Transport of short-lived halocarbons to the stratosphere over the Pacific Ocean.

Michal T. Filus¹, Elliot L. Atlas², Maria A. Navarro²⁎, Elena Meneguz³, David Thomson³, Matthew J. Ashfold⁴, Lucy J. Carpenter⁵, Stephen J. Andrews⁵, Neil R.P. Harris⁶

1. Centre for Atmospheric Science, University of Cambridge, Cambridge, CB2 1EW, UK
2. Department of Atmospheric Sciences, RSMAS, University of Miami, Miami, Florida, USA
3. Met Office, Atmospheric Dispersion Group, FitzRoy Road, Exeter, EX1 3PB, UK
4. School of Environmental and Geographical Sciences, University of Nottingham Malaysia Campus, 43500, Semenyih, Selangor, Malaysia
5. Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
6. Centre for Environmental and Agricultural Informatics, Cranfield University, Cranfield, MK43 0AL, UK

Correspondence to: Neil Harris (neil.harris@cranfield.ac.uk)

Abstract. The effectiveness of transport of short-lived halocarbons to the upper troposphere and lower stratosphere remains an important unknown in quantifying the supply of ozone-depleting substances to the stratosphere. In early 2014, a major field campaign in Guam in the West Pacific, involving UK and US research aircraft, sampled the tropical troposphere and lower stratosphere. The resulting measurements of CH₃I, CHBr₃ and CH₂Br₂ are compared here with calculations from a Lagrangian model. This methodology benefits from an updated convection scheme which improves simulation of the effect of deep convective motions on particle distribution within the tropical troposphere. We find that the observed CH₃I, CHBr₃ and CH₂Br₂ mixing ratios in the Tropical Tropopause Layer (TTL) are consistent with those in the boundary layer when the new convection scheme is used to account for convective transport. Particularly, comparisons between modelled estimates and observations of shortest-lived CH₃I indicates that the NAME convection scheme is realistic up to the lower TTL but less good at reproducing the small number of extreme convective events in the upper TTL. This study consolidates our understanding of the transport of short-lived halocarbons to the upper troposphere and lower stratosphere by using improved model calculations to confirm consistency between observations in the boundary layer, observations in the TTL, and atmospheric transport processes. Our results support recent estimates of the contribution of short-lived bromocarbons to the stratospheric bromine budget.

1 Introduction

The successful implementation of the Montreal Protocol with its adjustments and amendments has led to reductions in stratospheric chlorine and bromine amounts since the late 1990s (Carpenter et al., 2014). These reductions have halted the ozone decrease (Harris et al., 2015; Chipperfield et al., 2017; Steinbrecht et al., 2017) with the exception of continued depletion in the lower stratosphere (Ball et al., 2017). Recently, the importance of very short-lived (VSL) chlorine- and bromine containing

⁎Deceased: 19.12.2017
The transport of VSL halocarbons into the lower stratosphere is by ascent through the tropical tropopause layer (TTL) (Fueglistaler et al., 2009). An important factor influencing the loading of the VSL bromocarbons in the TTL is the strength of the convective transport from the boundary layer where the bromocarbons are emitted (Hosking et al., 2010; Russo et al., 2015; Fuhlbrigge et al., 2016; Krzysztofiak et al., 2018). This is poorly quantified and, especially when taken together with the large variations in boundary layer concentrations and the convection parameterisation being the major source of uncertainty in chemistry transport models, limits our ability to model the bromine budget in the current and future atmosphere (Liang et al., 2010, 2014; Carpenter et al., 2014; Fernandez et al., 2014; Sala et al., 2014; Tegtmeier et al., 2015; Navarro et al., 2015, 2017; Hossaini et al., 2016; Butler et al., 2017; Fiehn et al., 2017). Much of this uncertainty is linked to the contribution of CHBr$_3$ which has both the shortest lifetime and the largest emissions of the commonly observed bromocarbons.

Three of the most important VSL halocarbons are CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$. They have typical lower tropospheric lifetimes (4, 15 and 94 days, respectively (Carpenter et al., 2014)) which are shorter than tropospheric transport timescales and so they have non-uniform tropospheric abundances. They are all emitted predominantly from the oceans and result principally from natural sources (e.g. Lovelock 1975; Solomon et al., 1994; Oram and Penkett, 1994; Vogt et al., 1999; Salawitch et al., 2006; Pyle et al., 2011; Carpenter et al., 2012, 2014; Tegtmeier et al., 2013; Saiz-Lopez et al., 2014). The short-lived bromocarbons, chiefly CHBr$_3$ and CH$_2$Br$_2$, have been identified as the missing source for the stratospheric active bromine (mostly originating from long-lived brominated organic and inorganic substances; Pfahlsticker et al., 2000; Salawitch, 2006; Feng et al., 2007; Dessens et al., 2009). The current estimates of the contribution of the short-lived bromocarbons to the active bromine (Br$_r$) in the stratosphere range from 3-8 ppt (Liang et al., 2010, 2014; Carpenter et al., 2014; Fernandez et al., 2014; Sala et al., 2014; Tegtmeier et al., 2015; Navarro et al., 2015, 2017; Hossaini et al., 2016; Butler et al., 2017; Fiehn et al., 2017). Much of this uncertainty is linked to the contribution of CHBr$_3$ which has both the shortest lifetime and the largest emissions of the commonly observed bromocarbons.

