airports and the agricultural machinery operating in the surrounding rural areas.

4 Figure 8a and 8b also shows that the urban O₃ plume presents different intensity and distribution depending on the meteorological pattern. Downwind of Madrid (Fig. 8b), stagnant conditions favour O₃ peaks exceeding 120 µgm⁻³ and on-road transport contributes up to 20-30 µgm⁻³ (e.g., July 25th). The highest O₃ concentrations (~160 µgm⁻³) are modelled when westerly winds channelled along the Tajo valley carry the polluted air masses in a NE direction through the Tajo Valley, which results in a O₃ contribution of ~70 µgm⁻³ from road transport sector in areas downwind (see wind vectors in Fig. 8b on July 28th and 31st).

3.4.2 The northeast of the North-Eastern Iberian Peninsula

Figure 8c and 8d show the source apportionment time series at two stations in the NEIP, an urban station in Barcelona (station 3) and a remote rural area downwind (station 4). In Not surprisingly, at the urban station, NO₂ levels of up to 100 µgm⁻³ affect O₃ concentrations by titration during traffic peaks. In contrast, the rural station downwind depicts a higher O₃ and lower NO₂ concentration than the urban station. Absolute O₃ biases in both stations are ~10 µgm⁻³ (MB type B).

Absolute O₃ biases in both stations are ~10 µgm⁻³ (MB type B). In the urban area, the modelled O₃ concentrations are in agreement with the observations. As at Madrid urban station, the model suggests that O₃ mostly results from import and from the NO titration effect due to local road transport and industrial sources (Fig. 8c). However, the O₃ diurnal cycle in the NEIP urban areas is less marked than in the CIP due to persistently high O₃ concentration at night (~60 µgm⁻³). The breezes and mountain-valley winds contribute to the accumulation and recirculation of pollutants in this region.

At the rural station, Despite of the slight overestimation of NO₂ concentration in rural areas—modelled O₃ peaks (> 120 µgm⁻³) are highly correlated in a good agreement with observations (Fig. 8d), which suggests that overall the model reproduces the main transport paths, photochemical processes, and relative contributions from different sources. Imported O₃ is one of the main contributors to ground-level O₃ (from 40 to 100 µgm⁻³), but during peaks the on-road traffic contribution sharply increases up to 80 µgm⁻³.

The O₃ concentration from the road transport sector arriving at rural areas in the NEIP, mainly comes from the Barcelona and surroundings as a result of the afternoon sea breezes (see wind vectors in Fig. 8c and 8d). However, under specific
meteorological patterns these winds also carry precursors from other cities located in the NW Mediterranean Basin. For example, on July 28th both the model and observations show that O$_3$ exceeded 120 µgm$^{-3}$ in both urban and rural areas and the model attributed ~60% of it to regional anthropogenic sources (non-imported O$_3$). In the morning, two main meteorological phenomena favoured the transport of precursors towards the Western Mediterranean. First, the North African Thermal Low reinforced the sea breezes in the NEIP coast. Second, NW synoptic winds channelled between the Pyrenees and the French Central Massif towards the Gulf of Lion transported precursors from urban areas upwind (e.g., Marseille, Toulouse). In the afternoon, the sea breezes transported air masses enriched with O$_3$ and precursors inland. Other authors (Gangoiti et al., 2001) have hypothesized that high O$_3$ concentration in the Western Mediterranean Basin is influenced by transport from France via the Carcassonne gap. The present experiment cannot quantify the contribution of French cities to the O$_3$ concentration over the NEIP, but future studies could explicitly tag the emission from the French regions.

3.4.3 Guadalquivir Valley

The largest modelled O$_3$ overestimations are found in the Guadalquivir Valley (MB type D). Precursors emitted along the Guadalquivir Valley arise from large industrial facilities and a coastal power plant (Fig. S3), a few densely populated cities (notably Sevilla and Cordoba with more than 700,000 and 320,000 inhabitants, respectively), and the navigable river. The airflow in the region is controlled by the Atlantic synoptic conditions, the development of breezes in the coast of the Gulf of Cadiz and the channelling through the Guadalquivir Valley (Adame et al., 2008).

We have selected two stations along the Guadalquivir Valley to evaluate O$_3$, one in the urban area of Sevilla (station 5 in Fig. 9a), and one in a rural coastal area (station 6 in Fig. 9b). The contribution of anthropogenic sources to NO$_2$ at the coastal rural background station is low but still significant. The contribution of non-road transport is due to the influence of one of the largest Spanish harbours. The contribution of the energy sector to the O$_3$ concentration is also noticed (e.g., July 25th). As expected, the urban station (Fig. 9a) shows a high NO$_2$ concentration dominated by on-road traffic. NO$_2$ from traffic is the main sink of O$_3$ in the city and the model reproduces the titration effect in agreement with observations (e.g., July 28th-31st).

High O$_3$ overestimations (10-30 µgm$^{-3}$) at both stations (Fig. 9a and b) were detected during July 25th-28th which corresponds to intense and persistent SW winds transporting air masses from the Atlantic Sea along the Guadalquivir Valley, as shown by the wind vectors in Fig. 9a and b. Although the model overestimates O$_3$ concentrations, it reproduces the temporal variability.

Our results suggest that the non-road transport sector is a significant contributor along the Guadalquivir Valley during these days. The impact of shipping emission on O$_3$ in the Guadalquivir Valley region is mainly evidenced by the relative high NO$_2$ from ship exhaust (Fig. S3). NO$_2$ time series at the coastal station (Fig. 9b) indicates that the model overestimates NO$_2$ concentrations in hours where the NO$_2$ contribution from non-road transport is the highest. The unrealistic NO$_2$ peaks from non-road transport suggest that shipping emissions are overestimated in the HERMESv2.0 model, which HERMESv2.0 uses
the EMEP gridded emission database inventory at 50 km x 50 km horizontal resolution to estimate shipping emissions and spatially distributes them to the 4-km model domain using the marine routes reported by Wang et al. (2008).