To address this and other challenges, the Natural Environment Research Council Coordinated Airborne Studies in the Tropics (NERC CAST), National Centre for Atmospheric Research Convective Transport of Active Species in the Tropics (NCAR CONTRAST) and National Aeronautics and Space Administration Airborne Tropical Tropopause Experiment (NASA ATTREX) projects were organised (Harris et al., 2017; Jensen et al., 2017; Pan et al., 2017). These projects joined forces in January-March 2014 in the American territory of Guam, in the West Pacific. Three aircraft were deployed to sample air masses at different altitudes to investigate the
characteristics of the air masses affected by the deep convective systems. This campaign produced a unique dataset of coordinated measurements for interpretative studies of transport and distribution of the chemical species, including the VSL bromocarbons (Sect. 2.1 and 2.2). The NASA ATTREX project also measured over the less convectively active east Pacific in January - February 2013. The ATTREX project also measured over the less convectively active east Pacific in January - February 2013. The objective of this paper is to model the transport and distribution of CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$ in the TTL by quantifying their boundary layer and background contribution components using a new Lagrangian methodology. Briefly, the approach quantifies how much of CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$ in the TTL come from the boundary layer, and assesses the role of convection in transporting these compounds to the TTL. The calculation is completed by estimating the background component (i.e. how much of CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$ originate from outside the immediate boundary layer source). Section 2 presents an overview of the field campaigns, the CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$ measurements, and how the NAME calculations are used. In Section 3, the approach is illustrated by comparing model estimates and measurements from one ATTREX 2014 flight. This analysis is then expanded to cover measurements from all ATTREX 2014 and 2013 flights. The role of convection in transporting VSL halocarbons to the TTL is further examined in Section 4. Based on the modelled calculations of CHBr$_3$ and CH$_2$Br$_2$, Section 5 discusses how much these VSL bromocarbons contribute to the bromine budget in the TTL.

2 Methodology

2.1 Overview of the CAST, CONTRAST and ATTREX campaigns

The joint CAST, CONTRAST and the third stage of the ATTREX campaign took place in January - March 2014, in the West Pacific. Guam (144.5°E, 13.5°N) was used as a research mission centre for these three campaigns. Three aircraft were deployed to measure physical characteristics and chemical composition of tropical air masses from the earth’s surface up to the stratosphere. In CAST, the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 surveyed the boundary layer and lower troposphere to sample the convection air mass inflow, while in CONTRAST the National Science Foundation - National Center for Atmospheric Research (NSF-NCAR) Gulfstream V (GV) principally target the region of maximum convective outflow in the mid- and upper troposphere and also sampled the boundary layer. Finally, in ATTREX, the NASA Global Hawk (GH) sampled the TTL to cover air masses likely to be detrained from the higher convective outflow. For more details on these campaigns, in particular, objectives, meteorological conditions and descriptions of individual flights, please refer to the campaign summary papers: Harris et al., 2017 (CAST), Pan et al., 2017 (CONTRAST) and Jensen et al., 2017 (ATTREX). ATTREX had four active measurement campaigns, and we also consider the second campaign which was based in Los Angeles in January-March 2013 and which extensively sampled the East and Central Pacific TTL in six research flights.

2.2 Measurements of the VSL halocarbons

Whole Air Samplers (WAS) were deployed on all three aircraft to measure VSL halocarbons. The FAAM BAe-146 and NSF-NCAR GV also used on-board gas chromatography-mass spectrometry
(GC-MS) system for real-time analysis (Wang et al., 2015; Andrews et al., 2016; Pan et al., 2017), though these measurements are not used in our analysis. WAS instrumentation had been used routinely in previous deployments. The sampling and analytical procedures are capable of accessing a wide range of mixing ratios at sufficient precision and the measurements from the three aircraft have been shown to be consistent and comparable (Schauffler et al., 1998; Park et al., 2010; Andrews et al., 2016).

The CAST VSL halocarbon measurements were made using the standard FAAM WAS canisters with 30 second filling time. Up to 64 samples could be collected on each flight and these were analysed in the aircraft hangar, usually within 72 hours after collection. Two litres of sample air were pre-concentrated using a thermal desorption unit (Markes) and analysed with GC-MS (Agilent 7890 GC, 5977 Xtr MSD). Halocarbons were quantified using a NOAA calibration gas standard. The measurement and calibration technique is further described and assessed in Andrews et al. (2013; 2016).

The ATTREX AWAS sampler consisted of 90 canisters, being fully automated and controlled from the ground. Sample collection for the AWAS samples was determined on a real-time basis depending on the flight plan altitude, geographic location, or other relevant real-time measurements. The filling time for each canister ranged from about 25 seconds at 14 km to 90 seconds at 18 km. Canisters were immediately analysed in the field using a high performance GC-MS coupled with a highly sensitive electron capture detector. The limits of detection are compound-dependent and vary from ppt to sub-ppt scale, set at 0.01 ppt for CHBr, CH2Br2, and CHI (Navarro et al., 2015). A small artefact of ~0.01-0.02 ppt for CHI cannot be excluded. AWAS samples collected on the GV were analysed with the same equipment. Detailed comparison of measurements from the three systems found agreement within ~7 % for CHBr3, ~3 % for CH2Br2, and 15 % for CHI (Andrews et al., 2016).

2.3 UK Meteorological Office NAME Lagrangian Particle Dispersion Model

The Lagrangian particle dispersion model, NAME, (Jones, et al., 2007) is used to simulate the transport of air masses in the Pacific troposphere and the TTL. Back trajectories are calculated with particles being moved through the model atmosphere by mean wind fields (0.352° longitude and 0.235° latitude, i.e. ~25 km, with 31 vertical levels below 19 km) calculated by the Meteorological Office’s Unified Model at 3-hour intervals. This is supplemented by a random walk turbulence scheme (Davies et al., 2005). For this analysis, the NAME model is used with the improved convection scheme, (Meneguz and Thomson, 2014) which simulates displacement of particles subject to convective motions more realistically than previously (Meneguz et al., in review). NAME is run backward in time to determine the origin(s) of air measured at a particular location (WAS sample) along the ATTREX GH flight track.

15,000 particles are released from each point along the flight track where VSL halocarbons were measured in WAS samples. To initialise the NAME model, particles are released randomly in a volume with dimensions 0.1° × 0.1° × 0.3 km centred on each sample. As particles are followed 12
days back in time, trajectories are filtered on the basis of first crossing into the boundary layer (1 km). Subsequently, the fraction of particles which crossed below 1 km is calculated for each WAS measurement point (Ashfold et al., 2012). The NAME 1 km fractions are indicative of the boundary layer air mass influence to the TTL. The 1 km boundary layer fractions are then used to quantitatively estimate the VSL halocarbon contribution to the TTL from the boundary layer, [X]BL_Contribution. In order to compare the measured and modelled halocarbon values, estimates of the contribution from the background troposphere, [X]BG_Contribution (i.e. air which has not come from the boundary layer within 12 days) are made. The model estimate for the total halocarbon mixing ratio, [X]NAME_TTL, is thus given by Eq. (1):

\[
[X]_{NAME_{TTL}} = [X]_{BL_{Contribution}} + [X]_{BG_{Contribution}}
\]

The methods for calculating [X]BL_Contribution and [X]BG_Contribution are now described.

2.3.1 NAME modelled boundary layer contribution

The contribution from the boundary layer, ([X]BL_Contribution - described above) to the VSLs in the TTL can be estimated using

(i) the fractions of trajectories crossing below 1 km in the previous 12 days;
(ii) the transport times to the TTL calculated for each particle;
(iii) the initial concentration values for CH\textsubscript{3}I, CHBr\textsubscript{3} and CH\textsubscript{2}Br\textsubscript{2}; and
(iv) their atmospheric lifetimes (to account for the photochemical removal along the trajectory).

More specifically, the boundary layer contribution to the TTL for the VSL halocarbons is calculated using Eq. (2) and Eq. (3):

\[
[X]_{BL_{Contribution}} = [X]_{BL} \times fraction_t \times \exp\left(-\frac{t}{\tau}\right)
\]

\[
[X]_{BL_{Contribution}} = \sum([X]_{BL_{Contribution},t})
\]

Equation (2) gives the boundary layer contribution to the TTL for a given tracer, X (where X could be CH\textsubscript{3}I, CHBr\textsubscript{3}, CH\textsubscript{2}Br\textsubscript{2}), at model output time step, t. The model output time step used is 6 hours, from \(t = 0 \) (particle release) to \(t = 48 \) (end of a 12 day run). \([X]_{BL}\) stands for the initial boundary layer concentration of a given tracer - assigned to each particle which crossed below 1 km (Table 1). Fraction, is a number of particles which first crossed 1 km in a model output time step, t, over a total number of particles released, and \(\exp\left(-\frac{t}{\tau}\right) \) is a term for the photochemical loss (where \(\tau \) stands for atmospheric lifetime of a respective VSL halocarbon). Equation (3) gives the boundary layer contribution that is the sum of boundary layer contribution components in all model output time steps (for \(t = 1 \) to 48).

Equation (2) calculates the decay of each tracer after it leaves the boundary layer (0-1 km) which is valid for a well-mixed boundary layer. Since 15,000 particles are released for each AWAS sample,
contributions from each particle from below 1 km in the previous 12 days are summed. Decay times, \(\tau \), of 4, 15 and 94 days for CH\(_3\)I, CHBr\(_3\) and CH\(_2\)Br\(_2\), respectively, are used (i.e. constant chemical loss rate) (Carpenter et al., 2014). Thus, a particle getting to the TTL in 1 day contributes more of a given tracer to that air mass than a particle taking 10 days. Once this chemical loss term was taken into account, the NAME trajectories can be used to calculate the contribution of convection of air masses from the boundary layer within the preceding 12 days. The initial boundary layer concentrations are derived from the CAST and CONTRAST WAS measurements taken in the West Pacific in the same period of January-March 2014 as for the ATTREX measurements in the TTL (Table 1). These observed means are used in model calculations, and the similarity between them and literature values reported in Carpenter et al. (2014) is seen, with lower values for CHBr\(_3\) only.

2.3.2 NAME modelled background contribution

To compare our model results against the AWAS observations, the background contribution, \([X]_{BG,\text{Contribution}}\) (meaning the contribution from the fraction of trajectories which do not cross below 1 km within 12 days) also needs to be accounted for. This requires estimates for the fraction of trajectories from the free troposphere, which is \((1 - \text{fraction}_{BL})\), Eq. (4), and an estimate of the halocarbon mixing ratio in that fraction, \([X]_{BG}\), Eq. (5) i.e.

\[
\text{fraction}_{BL} = \sum (\text{fraction}_t) \tag{4}
\]

\[
[X]_{BG,\text{Contribution}} = (1 - \text{fraction}_{BL}) \times [X]_{BG} \tag{5}
\]

Since each sample has 15,000 back-trajectories associated with it, some of which came from below 1 km and some of which did not, a definition as to which air samples are considered as boundary layer and which are considered background is required. Two approaches are tested. Both use the NAME calculations to identify AWAS samples in all flights (2013 and 2014) with low convective influence by (i) filtering for air masses with boundary layer fraction values less than 1, 5 or 10%; and (ii) selecting the lowest 10% of boundary layer fractions. Then, the CH\(_3\)I, CHBr\(_3\) and CH\(_2\)Br\(_2\) AWAS observations, corresponding to the boundary layer fraction values less than 1, 5 or 10%, or the lowest 10% of boundary layer fractions, are averaged to provide CH\(_3\)I, CHBr\(_3\) and CH\(_2\)Br\(_2\) background mixing ratios. Two approaches are explored below (Sect. 3.1.2).

3 Analysis of ATTREX 2014 Research Flight 02

We start by showing our results from one of the individual ATTREX 2014 Research Flights, RF02, to illustrate the method. This is followed by analysing all Research Flights together for ATTREX 2014 and 2013 in Sect. 4, and calculating the modelled contribution of active bromine from very-short lived brominated substances, CHBr\(_3\) and CH\(_2\)Br\(_2\), to the TTL (Sect. 5).