A recent review on the state-of-the-art of marine traffic emissions (Russo et al., 2018) indicates that STEAM appears as the most reliable and detailed emissions inventory since it is based on Automatic Identification System data and specific vessel information, with a resolution of 2.5 x 2.5 km² (Jalkanen et al., 2016). A comparative analysis indicates that EMEP gridded inventories are overestimated, in particular over hotspots in the Mediterranean shipping routes, and underestimated in secondary routes. Marine traffic emissions estimated with current state-of-the-art methods, such as the use of data provided by Automatic Identification System (AIS), show large discrepancies with the reported CEIP-EMEP gridded inventories both in term of totals and spatial distribution (Jalkanen et al., 2012), suggesting that uncertainties associated to current official emissions may be large. This factor, added to the 15% decrease of NOₓ shipping emissions observed in Europe between 2009 (HERMESv2.0 base year) and 2012 (EMEP CEIP, 2019) could at least partly explain the discrepancies observed.

O₃ peaks are highly biased (by ~40-50 µg m⁻³) during stagnant conditions on July 28th-31st, especially in the urban station (station 5). During these days, measured NOₓ daily peaks increased up to 40 µg m⁻³. Although the model reproduces the variability, it overestimates the concentration due to an excessive on-road transport contribution. As discussed for the CIP, under low dispersion conditions NOₓ concentrations are difficult to model due to complex mixing regimes.

3.4.4 The Northwestern northwest of the Iberian Peninsula

Figures 9c and 9d show the source apportionment time series at one urban (station 7) and one rural (station 8) background station in the NWIP. The urban station (Fig. 9c) located in Santiago de Compostela, a medium size city with ~100,000 inhabitants, shows a high NOₓ concentration with a dominant contribution from the road transport sector. Traffic NOₓ is the main sink of urban O₃ via titration. Because NOₓ is underestimated, especially during stagnant conditions (July 24th-27th), O₃ concentrations are overestimated (MB category C).

In rural background areas (Fig. 9d), despite the O₃ biases during stagnant conditions, the modelled O₃ concentration is in general agreement with observations at the rural background station (Fig. 9d) (MB category B), but the model tends to underestimate the observed concentrations, particularly under weak winds. NOₓ is likely underestimated due to missing traffic emissions. As noted previously, traffic emissions are poorly constrained in small and medium size cities, due to a lack of detailed information. There is also additional uncertainty in the precursors emitted from the large coal power plants and industries in the region (Valverde et al., 2016b). Our study uses emissions for 2009, and it has been estimated that between 2009 and 2012 energy production in coal-fired power plants increased from 13.1% to 19.4% (UNESA, 2012), which implies an increase of NOₓ emissions from the power industry sector of around 19.5% (EMEP CEIP, 2019).
Despite the O_3 biases during stagnant conditions, the time series show that the model reproduces reasonably well the observed O_3 variability under different synoptic conditions. O_3 reaches the highest concentration (~100/150 μgm$^{-3}$ in urban/rural areas) under stagnant conditions (July 24th-27th) when the contribution of anthropogenic sources from all activity sectors is the highest (60-70%). O_3 concentrations decrease down to ~70 μgm$^{-3}$ under NW advective conditions (e.g., July 28th-30th) when the imported O_3 shows the highest contribution (80-90%). Saavedra et al. (2012) found that stationary anticyclones over the NWIP play an important role in the occurrence of high O_3 concentrations over the NWIP. Our results show that under these stagnant conditions O_3 concentrations are due largely to in situ production (photochemistry) from on-road traffic, shipping, power plants, and industry in almost the same proportion.

3.5 Imported ozone

These O_3 source apportionment results indicate that imported O_3 represents the highest contribution to ground-level O_3 concentration in southwestern Europe. Imported O_3 enters the IP4 domain through the boundaries; it includes the contribution of O_3 from the EU12 domain, which in turn includes the contribution of hemispheric O_3 from the MOZART-4 global model. The imported O_3 is as large as the background O_3 regionally produced within the IP. We note that the small biases at rural background stations obtained in the evaluation section indicate an overall high performance of the modelled background O_3 in the IP4 domain (Fig. S1). Given its importance, this section is devoted to analyse the importance of the imported O_3 in southwestern Europe. We further analyse this contribution below. In particular, we aim to understand its high contribution within the IP, even far from the model domain boundaries.

Figure 10 shows the vertical cross-sections at 6, 12, and 18 UTC for O_3 and NO$_2$ at a constant latitude (40.38° N) on July 25th, 28th and 30th. It helps to understand the vertical variability of both pollutants with the PBL dynamic as schematized by Millán et al. (1996). The model predicts a pronounced O_3 vertical gradient above a height of 4 km above sea level (asl), showing that O_3 in the free troposphere is, to a large extent, imported to the IP4 domain (Safieddine et al., 2014). As expected, NO$_2$ mixing ratios show a negative gradient with altitude as it is mainly emitted at the surface. In the morning, the sun starts to heat up the ground, producing convective thermals and forcing the growth of the mixing layer. At noon, the mixing height reaches its maximum, being the highest in the CIP (2-4 km) and decreasing towards the coast (< 1 km) (Fig. 10). At the mixing layer top the O_3-enriched air aloft is entrained into the mixing layer, mixing with O_3 and other pollutants produced locally within the mixing layer. When the mixing height decreases, O_3 is left in the free troposphere forming high O_3 residual layers (Gangoiti et al., 2001) that contribute to the regional transport. Over the following days, these residual layers (composed of imported O_3 and local O_3 produced within the domain over previous days) can be entrained by fumigation into the mixing layer to reach the surface. This fumigation effect, previously described in the eastern USA
(Zhang and Rao, 1999; Langford et al., 2015) and in the Western Mediterranean Basin (Kalabokas et al., 2017; Querol et al., 2018), leads to a rapid increase in O₃ concentrations at ground level. The accumulation and recirculation of air masses is intensified along the Eastern Mediterranean coast (Millán et al., 1996, 2000; Gangoiti et al., 2001; Querol et al., 2017) by the action of the breezes and mountain-valley winds. Furthermore, the small deposition velocity of O₃ over the sea and its high atmospheric lifetime in the free troposphere contributes to enrich the O₃ background concentration (c.a. several weeks, Monks et al., 2015; Seinfeld and Pandis, 2016).