3.1 Individual ATTREX 2014 Flight: Research Flight 02
Figure 1 shows the vertical distribution of CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$ in the TTL observed during the individual research flight, RF02, during ATTREX 2014. Held on 16-17 February 2014, RF02 was conducted in a confined area east of Guam (12-14°N, 145-147°E) due to a faulty primary satellite communications system for Global Hawk command and control (Jensen, et al., 2017). 26 vertical profiles through TTL were made, with 86 AWAS measurements taken in total. A high degree of variability of CH$_3$I in the TTL was observed (from > 0.4 ppt at 14-15 km, to near-zero ppt values at 17-18 km). Each profile, in general, showed a gradation in CH$_3$I distribution in the TTL. Higher values were measured in the lower TTL up to 16 km, with values decreasing with altitude. The same pattern was observed for CHBr$_3$ and CH$_2$Br$_2$, with the highest concentrations measured in the lower TTL (14-15 km), and the lowest at 17-18 km.

3.1.1 NAME modelled boundary layer contribution

Figure 2(a) shows the vertical distribution of the boundary layer air contribution to the TTL (corresponding to the AWAS measurement locations along the RF02 flight track). It reveals higher boundary layer air influence in the lower TTL, decreasing with altitude (similarly to the VSL halocarbon observations). Cumulatively, the highest fractions from below 1 km are found for the lower TTL (14-15 km). A noticeable decrease occurs between the lower and upper TTL (15 to 17 km). From 16 km up, little influence (indicated by <10 % and <5 % 1 km fractions of trajectories below 1 km for 16-17 km and 17-18 km, respectively) of the low-level air masses is seen.

Figure 2(b) shows all NAME runs for RF02 grouped into four 1 km TTL bins: 14-15 km, 15-16 km, 16-17 km and 17-18 km. In the 14-15 km bin, most particles from the low troposphere are calculated to have arrived in the preceding 4 days with many in the preceding 2 days. This represents the fast vertical uplift of the low tropospheric air masses to the lower TTL. At 15-16 km, two particle populations are observed: the first group results from recent vertical uplift, while the second group has been in the upper troposphere for longer than a couple of days (see Fig. 2c in Navarro et al., 2015 for similar example). Above 16 km, the overwhelming majority (>90 %) of the released particles are calculated to be in the TTL for the previous 12 days, with negligible evidence for transport from the low troposphere. This shows the dominance of the long-range, horizontal transport for the 16-17 and 17-18 km NAME runs (also shown in Navarro et al., 2015).

Figure 3 shows the locations at which trajectories crossed 1 km, thereby indicating boundary layer source regions for the RF02 TTL air masses. Boundary layer sources in the western and central Pacific are the most important for the lowest TTL bin (14-15 km, Fig. 3a) in this flight. The Maritime Continent, the Northern Australia coast, the Indian Ocean and the equatorial band of the African continent increase in importance as altitude increases, though the overall contribution of recent boundary layer air masses decreases with increasing altitude.

Figure 4 shows the NAME modelled boundary layer contribution to the TTL for CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$ during RF02. It is important to note that this contribution corresponds to uplift from below 1 km in the preceding 12 days, the length of the trajectories. The calculated boundary layer contributions for CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$ from the 1 km fractions are highest at 14-15 km,
dropping off with altitude. Almost no boundary layer contribution is found for 17-18 km (with values close to 0 ppt).

3.1.2 NAME modelled background contribution

Here we explore the two approaches described in Sect. 2.3.2 for estimating the CHBr₃ and CH₂Br₂ background mixing ratios. Similar values are seen in ATTREX 2013 and 2014. Less variation is observed for CH₂Br₂ due to its longer atmospheric lifetime.

ATTREX 2013 and 2014 are treated separately in the analysis presented below due to the difference in CH₃I background estimates. The approach using the lowest 10 % of the boundary layer fractions is used to estimate the background contribution for the 2014 flights as not enough data meet the former condition due to the proximity of the flights to strong convection. The background values, inferred from all the ATTREX 2014 flights, are used in the individual flight calculations as again there are not enough data from an individual flight to make background calculations for that flight. In ATTREX 2013 we use the boundary layer fractions less than 5 % approach for the CH₃I background estimation. The ATTREX 2014 background estimates should be taken as upper limits as it is hard to identify samples with no convective influence in 2014. This is especially true for the lower TTL since the ATTREX 2014 flights were close to the region of strong convection.

Figure 5 shows the VSL background mixing ratios calculated for the ATTREX campaigns in 2013 and 2014. In ATTREX 2013, low CH₃I background mixing ratios are found. All approaches show similar background mixing ratios. In 2014, higher CH₃I background mixing ratios are calculated due to ubiquity of air from recent, vertical uplift. No boundary layer fractions less than 1 % are found for the 14-17 km bins, and less than 5 % for the 14-15 km.

3.1.3 NAME modelled total concentrations

The NAME boundary layer and background contribution estimates are added to give an estimate for total halocarbon mixing ratio, [X]_{NAME,TTL} (Eq. (1)), for comparison with the AWAS observations.

Figure 6 and Table 2 show the vertical distribution of NAME-based estimates for CH₃I, CHBr₃ and CH₂Br₂ in the TTL for RF02. The sums of the NAME CH₃I, CHBr₃ and CH₂Br₂ boundary layer and background contribution estimates agree well with the AWAS observations for all the 1 km TTL bins (compared with Fig. 1).