The O₃ fumigation effect was particularly intense on July 30th-31st, when a high O₃ levels are found in the free troposphere compared to previous days (Fig. 10). The analysis of the O₃ concentration map with the imported O₃ contributions (Fig. 6) indicates that ground-based O₃ is neither advected nor titrated; therefore, it can only result from vertical mixing. The high O₃ mixing ratio in the free troposphere was mainly due to O₃ advection entering the Atlantic boundary driven by westerlies (Fig. 3). We hypothesize that two events may have contributed to the increase of the O₃ concentration by long-range transport. First, a low-pressure system in the British Islands on July 28th could have transported significant O₃ amounts from the stratosphere to the free troposphere (Fig. S4, Fig. S7). Second, O₃ episodes generated in mid-July over the Eastern USA predicted by the MOZART-4 model could have contributed to an increase in the O₃ transported from N America to Europe by the action of the prevailing westerlies (Fig. S7, Fig. S4) associated with cyclonic systems along the “warm conveyor belt” (Pausata, et al., 2012; Derwent et al., 2015).

4 Discussion and conclusions

Our study has provided a first estimation of the main sources responsible for high O₃ concentration in the Western Mediterranean Basin during the episode period July 21st-31st, 2012. We used the Integrated Source Apportionment Method (ISAM) within the CALIOPE system to estimate the contribution of the main anthropogenic activity sectors compared to the imported concentrations to peak O₃ events in Spain compared to the imported O₃. In addition, the use of ISAM has allowed an in-depth evaluation of the applied modelling system, the model, and has provided a perspective on about its potential use for regulatory studies in non-attainment regions.

The results demonstrate that the O₃ problem over the Western Mediterranean Basin is local, regional, and hemispheric. Long-range transport of O₃ from beyond the IP domain is the main contributor to the ground-level daily mean O₃ concentration (~45%) during peak episodes. The imported O₃ contribution ranges from 40% during O₃ peaks to 80% at night or during well-ventilated conditions. The absolute imported O₃ is higher in the NEIP than in the central CIP due to the recirculation and accumulation of pollutants along the Mediterranean. The high imported O₃ at the surface far away from the model boundaries is consistent with the high levels of O₃ in the free troposphere (resulting from local/regional layering and accumulation, and continental/hemispheric transport) along with intense vertical mixing during the day.
Our results support the European Commission (EC, 2004) in pointing out that the effectiveness of abatement strategies for achieving compliance with the European air quality standards in southern Europe might be compromised by the long-range transport of O_3. This is especially true in Mediterranean regions (i.e., NEIP, EV and EIP) where the contribution of imported O_3 is particularly dominant (60-68% of the daily mean O_3 concentration in episodes) as a result of the accumulation and recirculation of pollutants over the Mediterranean Basin. In those areas, if the long-range transport of O_3 is not reduced, the mean background level will not decrease making it more vulnerable to exceedances of the O_3 target values by enhanced local production under stagnant conditions.

During high O_3 events, the imported O_3 is added to the formation from local and regional anthropogenic sectors. The road transport is an important contributor to the O_3 concentration in rural areas downwind of the large cities in Spain. It contributed up to 16-18% of the daily mean O_3 concentration under exceedances of the target value for human health protection, and up to 70 μg/m3 on an hourly basis downwind of Barcelona and Madrid.

The non-road transport sector (including international shipping, airport and agricultural machinery) is as significant as road transport inland (10-19% of the daily mean O_3 concentration during the peaks). There is a high influence of international shipping (13%), affecting the coastal areas in the Mediterranean and the south of the IP (along the Strait of Gibraltar) with contributions of up to ~20 and ~30 μg/m3, respectively. Although the non-road transport contribution was found to be overestimated in coastal areas in the south of the IP in the present experiment, it cannot be neglected and actions controlling international shipping should be considered as important as those related with road transport especially in regions with big harbours (e.g., Huelva and Barcelona). Dalstøren et al. (2010) indicated that annual O_3 concentration is increasing yearly in a range of 0.5-2.5 ppb in areas impacted by shipping activities. Recent studies indicate that shipping emissions are projected to increase significantly due to increases in transportation demand and traffic. As the Strait of Gibraltar is the only shipping route connecting the Atlantic Ocean with the Mediterranean Basin, the regulation of these emissions is key in order to control O_3 exceedances in Spain and the Mediterranean Basin. Shipping emissions can be regulated by each country within 400 km of coastlines, but policy-induced controls for offshore emissions are very dependent on the success of adopted and proposed regulations within the International Maritime Organization.

The energy and industrial sectors contribute ~6-11% of the daily mean O_3 concentration during the peaks and over all the receptor regions. As they usually are usually injected in high altitudes, their contribution extends way beyond their surroundings. The energy combustion sector (3%) and industrial and non-industrial combustion sectors (3%) have a mean contribution of 2-4 μg/m3, going up to 4-6 μg/m3 in NO$_x$-limited areas (i.e., the western IP). In highly industrialized regions (i.e., Guadalquivir Basin and northwestern IP), abatement strategies affecting all sectors at regional scale could contribute to
decrease the local formation of O\textsubscript{3} as the regional/local anthropogenic contribution can be greater than 50% during several days.

In the Barcelona Metropolitan Area the contribution from energy and industrial sectors to the NO\textsubscript{2} concentrations can be in the same range than the contribution from road transport (~40-60%, Fig. 8c). In contrast, in areas downwind Barcelona the contribution from energy and industrial sectors to O\textsubscript{3} concentrations is relatively low compared with the contribution from road transport (Fig. 8d). The different contribution to O\textsubscript{3} concentration might link with the different reactivity of VOC for O\textsubscript{3} formation. Each VOC emission source emits a different mix of VOC, which makes a different contribution to photochemical ozone formation. For example, in the UK, Derwent et al. (2007) showed a higher photochemical O\textsubscript{3} creation potential for road transport emissions than for production processes and combustion. Future national policy actions to control the emissions of VOC should tackle the sources that contribute more to photochemical O\textsubscript{3} formation.

The remaining sectors (i.e., SNAP 2, 5, 6, 9, and 11, see Table 1), are the fourth main contributors to the daily mean O\textsubscript{3} concentration during the days exceeding the target value (~2-8%). Future work should tag the biogenic sources as an individual sector as it is the main contributor to VOC emissions in Spain (i.e., ~70% in 2009 according to HERMESv2.0 model).

According to the model uncertainty, the air quality and meteorological evaluation of the model indicate that uncertainties in our model are in the same range as the most recent inter-comparison studies using state-of-the-art air quality models. In addition, our model evaluation together with the source apportionment results has allowed a better understanding of the origin of model errors related to the emission estimates. Our methodological choice has been to use a detailed bottom-up emission inventory instead of a typical top-down regional emission inventory. Bottom-up emissions, estimated using source-specific emission factors and activity statistics, accurately characterise pollutant sources and allow obtaining more realistic results than the ones reported by top-down or regional emission inventories. To understand the impact of the use of 2009 data to study year 2012, we revised the EMEP Centre on Emission Inventories and Projections (EMEP-CEIP), which collects and reviews the national emission inventories from Parties to the Convention on Long-range Transboundary Air Pollution. Between 2009 and 2012, total NOx and NMVOC emissions in Spain decreased by -10.6% and -10.7%, respectively (EMEP-CEIP, 2019). For NOx, around 80% of this reduction is linked to a reduction of road transport emissions, whereas in the case of NMVOC ~50% of the reduction is due to a decrease in industrial emissions. For our modelling study, we consider these differences as small and acceptable, and not creating any major inconsistency. The difference of 10-15% in emissions for certain precursors between 2009 and 2012 is within the typically larger ranges of uncertainty in emission inventories.
Another relevant and uncertain source for \(O_3 \) concentration is the urban VOC emitted in urban areas emissions. Future research works should be devoted to the continuous monitoring of urban VOC and take advantage of satellite observations to improve speciation and spatial variability of urban VOC emissions.

We have identified two sources of uncertainty in the modelling estimation of the imported \(O_3 \) concentration. First, it depends on both the performance of the CALIOPE system over EU12, and on MOZART-4 at global scale. The small biases at rural background stations support an overall high performance baseline background \(O_3 \) in the IP4 domain (Fig. S1). Second, our set-up involves some uncertainty in the estimation of the imported contribution of \(O_3 \). In reality, there is a fraction of the imported \(O_3 \) that may have been generated within the IP4 domain before the period of simulation (including the spin-up). We have assumed that this fraction is negligible and future works should check to what extent this assumption is correct.

For regulatory applications, further source apportionment studies should target not only emissions from activity sectors, but also the source regions where the emission abatement strategies should be applied. In addition, future studies should preferentially cover multiple summer periods in order to improve representativeness. We note that our results cannot predict whether emission abatement will have either a positive or a negative effect in \(O_3 \) changes due to the non-linearity of the \(O_3 \) generation process. Subsequent source sensitivity analyses tailoring the identified main contribution sources could predict how \(O_3 \) will respond to reductions in precursor emissions, which are essential to define the most efficient \(O_3 \) abatement strategies in the Western Mediterranean Basin.

Overall, we find that the imported \(O_3 \) is the largest input to the ground-level \(O_3 \) concentration in the IP during the studied episode. However, during stagnant conditions, the emission from local anthropogenic activities in the IP control the \(O_3 \) peaks in areas downwind of the main urban and industrial regions. Furthermore, ground-level \(O_3 \) concentrations are strongly affected by vertical downward mixing of \(O_3 \)-rich layers in the free troposphere, which result from local/regional layering and accumulation, and continental/hemispheric transport. The importance of both imported and local contributions to the \(O_3 \) peaks in the IP demonstrates the need for detailed quantification of both contributions to high \(O_3 \) concentrations for local \(O_3 \) management. Furthermore, the influence of local sources and topographical and meteorological conditions in the high \(O_3 \) concentration indicate the importance of designing \(O_3 \) abatement policies at local scale.

This work has identified the local and imported contributions to \(O_3 \) concentration during an episode in a particular area in southwestern Europe. In addition, we have provided a perspective about the potential use of source apportionment method for regulatory studies in non-attainment regions. Further \(O_3 \) source apportionment studies targeting other nonattainment regions in Europe covering different episodes are necessary prior to designing local mitigation
measurements that complement national and European-wide abatement strategies to reach the 2015 European O₃ objectives.

We investigate the origin of ground-level O₃ concentrations over southwestern Europe during the episode July 21st–31st, 2012. The period includes the two most frequent summer synoptic circulation patterns over the region: stagnant conditions with development of the Iberian Thermal Low (ITL) and North Western Advection (NWad). We used the Integrated Source Apportionment Method (ISAM) within the CALIOPE system to estimate the main sources responsible of the high O₃ concentrations in receptor regions over the IP compared to the imported (regional and hemispheric) O₃ contribution. In addition, the source apportionment method has allowed an in-depth evaluation of the modelling system applied. Below, we summarize the new findings from the source attribution study, we discuss the model uncertainties and we give a perspective on some of the regulatory implications, which may be applicable to other non-attainment regions.

4.1 Source apportionment results

The results demonstrate that the O₃ problem over the Western Mediterranean Basin is local, regional, and hemispheric. Long-range transport of O₃ from beyond the IP domain is the main contributor to the ground-level daily mean O₃ concentration (~45%) during peak episodes. The imported O₃ contribution ranges from 40% during O₃ peaks to 80% at night or during well-ventilated conditions. The absolute imported O₃ is higher in NEIP than in the central IP due to the recirculation and accumulation of pollutants along the Mediterranean. The high imported O₃ at the surface far away from the model boundaries is consistent with the high levels of O₃ in the free troposphere (resulting from local/regional layering and accumulation, and continental/hemispheric transport) along with intense vertical mixing during the day.

During high O₃ events, the imported O₃ is added to the local and regional anthropogenic contributions. The road transport is an important contributor to the O₃ concentration in rural areas downwind of the large cities in Spain. It contributed up to 16-48% of the daily mean O₃ concentration under exceedances of the target value for human health protection, and up to 70 µg/m³ on an hourly basis downwind of Barcelona and Madrid. The non-road transport sector is as significant as road transport inland (10-19% of the daily mean O₃ concentration during the peaks). There is a high influence of international shipping (13%), affecting the coastal areas in the Mediterranean and the southern IP (along the Strait of Gibraltar) with contributions of up to 20 and 30 µg/m³, respectively. The energy and industrial sectors contribute 6-11% of the daily mean O₃ concentration during the peaks and over all the receptor regions. As they usually are injected in high altitudes, their contribution extend way beyond their surroundings. The energy combustion sector (3%) and industrial and non-industrial combustion sectors (3%) have a mean contribution of 2-4 µg/m³, going up to 4-6 µg/m³ in NOₓ limited areas (i.e., the western IP). The OTHR tag, which lumped the remaining sectors (i.e., SNAP 2, 5, 6, 9, and 11, see Table 1), is the fourth main contribution to the daily mean O₃ concentration during the days exceeding the target value (~2-8%). Future work
should tag the biogenic sources as an individual sector as it is the main contributor to VOC emissions in Spain (i.e., ~70% in 2009 according to HERMESv2.0 model).