At 14-15 km, the modelled boundary layer contribution of CH₃I is similar to the observations, indicating recent, rapid convective uplift. This provides evidence that the improved convection scheme provides a realistic representation of particle displacement via deep convection. At higher altitudes, the background contribution is more important and, indeed, the modelled total CH₃I values are greater than the observations. This overestimate of the background contribution results from the difficulty of identifying samples with no convective influence in ATTREX 2014. This problem is most important for CH₃I with its very short lifetime.
CHBr₃ drops off slower with altitude than CH₃I and quicker than CH₂Br₂. At 14-15 km, the boundary layer contribution accounts for ~50% of the modelled sums of CHBr₃ and CH₂Br₂, but less than 5% for CHBr₃ and CH₂Br₂ at 17-18 km. For the upper TTL, the background contribution estimates constitute over 85% of the modelled sums, thus taking on more importance.

4 The role of transport in the VSL halocarbon distribution in the TTL

The role of transport in the CH₃I, CHBr₃, and CH₂Br₂ distribution in the TTL is examined in this section by applying the NAME based analysis introduced in Sect. 3 to all CH₃I, CHBr₃, and CH₂Br₂ AWAS observations in the ATTREX 2013 and 2014 campaigns.

In ATTREX 2013, six flights surveyed the East Pacific TTL in February-March 2013. Four flights went west from Dryden Flight Research Centre to the area south of Hawaii, reaching 180° longitude. Little influence of convective activity was observed. Most samples with strong boundary layer influence were observed in air masses that had originated over the West Pacific and the Maritime Continent, where it was uplifted to the TTL and transported horizontally within the TTL (Navarro et al., 2015). Two flights sampled the TTL near the Central and South American coast. Few convective episodes were observed. The sampled air had predominantly a small boundary layer air signature from the West Pacific and the Maritime Continent.

In ATTREX 2014, two transit flights and six research flights were made in the West Pacific in January-February 2014. This period coincided with the active phase of Madden-Julian Oscillation (MJO) and increased activity of tropical cyclones. A large influence of recent convective events is observed (Navarro et al., 2015), reflected in the elevated CH₃I and CHBr₃ mixing ratios and the high values of NAME fractions of trajectories below 1 km. All three aircraft flew together in 2014 and so there is a more complete set of measurements from the ground up. Accordingly, this year is discussed first.

4.1 VSL halocarbon distribution in the TTL: ATTREX 2014

Figure 7 shows the vertical distribution of the observations and of the modelled boundary layer contribution and total mixing ratios for CH₃I, CHBr₃, and CH₂Br₂ for all the ATTREX 2014 flights (using only the AWAS measurements made from 20°N southward). As in RF02, CH₃I is highest in the lower TTL, dropping off with altitude. Large flight-to-flight variability in CH₃I measurements is seen. The fraction of NAME particles that travel below 1 km in the previous 12 days (Table 3) are highest at 14-15 km (mean of 57%) and decrease with altitude in a similar fashion. The CH₃I boundary layer contribution explains most of the observations for the 14-15 and 15-16 km layers. Disparities in observed and modelled CH₃I arise from 16 km up. Background estimate values are minimal, oscillating between 0 and the limit of detection of the AWAS instrument for the iodinated short-lived organic substances, 0.01 ppt. The sums of the CH₃I boundary layer and background
contribution estimates show good agreement with AWAS observations for all the TTL 1 km
segments (Table 3).

The good agreement for the 14-15 km and 15-16 km layers can be attributed to the improved
representation of deep convection in NAME, provided by the new convection scheme (Meneguz et
al., in review). However, there is an underestimation of the boundary layer contribution to the upper
TTL levels (16-17 and 17-18 km) which we attribute to the new convection scheme not working as
well at these altitudes. Both the CH$_3$I AWAS observations and the modelled sums are higher than
reported previously in the literature (Carpenter et al., 2014) for all the TTL segments. This may be
explained by sampling the TTL in a region of high convective activity. This result gives confidence
in the quality of the new convection scheme and hence in similar calculations of convective influence
on the longer-lived CHBr$_3$ and CH$_2$Br$_2$.

The highest CHBr$_3$ and CH$_2$Br$_2$ concentrations were observed in the lower TTL (14-15 km),
dropping off more slowly with altitude than CH$_3$I. The weight of the modelled boundary layer
contribution estimates to the modelled total amounts varies from approximately 50% at 14-15 km
(unlike for CH$_3$I where over 85% of the modelled sum is attributed to the boundary layer
contribution at 14-15 km) to < 20% at 17-18 km. The sums of the boundary layer and background
contribution estimates show good agreement with CHBr$_3$ and CH$_2$Br$_2$ AWAS observations. The
ATTREX observations and the NAME modelled sums are within the range of values reported in the
literature (Carpenter, et al., 2014).

4.2 VSL halocarbon distribution in the TTL: ATTREX 2013

Figure 8 shows the vertical distribution for CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$ in the TTL, observed and
modelled from the ATTREX 2013 flights (using only the AWAS measurements taken south of
20°N). Much lower CH$_3$I values are found in 2013 than in 2014 (Fig. 7). The NAME 1 km fractions
are considerably lower (~fourfold), and the corresponding CH$_3$I boundary layer contribution shows
values close to the limit of detection of the AWAS instrument for CH$_3$I. The background contribution
comprises over 85-90% of the sums of the modelled CH$_3$I estimate in the TTL. Good agreement is
found between the sums of the boundary layer and background contribution estimates, against the
AWAS observations. Both the observed and modelled values are in the low end of the CH$_3$I
concentrations reported by the WMO 2014 Ozone Assessment (Carpenter et al., 2014).

The ATTREX 2013 mixing ratios are also lower for CHBr$_3$ and higher CH$_2$Br$_2$ than shown in Fig. 7
for 2014. The NAME calculated CHBr$_3$ and CH$_2$Br$_2$ boundary layer contributions are small,
constituting approximately 10% of the NAME modelled sums for 14-15 km, and less for the upper
TTL segments. The background contribution estimates comprise over 85% of the modelled sums.
Good agreement is found between the sums of the boundary layer and background contribution
estimates and the CHBr$_3$ and CH$_2$Br$_2$ AWAS observations.

4.3 ATTREX 2013 and 2014: Inter-campaign comparison
Clear differences in the vertical distributions of CH$_3$I in the TTL are found in ATTREX 2013 and 2014. CH$_3$I estimates, corresponding to high values in the NAME modelled 1 km fractions, are high in 2014, whereas in 2013 almost no CH$_3$I is estimated to be in the TTL. This is due to the minimal contribution of the boundary layer air within the previous 12 days: ATTREX 2013 was in the East Pacific away from the main region of strong convection. Longer transport timescales result from horizontal transport and were more important in ATTREX 2013, with much less recent convective influence than in ATTREX 2014. More chemical removal of CH$_3$I and CHBr$_3$ thus took place, leading to lower concentrations in the East Pacific TTL.

The trajectories are analysed to investigate the timescales for vertical transport by calculating how long it took particles to go from below 1 km to the TTL. In 2013, almost no episodes of recent rapid vertical uplift are found, with most particles taking 8 days and more to cross the 1 km. This is indicative of the dominant role of long-range horizontal transport. In 2014, by way of contrast, a considerable number of trajectories (10’s of per cent) come from below 1 km in less than 4 days, representing the ‘young’ air masses being brought from the low troposphere via recent and rapid vertical uplift.

The spatial variability in the boundary layer air source origins, as well as the variation in atmospheric transport pathways and transport timescales can explain the differences in the distribution of the NAME 1 km fractions in the TTL. In 2014 (2013), higher (lower) boundary layer fractions corresponded well with higher (lower) CH$_3$I and CHBr$_3$ values in the TTL, especially with the highest concentrations occurring for the flights with the most convective influence and the highest fractions of particles arriving within the 4 days.

In the ATTREX 2014 flights, the western and central Pacific is the dominant source origin of boundary layer air to the TTL (Navarro et al., 2015). Increased tropical cyclone activity in this area (particularly Faxai 28 February – 6 March 2014 and Lusi 7-17 March 2014) and the strong signal from the MJO related convection contributed to the more frequent episodes of strong and rapid vertical uplifts of the low-level air to the TTL. A significant contribution is also seen from the central Indian Ocean, marking the activity of the Fobane tropical cyclone (6-14 February 2014). Minimal contribution from the other remote sources (Indian Ocean, African continental tropical band) is found (Anderson et al., 2016; Jensen et al., 2017; Newton et al., 2018).

5 How much do VSL bromocarbons contribute to the bromine budget in the TTL?

The NAME modelled CHBr$_3$ and CH$_2$Br$_2$ estimates in the TTL are used to calculate how much bromine from the VSL bromocarbons, Br-VSL$_{org}$, is found in the lower stratosphere, based on how much enters the TTL in the form of bromocarbons (as in Navarro et al. (2015)). CHBr$_3$ and CH$_2$Br$_2$ are the dominant short-lived organic bromocarbons, and the minor bromocarbons: CH$_2$BrCl, CHBr$_2$Cl and CHBrCl$_2$ are excluded here (as their combined contribution is less than 1 ppt to Br-VSL$_{org}$ at 14-18 km, Navarro et al., 2015). The NAME modelled CHBr$_3$ and CH$_2$Br$_2$ estimates are multiplied by the number of bromine atoms (bromine atomicity), and then summed to yield the total of Br-VSL$_{org}$.
Figure 9 shows the contribution of CHBr3 and CH2Br2, the two major VSL bromocarbons contributing to the bromine budget in the TTL. For ATTREX 2013 and 2014, similar contributions of CHBr3 and CH2Br2 to Br-VSLorg are found in the lower TTL. In 2014, CHBr3 in the lower TTL was abundant enough to contribute as much Br-VSLorg as CH2Br2. A combination of larger boundary layer air influence in the TTL and shorter mean transport times to reach the TTL result in the observed higher CHBr3 contribution to the Br-VSLorg in the lower TTL in 2014, than in 2013. The CH2Br2 contribution dominates in the upper TTL due to its longer atmospheric lifetime.

Good agreement is found between the bromine loading from the VSL bromocarbons, inferred from the NAME modelled estimates initialised with BAe-146 and GV measurements, and the Global Hawk AWAS observations. Higher organic bromine loading is seen around the cold point tropopause (16-17 km) in ATTREX 2014.

Using the upper troposphere measurements taken during the SHIVA campaign in the western Pacific in November-December 2011, Sala et al. (2014) calculated an estimate for VSLS (CHBr3, CH2Br2, CHBrCl2, CH3BrCl, CHBr2Cl) contribution to the organic bromine at the level of zero radiative heating (15.0 - 15.6 km). Air masses reaching this level are expected to reach the stratosphere. This VSLS mean mixing ratio estimate of 2.88 (+/- 0.29) ppt (2.35 ppt for CHBr3 and CH2Br2 excluding minor short-lived bromocarbons) is lower due to a lower contribution from CHBr3 estimate (0.22 ppt compared to CHBr3 estimate for NAME / ATTREX in Table 5). Compared to other literature values reported in Sala et al., (2014), our estimates of the contribution of CHBr3 and CH2Br2 to the organic bromine at the LZRH are slightly higher largely due to a higher estimate for a shorter-lived CHBr3.

Navarro et al. (2015) report slightly higher bromine loading from the Br-VSLorg at the tropopause level (17 km) in the West Pacific, 2014 than in the East Pacific, 2013 (the Br-VSLorg values from the AWAS observations were of 3.27 (+/-0.47) and 2.96 (+/-0.42) ppt, respectively). The minor short-lived organic bromine substances were included in the analysis of Navarro et al. (2015), accounting for the higher Br-VSLorg.