4.2 Model uncertainty

The modelled concentrations present uncertainties that are in the same range as the most recent inter-comparison studies using state-of-the-art air quality models. Our results show a good agreement between the modelled and observed O₃, which provides confidence in our source apportionment results.

In addition, our model evaluation together with the source apportionment results has allowed a better understanding of the origin of model errors. Under stagnant conditions, the model shows lower performances: in coastal areas, this may be related to a poor representation of mesoscales processes such as sea breezes and recirculation; in Madrid, NO₂ overestimations may be due to a poor representation of the vertical mixing. There is likely an overestimation of shipping emissions, and an underestimation of road transport emissions in medium size cities.

Overall, the estimated imported O₃ depends on both the performance of the CALIOPE system over EU12, and on MOZART-4 at global scale. The evaluation of model in the EU12 domain using the European EIONET stations (not shown here) showed good skills for O₃ and its precursors. Furthermore, the source apportionment results have shown that O₃ local production could be as large as the imported O₃, so the small biases at rural background stations indicate an overall high performance baseline background O₃ in the IP4 domain (Fig. S1). This study has not evaluated MOZART-4, but there are many studies supporting its good performance. Several inter-comparison studies (e.g., EURODELTA and AQMEII) also found the importance of chemical boundary conditions to reproduce the O₃ background concentrations (Giordano et al. 2015; Bessagnet et al. 2016; Solazzo et al., 2017).

Our set-up involves some uncertainty in the estimation of the imported contribution of O₃. In reality, there is a fraction of the imported O₃ that may have been generated within the IP4 domain before the period of simulation (including the spin-up). We have assumed that this fraction is negligible and future works should check to what extent this assumption is correct.

4.3 Regulatory implications

Our study has identified the main sources responsible of high O₃ in receptor regions in the Western Mediterranean Basin, but cannot predict whether emission abatement will have either a positive or negative effect in O₃ changes due to the non-linearity of the O₃ generation process (Monks et al., 2015 and papers therein). Subsequent source sensitivity analysis tailoring the identified main contribution sources could predict how O₃ will respond to reductions in precursor emissions. Future source sensitivity studies are essential to define the most efficient abatement strategies to reduce high O₃ concentrations in the Western Mediterranean Basin. Complementarily, it would be important to know where the emission
abatement strategies should be applied. To answer this question further source apportionment studies should be conducted tagging both source activities and source regions.

This case study supports a relatively old conclusion by the European Commission (EC, 2004) pointing out that the effectiveness of abatement strategies for achieving compliance with the European air quality standards in southern Europe might be compromised by the long-range transport of O\(_3\). This is especially true in Mediterranean regions (i.e., NEIP, EV and EIP) where the contribution of imported O\(_3\) is particularly dominant (60-68% of the daily mean O\(_3\)-concentration in episodes) as a result of the accumulation and recirculation of pollutants over the Mediterranean Basin. In those areas, if the long-range transport of O\(_3\) is not reduced, the mean background level will not decrease making it more vulnerable to exceedances of the O\(_3\)-target values by enhanced local production under stagnant conditions.

Reduction of the background O\(_3\)-concentration can be achieved by decreasing the concentrations of O\(_3\) and precursors aloft. Given the polluted dome aloft the Western Mediterranean Basin during a typical O\(_3\)-episode, which may result from local/regional layering and accumulation, and continental/hemispheric transport, it will necessary and important to implement emission reduction strategies on the hemispheric and continental scale. There is an urgent need of international collaboration at European and hemispheric level to reduce O\(_3\) and its precursors. High background contribution to Iberian O\(_3\) could represent a substantial future challenge to the attainment of O\(_3\)-limit values, which requires controlling hemispheric O\(_3\) (EC, 2004; Fowler et al., 2013).

Besides the long-range transport contribution, O\(_3\) peaks during episodes result from the local/regional photochemical formation from the transport and industrial sectors, and therefore regional emission reduction strategies are also urgent. The contribution from road transport determines O\(_3\)-peaks in rural areas (up to 70 µg/m\(^3\)) downwind of the main Spanish Metropolitan Areas (i.e., Madrid and Barcelona). To reduce O\(_3\)-peaks downwind of the Madrid city, a decrease of road transport emissions in the urban area would be effective. However, to reduce O\(_3\)-peaks downwind of the Barcelona city, the reduction of road traffic emission in the city should be complemented with abatement strategies in other Mediterranean cities, especially in Southern France.

In the BMA the contribution from energy and industrial sectors to NO\(_2\)-concentration can be in the same range than the contribution from road transport (~40-60%, Fig. 8c). In contrast, in areas downwind of the BMA the contribution from energy and industrial sectors to O\(_3\)-concentrations is relatively low compared with the contribution from road transport (Fig. 8d). The differences contribution to O\(_3\)-concentration might link with the different reactivity of VOC for O\(_3\) formation. Each VOC emission source emits a different mix of VOC, which makes a different contribution to photochemical ozone formation. For example, in the UK, Derwent et al. (2007) showed a higher photochemical O\(_3\)-creation potential for road...
Future national policy actions to control the emissions of VOC should tackle the sources that contribute more to photochemical O₃ formation.

Although the non-road transport contribution was found to be overestimated in coastal areas in the south of the IP in the present experiment, it cannot be neglected and actions controlling international shipping should be considered as important as those related with road transport especially in regions with big harbours (e.g., Huelva and Barcelona). Dalsøren et al. (2010) indicated that annual O₃ concentration is increasing yearly in a range of 0.5-2.5 ppb in areas impacted by shipping activities. Recent studies indicate that shipping emissions are projected to increase significantly due to increases in transportation demand and traffic. As the Strait of Gibraltar is the only shipping route connecting the Atlantic Ocean with the Mediterranean Basin, the regulation of these emissions is key in order to control O₃ exceedances in Spain and the Mediterranean Basin. Shipping emissions can be regulated by each country within 400 km of coastlines, but policy-induced controls for offshore emissions are very dependent on the success of adopted and proposed regulations within the International Maritime Organization.

In highly industrialized regions (i.e., Guadalquivir Basin and northwestern IP), abatement strategies affecting all sectors at regional scale could contribute to decrease the local formation of O₃ as the regional/local anthropogenic contribution can be greater than 50% during several days.