Butler et al. (2017), report a mean mole fraction and range of 0.46 (0.13-0.72) ppt and 0.88 (0.71-1.01) ppt of CHBr3 and CH2Br2 being transported to the TTL during January and February 2014. This is consistent with a contribution of 3.14 (1.81-4.18) ppt of organic bromine to the TTL over the region of the campaign. The NAME modelled results presented here (Fig. 9, Table 5) are in good agreement with the values reported by Navarro et al. (2015) and Butler et al. (2017).

6 Summary and Discussion

We have used the NAME trajectory model in backward mode to assess the contribution of recent convection to the mixing ratios of three short-lived halocarbons, CH3I, CHBr3 and CH2Br2. 15,000 back-trajectories are computed for each measurement made with the whole air samples on the NASA Global Hawk in ATTREX 2013 and 2014, and the fraction that originated below 1 km is calculated. A steep drop-off in this fraction is observed between 14-15 km and 17-18 km. Low level measurements of CH3I, CHBr3 and CH2Br2 from the FAAM BAe-146 and the NCAR GV are used in
conjunction with these trajectories and an assumed photochemical decay time to provide estimates of
the amount of each gas reaching the TTL from below 1 km. Comparison of these modelled estimates
with the CH$_3$I measurements shows good agreement with the observations at the lower altitudes in
the TTL values, with less good agreement at altitudes > 16 km, though it should be noted that the
amounts are very small here. The lifetime of CH$_3$I is 3-5 days, and so there is a > 90% decay in the
12 day trajectories. The comparison between the modelled and measured CH$_3$I thus indicates that the
NAME convection scheme is realistic up to the lower TTL but less good at reproducing the small
number of extreme convective events that penetrate to the upper TTL.

In order to perform similar calculations for the longer-lived bromocarbons, an estimate of the
background free tropospheric concentration is required. This is calculated by considering
bromocarbon values in samples where there was only a small influence from the boundary layer, i.e.
where very few NAME trajectories passed below 1 km. This is possible in 2013 when the ATTREX
flights were away from the region of strong convection, but much harder in 2014 when (as planned)
the flights were heavily influenced by convection. By summing the boundary layer and background
contributions, an estimate of the total bromocarbon mixing ratio is obtained.

The resulting modelled estimates are found to be in generally good agreement with the ATTREX
measurements. In other words, a high degree of consistency is found between the low altitude
halocarbon measurements made on the BAE-146 and GV and the high altitude measurements made
on the Global Hawk when they are connected using trajectories calculated by the NAME dispersion
model with its updated convection scheme and driven by meteorological analyses with 25 km
horizontal resolution.

In the above, the boundary layer contribution arises from trajectories which visit the boundary layer
within 12 days while the background contribution involves air that has been transported into the TTL
from outside the boundary layer on timescales up to 12 days. Sensitivity tests were performed in
which the trajectories were followed for longer than 12 days: the effect was to re-allocate some of the
air from the background category into the boundary layer contribution with no net change in the
total.

The approach using NAME trajectories and boundary layer measurements produces Br-VSL$_{eg}$
estimates of 3.47 +/- 0.4 (3.3 +/- 0.4) ppt in the lower East (West) Pacific TTL (14-15 km) and 2.5
+/-0.2 (2.4 +/- 0.4) ppt in the upper East (West) Pacific TTL (17-18 km). These lie well within the
range of the recent literature findings (Tegtmeier et al., 2012; Carpenter et al., 2014; Liang et al.,
2014; Navarro et al., 2015; Butler et al., 2017). The validation with the ATTREX measurements
provides confidence that a similar approach could be used for years when high altitude measurements
are not available assuming that realistic estimates of the background tropospheric contributions can
be obtained from either models or measurements.

7 Data availability
The CH₃I, CHBr₃ and CH₂Br₂ AWAS data from the NASA ATTREX measurements are available online in the NASA ATTREX database (https://espoarchive.nasa.gov/archive/browse/attrex). The CAST measurements are stored on the British Atmospheric Data Centre, which is part of the Centre for Environmental Data archive at http://catalogue.ceda.ac.uk/uuid/565b6bb5a0535b438ad2fae4c852e1b3. The CONTRAST AWAS data are available through http://catalog.eol.ucar.edu/contrast. The NAME data are available from the corresponding author upon request.

8 Author Contribution

The main part of the analysis was conducted by MF. EA and MN provided CH₃I, CHBr₃ and CH₂Br₂ AWAS measurements from the ATTREX and CONTRAST research flights. SA and LC provided CH₃I, CHBr₃ and CH₂Br₂ measurements from the CAST campaign. MA designed initial scripts for NAME runs and products. EM and DT developed the model code for improved convection scheme. MF and NH prepared the manuscript with contributions from all co-authors, NH also supervised this PhD work.

9 Acknowledgements

The authors would like to thank our NASA ATTREX, NCAR CONTRAST and NERC CAST project partners and the technical teams. MF would like to thank Drs Michelle Cain, Alex Archibald, Sarah Connors, Maria Russo and Paul Griffiths for their input on the NAME applications for flight planning and post-flight modelling. The research was funded through the UK Natural Environment Research Council CAST project (NE/J006246/1 and NE/J00619X/1), and MF was supported by a NERC PhD studentship. EA acknowledges support from NASA grants NNX17AE43G, NNX13AH20G and NNX10A0B3A. We acknowledge use of the NAME atmospheric dispersion model and associated NWP meteorological datasets made available to us by the UK Met Office.