Overall, we find that the imported O₃ is the largest input to the ground-level O₃ concentration in the IP during episodes. In addition, during stagnant conditions, the emission from local anthropogenic activities in the IP control the O₃ peaks in areas downwind of the main urban and industrial regions. Furthermore, ground-level O₃ concentrations are strongly affected by vertical downward mixing of O₃ rich layers in the free troposphere, which result from local/regional layering and accumulation, and continental/hemispheric transport. The importance of both imported and local contributions to the O₃ peaks in the IP demonstrates the need for detailed quantification of both contributions to high O₃ concentrations for local O₃ management. Furthermore, the influence of local sources and topographical and meteorological conditions in the high O₃ concentration indicate the importance of designing O₃ abatement policies at local scale.

This work has identified local and imported contributions to O₃ concentration during an episode in a particular area in southwestern Europe. However, further detailed and longer O₃ source apportionment studies targeting other nonattainment regions in Europe are necessary prior to define local mitigation measures that complement national and European-wide strategies to reach the European O₃ objectives.
Data availability

Appendix A

Table 1A shows the acronyms used in the text.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCON</td>
<td>Chemical boundary conditions to IP4, also named as imported O₃ contribution</td>
</tr>
<tr>
<td>BMA</td>
<td>Barcelona Metropolitan Area</td>
</tr>
<tr>
<td>CIP</td>
<td>Central Iberian Peninsula</td>
</tr>
<tr>
<td>CMAQ</td>
<td>Community Multiscale Air Quality model</td>
</tr>
<tr>
<td>EIP</td>
<td>Eastern Iberian Peninsula</td>
</tr>
<tr>
<td>EU12</td>
<td>European domain at 12-km horizontal resolution (12x12 km²)</td>
</tr>
<tr>
<td>EV</td>
<td>Ebro Valley</td>
</tr>
<tr>
<td>GV</td>
<td>Guadalquivir Valley</td>
</tr>
<tr>
<td>IP</td>
<td>Iberian Peninsula</td>
</tr>
<tr>
<td>IP4</td>
<td>Iberian Peninsula domain at 4-km horizontal resolution (4x4 km²)</td>
</tr>
<tr>
<td>ISAM</td>
<td>Integrated Source Apportionment Method</td>
</tr>
<tr>
<td>MDA8</td>
<td>Maximum daily 8-hour average concentration</td>
</tr>
<tr>
<td>MMA</td>
<td>Madrid Metropolitan Area</td>
</tr>
<tr>
<td>MED</td>
<td>Mediterranean Sea</td>
</tr>
<tr>
<td>NEIP</td>
<td>Northeast of the Iberian Peninsula</td>
</tr>
<tr>
<td>NIP</td>
<td>North of the Iberian Peninsula</td>
</tr>
<tr>
<td>NWIP</td>
<td>Northwest of the Iberian Peninsula</td>
</tr>
<tr>
<td>SIP</td>
<td>South of the Iberian Peninsula</td>
</tr>
<tr>
<td>SNAP1</td>
<td>Emission sector on combustion in energy</td>
</tr>
<tr>
<td>SNAP34</td>
<td>Emission sector on combustion and processes in industry</td>
</tr>
<tr>
<td>SNAP7</td>
<td>Emission sector on road transport, exhaust and non-exhaust</td>
</tr>
<tr>
<td>SNAP8</td>
<td>Emission sector on non-road transport (international shipping, airport and agricultural machinery)</td>
</tr>
<tr>
<td>WIP</td>
<td>West of the Iberian Peninsula</td>
</tr>
<tr>
<td>WRF</td>
<td>Weather Research and Forecasting Model</td>
</tr>
</tbody>
</table>
Appendix B

Definition of the discrete statistics used in the evaluation: correlation coefficient \(r \) (Eq. B1), mean bias \(MB \) (Eq. B2), normalized mean bias \(\text{NMB} \) (Eq. B3) and root mean squared error \(\text{RMSE} \) (Eq. B4). Where \(C_m(x,t) \) and \(C_o(x,t) \) are the modelled and observed concentrations at a location \(x \) and time \(t \); \(N \) is the number of pairs of data. \(\overline{C}_m \) and \(\overline{C}_o \) are the modelled and observed mean concentrations over the whole period, respectively.

\[
 r = \frac{\sum_{i=1}^{N} (C_m(x,t) - C_o(x,t)) \cdot (C_m(x,t) - \overline{C}_m)}{\sqrt{\sum_{i=1}^{N} (C_m(x,t) - C_o(x,t))^2} \cdot \sqrt{\sum_{i=1}^{N} (C_m(x,t) - \overline{C}_o)^2}} \quad \text{(B1)}
\]

\[
 MB = \frac{1}{N} \sum_{i=1}^{N} (C_m(x,t) - C_o(x,t)) \quad \text{(B2)}
\]

\[
 \text{NMB} = \frac{\sum_{i=1}^{N} (C_m(x,t) - C_o(x,t)) \times 100}{\sum_{i=1}^{N} (C_o(x,t)) \times 100} \times \frac{\overline{C}_m}{\overline{C}_o} \times 100 \quad \text{(B3)}
\]

\[
 \text{RMSE} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (C_m(x,t) - C_o(x,t))^2} \quad \text{(B4)}
\]

Author contribution

MTP designed the research, SN supported on the ISAM set-up for this experiment. MTP performed the model simulations. All the authors analysed the data and discussed the results. MTP and CPGP wrote the paper.

Acknowledgments

This study has been supported by the Spanish Ministry of Economy and Competitiveness and FEDER funds under the project PAISA (CGL2016-75725-R). This work was granted to access to the High Performance Computer resources of the “Red Española de Supercomputación” (AECT-2017-1-0008). The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Carlos Pérez García-Pando acknowledges long-term support from the AXA Research Fund, as well as the support received through the Ramón y Cajal programme (grant RYC-2015-18690) of the Spanish Ministry of Economy and Competitiveness.

References

EMEP-CEIP, 2019. Officially reported emission data. Available at: http://www.ceip.at/ms/ceip_home/ceip_home/data_viewers/official_tableau/ (last access February 2019).

Figure 1: Percentage of the contribution of emissions to total annual emissions by SNAP sector calculated by HERMES for Spain 2009 (a) and for the selected SNAP sector accounting for more than 90% of NOx total emission to be tracked with ISAM (b). “OTHER” compiles the SNAP categories 2 (Residential combustion), 5 (Fugitive emissions from fuels), 6 (Solvent use), 9 (Waste management), 10 (Agriculture) and 11 (Other sources).
Figure 2: (a) Temporal distribution of the MDA8 O$_3$ concentration during the extended summer (from April to September, AMJJAS) at the Spanish EIONET stations for the period 2000-2012 and the episode (from 21/07/2012 to 31/07/2012) by station type: IN (industrial), RB (rural background), TR (traffic) and UB (urban background). (b) Number of days exceeding the O$_3$ Target Value (120 µg/m3) by each day of the episode. (c) 90th percentile of the MDA8 O$_3$ concentration at the Spanish EIONET stations during the episode.
episode.
Figure 2: (a) Temporal distribution of the MDA8 O$_3$ concentration during the extended summer (from April to September, AMJJAS) at the Spanish EIONET stations for the period 2000-2012 and the episode (from 21/07/2012 to 31/07/2012) by station type: IN (industrial), RB (rural background), TR (traffic) and UB (urban background). (b) 90th percentile of the MDA8 O$_3$ concentration at the Spanish EIONET stations during the episode. Numbers indicate the stations cited in section 3.4.

Figure 3: WRF-ARW meteorological fields at 6 UTC for July 25th, 28th and 31st in the EU12 domain: 10-m wind speed (W10, m/s), 2-m temperature (T2M, C), 6 h accumulated precipitation (Prec., mm), mean sea level pressure (MSLP, hPa), 500-hPa geopotential height in contours (Geo. Height, m), and 500-hPa temperature in shaded colors (T, °C).
Figure 4: Ground-based concentration maps (in µg/m³) for NO₂ (first row) and O₃ (second row) corresponding to the 90th percentile of the average hourly concentrations on 25th (first column), 28th (second column) and 31st (third columns) July 2012.

Figure 5: Air quality stations classified by both mean bias (MB, in µg/m³) for average hourly and MDA8 O₃ at the Spanish EIONET stations and lumped by categories (A, B, C, and D). Numbered black circles indicate stations under study in Central IP (CIP; station 1 and 2), Northeastern IP (NEIP; station 3 and 4), Guadalquivir Valley (GV; station 5, 6), and Northwestern IP (NWIP; station 7, 8).

<table>
<thead>
<tr>
<th>MB (µg/m³)</th>
<th><40</th>
<th>[-40, 10]</th>
<th>[-10, 10]</th>
<th>[10, 40]</th>
<th>>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃ MDA8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[-40, 10]</td>
<td>0</td>
<td>2 (2%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[-10, 10]</td>
<td>0</td>
<td>35 (10%)</td>
<td>94 (26%)</td>
<td>5 (2%)</td>
<td>0</td>
</tr>
<tr>
<td>[10, 40]</td>
<td>0</td>
<td>3 (1%)</td>
<td>65 (10%)</td>
<td>122 (18%)</td>
<td>5 (2%)</td>
</tr>
<tr>
<td>>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (<1%)</td>
<td>5 (2%)</td>
</tr>
</tbody>
</table>

1 - CIP - D 3 - NEIP - B 5 - GV - D 7 - NWIP - D
2 - CIP - B 4 - NEIP - B 6 - GV - D 8 - NWIP - B
Figure 6: Tagged O₃ concentrations (in µgm⁻³) corresponding to the 90th percentile (90p) of the average hourly concentrations: SNAP1, SNAP34, SNAP7, SNAP8, OTHER, and BCON for July 25th (first column), 28th (second column) and 31st (third columns) in 2012.

Figure 7: Daily mean contribution in µgm⁻³ (a) and in percentage (b) of tagged sources to O₃ during exceedances of the observed 120 µgm⁻³ for MDA8 O₃ averaged by the identified receptor regions (c). Black and grey dots represent observed and modelled daily mean concentration during exceedances of 120 µgm⁻³ of the observed MDA8 O₃. Regions correspond to the Center of the IP (CIP), the Eastern of the IP (EIP), the Ebro Valley (EV), the Guadalquivir Valley (GV), the Mediterranean Sea (MED), the North-Eastern of the IP (NEIP), the North of the IP (NIP), the North-Western of the IP (NWIP), the Southern of the IP (SIP) and the Western of the IP (WIP). Numbered black circles indicate stations under study CI (1-2), NEIP (3-4), GV (5-6) and NWIP (7-8).
Figure 8: Source apportionment time series for \(\text{O}_3 \) and \(\text{NO}_2 \) concentrations (in \(\text{µgm}^{-3} \)) in the episode at the selected stations in the Central-center of the IP (CIP) region (a,b), and in the Northeastern of the IP (NEIP) (c,d). Color bars (sa.fac) indicate the \(\text{O}_3 \) tags. Black and grey dots (ref.fac) indicate the observed and modelled concentrations, respectively. Black horizontal lines represent \(\text{O}_3 \) target value (120 \(\text{µgm}^{-3} \)) and \(\text{NO}_2 \) limit value (40 \(\text{µgm}^{-3} \)) as a reference. The location of the stations is shown in Fig. 7 by the corresponding numbers.
Figure 9: Source apportionment time series for O$_3$ and NO$_2$ concentrations (in μgm$^{-3}$) in the episode at the selected stations in the Guadalquivir Valley (GV) (a,b), and in the northwest of the IP (NWIP) (c,d). Color bars (sa.fac) indicate the O$_3$ tags. Black and grey dots (ref.fac) indicate the observed and modelled concentrations, respectively. Black horizontal lines represent O$_3$ target value ($120 \ \mu$gm$^{-3}$) and NO$_2$ limit value ($40 \ \mu$gm$^{-3}$) as a reference. The location of the stations is shown in Fig. 7 by the corresponding numbers.
Figure 9: Cross section of modelled mixing ratios (in ppb) for \(O_3\) (a) and \(NO_2\) (b) at a constant latitude (Latitude = 40.38°, Madrid city) of the daily Iberian Thermal Low circulation, equivalent to the conceptual scheme of Millán et al. (1996) for July 25th (first column), 28th (second column) and 30th (third column) at 06, 12 and 18 UTC. Dot lines indicate the boundaries of the planetary boundary layer height. Vertical arrows indicate the vertical wind. Up arrows depict positive winds. Note the different scale for the y-axis between \(O_3\) and \(NO_2\).
Table 1: Description of the O₃ tagged sources in the present study.

<table>
<thead>
<tr>
<th>ISAM tag*</th>
<th>Emission by SNAP category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNAP1</td>
<td>SNAP1</td>
<td>SNAP1: Energy industry</td>
</tr>
<tr>
<td>SNAP34</td>
<td>SNAP34</td>
<td>SNAP34: Manufacturing Industries (combustion and processes)</td>
</tr>
<tr>
<td>SNAP7</td>
<td>SNAP7</td>
<td>SNAP7: Road transport, exhaust and non-exhaust</td>
</tr>
<tr>
<td>SNAP8</td>
<td>SNAP8</td>
<td>SNAP8: Non-road transport (international shipping, airport and agricultural machinery)</td>
</tr>
<tr>
<td>OTHR</td>
<td>SNAP2 + SNAP5 + SNAP6 + SNAP9 + SNAP10 + SNAP11</td>
<td>SNAP2: residential and commercial/institutional combustion</td>
</tr>
<tr>
<td>BCON</td>
<td>-</td>
<td>Chemical boundary conditions to IP4 domain from the EU12 simulation which includes the contribution from Europe and international contribution from MOZART-4. O₃ external contribution</td>
</tr>
<tr>
<td>ICON</td>
<td>-</td>
<td>Initial chemical condition of the domain IP4</td>
</tr>
</tbody>
</table>

*Each ISAM tag is applied to O₃ and its precursor species in the CB05 (NOₓ and VOCs). NOₓ species contributing to O₃ formation involve (9 species): NO, NO₂, nitrogen trioxide (NO₃), dinitrogen pentoxide (N₂O₅), nitrous acid (HONO), peroxyacyl nitrates (PAN), higher peroxyacyl nitrates (PANX), peroxynitric acid (PNA), and organic nitrates (NTR). VOC species contributing to O₃ formation include (14 species): acetaldehyde (ALD2), higher aldehydes (ALDX), ethene (ETH), ethane (ETHA), ethanol (ETOH), formaldehyde (FORM), internal olefin (IOLE), isoprene (ISOP), methanol (MEOH), olefin (OLE), paraffin (PAR), monoterpene (TERP), toluene (TOL), and xylene (XYL).
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Type</th>
<th>Observed</th>
<th>Modelled</th>
<th>N</th>
<th>MO (µgm$^{-3}$)</th>
<th>MM (µgm$^{-3}$)</th>
<th>MB (µgm$^{-3}$)</th>
<th>NMB (%)</th>
<th>RMSE (µgm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hourly O$_3$</td>
<td>ALL</td>
<td>26/216</td>
<td>348</td>
<td>77.3</td>
<td>89.9</td>
<td>12.6</td>
<td>16.8</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN</td>
<td>5/24</td>
<td>106</td>
<td>74.1</td>
<td>82.2</td>
<td>14.1</td>
<td>19.8</td>
<td>26.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TR</td>
<td>0/58</td>
<td>70</td>
<td>68.4</td>
<td>83.8</td>
<td>15.9</td>
<td>23.4</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UB</td>
<td>0/78</td>
<td>56</td>
<td>74.8</td>
<td>89.4</td>
<td>15.6</td>
<td>22.1</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>4/48</td>
<td>44</td>
<td>83.2</td>
<td>93.5</td>
<td>10.0</td>
<td>12.9</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RB</td>
<td>17/92</td>
<td>66</td>
<td>91.2</td>
<td>96.2</td>
<td>4.5</td>
<td>4.8</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>MDA8 O$_3$</td>
<td>ALL</td>
<td>751/822</td>
<td>348</td>
<td>101</td>
<td>106.2</td>
<td>5.7</td>
<td>5.5</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN</td>
<td>204/187</td>
<td>106</td>
<td>96.7</td>
<td>104.8</td>
<td>5.7</td>
<td>5.7</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TR</td>
<td>62/145</td>
<td>70</td>
<td>92.7</td>
<td>104.1</td>
<td>13.3</td>
<td>15.1</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UB</td>
<td>86/174</td>
<td>56</td>
<td>100.0</td>
<td>107.6</td>
<td>14.1</td>
<td>14.8</td>
<td>22.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>159/131</td>
<td>44</td>
<td>110.7</td>
<td>110.0</td>
<td>3.1</td>
<td>2.9</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RB</td>
<td>260/185</td>
<td>66</td>
<td>113.1</td>
<td>108.6</td>
<td>-3.7</td>
<td>-3.3</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>Hourly NO$_2$</td>
<td>ALL</td>
<td>3/0</td>
<td>358</td>
<td>14.0</td>
<td>9.9</td>
<td>-4.1</td>
<td>-3.1</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN</td>
<td>0/0</td>
<td>120</td>
<td>11.5</td>
<td>11.8</td>
<td>-3.0</td>
<td>-2.8</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TR</td>
<td>3/0</td>
<td>95</td>
<td>22.9</td>
<td>14.1</td>
<td>-7.4</td>
<td>-3.5</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UB</td>
<td>0/0</td>
<td>63</td>
<td>17.0</td>
<td>13.2</td>
<td>-4.0</td>
<td>-2.6</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>0/0</td>
<td>33</td>
<td>12.0</td>
<td>7.6</td>
<td>-2.8</td>
<td>-3.4</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RB</td>
<td>0/0</td>
<td>41</td>
<td>4.3</td>
<td>2.8</td>
<td>-2.0</td>
<td>-0.9</td>
<td>4.4</td>
<td></td>
</tr>
</tbody>
</table>

Note that there are stations that do not fit in any of these four classifications.

Table 2: Statistics for average hourly O$_3$, MDA8 O$_3$, and average hourly NO$_2$ concentrations in the episode as a function of the station type. Exceedances indicate the number of exceedances of the European Air Quality Directive Standards for hourly O$_3$ (180 µgm$^{-3}$), MDA8 O$_3$ (120 µgm$^{-3}$) and average hourly NO$_2$ (200 µgm$^{-3}$). N indicates the number of monitoring stations used in the statistics calculation. MO and MM depict the measured and modelled mean concentrations, respectively. Statistics are calculated by considering more than 75% of the hours in a day, as established by Directive 2008/50/EC. The statistics correspond to following quantiles 50th (25th, 75th) by station. Type indicates the station categories in the calculation of the statistics: all the stations (ALL), industrial (IN), traffic (TR), urban background (UB), suburban background (SB) and rural background (RB) stations.