10 References

Wolfe
Saiz
J.
Hornbrook
Pan, L.L., Atlas
L.J.
Oram
Phys.,
2015. 612

Russo, M.R., Marécal, V., Hoyle, C.R., Arteta, J., Chemel, C., Chipperfield, M.P., Dessens, O.,
convection in atmospheric models – Part 1: Meteorology and comparison with satellite observations,

bromoform: sensitivity to model resolution and emission location, Atmos. Chem. Phys., 15, 14031-

and Tilmes, S.: Iodine chemistry in the troposphere and its effects on ozone, Atmos. Chem. Phys.,

budget of total organic bromine using airborne in situ measurements from western Pacific area
during SHIVA, Atmos. Chem. Phys., 14, 6903-6923, doi:10.5194/acp-14-6903-2014, 2014.

of bromine containing organic compounds at the tropical tropopause, Geophys. Res. Lett., 25, 3,317-

Schofield, R., Fueglistaler, S., Wohltmann, I., and Rex, M.: Sensitivity of stratospheric Bry to
uncertainties in very short lived substance emissions and atmospheric transport, Atmos. Chem. Phys.,

Steinbrecht, W., Froidevaux, L., Fuller, R., Wang, R., Anderson, J., Roth, C., Bourassa, A.,
Degenstein, D., Damadeo, R., Zawodny, J., Frith, S., McPeters, R., Bhartia, P., Wild, J., Long, C.,
von Clarmann, T., Stiller, G., Kramarova, N., Godin-Beekmann, S., Leblanc, T., Querel, R., Swart,
D., Boyd, I., Hoke, K., Kämpfer, N., Maillard Barras, E., Moreira, L., Nedoluha, G., Vigouroux, C.,
Blumenstock, T., Schneider, M., Garcia, O., Jones, N., Mahieu, E., Smale, D., Kotkamp, M.,
Robinson, J., Petropavlovskikh, I., Harris, N., Hassler, B., Hubert, D., and Tummon, F.: An update
on ozone profile trends for the period 2000 to 2016, Atmos. Chem. Phys., 17, 10675–10690, doi:
10.5194/acp-17-10675-2017, 2017.

Tegtmeier, S., Krüger, K., Quack, B., Atlas, E.L., Pisso, I., Stohl, A., and Yang, X.: Emission and
transport of bromocarbons: from the West Pacific ocean into the stratosphere, Atmos. Chem. Phys.,
12, 10633-10648, doi: 10.5194/acp-12-10633-2012, 2012.

Table 1. Boundary layer concentrations and atmospheric lifetimes for CH$_3$I, CHBr$_3$, and CH$_2$Br$_2$

<table>
<thead>
<tr>
<th>Tracer, [X]</th>
<th>Boundary Layer Concentration, [X]$_{BL}$ [ppt]</th>
<th>Atmospheric Lifetime, τ [days]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAST and CONTRAST</td>
<td>Carpenter et al., 2014</td>
<td></td>
</tr>
<tr>
<td>Mean (Range) Median</td>
<td>Median (Range)</td>
<td></td>
</tr>
<tr>
<td>CH$_3$I</td>
<td>0.70 (0.16-3.34) 0.65</td>
<td>0.8 (0.3-2.1)</td>
</tr>
<tr>
<td>CHBr$_3$</td>
<td>0.83 (0.41-2.56) 0.73</td>
<td>1.6 (0.5-2.4)</td>
</tr>
<tr>
<td>CH$_2$Br$_2$</td>
<td>0.90 (0.61-1.38) 0.86</td>
<td>1.1 (0.7-1.5)</td>
</tr>
</tbody>
</table>
Table 2. ATTREX 2014 Research Flight 02: AWAS observations, modelled boundary layer contribution, the modelled total mixing ratios for CH$_3$I, CHBr$_3$, and CH$_2$Br$_2$. The boundary layer and background fractions means and standard deviations (in brackets) are given based on the measurements and modelled values for the samples collected during the flight.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>0.06 (0.02)</td>
<td>0.00 (0.00)</td>
<td>0.06 (0.02)</td>
</tr>
<tr>
<td>16-17</td>
<td>0.09 (0.03)</td>
<td>0.00 (0.00)</td>
<td>0.06 (0.02)</td>
</tr>
<tr>
<td>15-16</td>
<td>0.17 (0.03)</td>
<td>0.04 (0.04)</td>
<td>0.12 (0.06)</td>
</tr>
<tr>
<td>14-15</td>
<td>0.23 (0.09)</td>
<td>0.17 (0.04)</td>
<td>0.21 (0.08)</td>
</tr>
<tr>
<td>CHBr$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>0.34 (0.17)</td>
<td>0.01 (0.00)</td>
<td>0.29 (0.15)</td>
</tr>
<tr>
<td>16-17</td>
<td>0.42 (0.11)</td>
<td>0.03 (0.01)</td>
<td>0.36 (0.14)</td>
</tr>
<tr>
<td>15-16</td>
<td>0.55 (0.06)</td>
<td>0.12 (0.07)</td>
<td>0.48 (0.17)</td>
</tr>
<tr>
<td>14-15</td>
<td>0.67 (0.10)</td>
<td>0.35 (0.07)</td>
<td>0.58 (0.13)</td>
</tr>
<tr>
<td>CH$_2$Br$_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>0.72 (0.02)</td>
<td>0.02 (0.01)</td>
<td>0.71 (0.03)</td>
</tr>
<tr>
<td>16-17</td>
<td>0.79 (0.07)</td>
<td>0.06 (0.02)</td>
<td>0.76 (0.06)</td>
</tr>
<tr>
<td>15-16</td>
<td>0.83 (0.05)</td>
<td>0.19 (0.09)</td>
<td>0.78 (0.10)</td>
</tr>
<tr>
<td>14-15</td>
<td>0.89 (0.05)</td>
<td>0.46 (0.08)</td>
<td>0.84 (0.12)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Boundary Layer fraction [%]</th>
<th>Background fraction [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-18</td>
<td>2.1 (1.1)</td>
<td>97.9</td>
</tr>
<tr>
<td>16-17</td>
<td>7.2 (2.7)</td>
<td>92.8</td>
</tr>
<tr>
<td>15-16</td>
<td>22.9 (10.0)</td>
<td>77.1</td>
</tr>
<tr>
<td>14-15</td>
<td>53.3 (9.0)</td>
<td>46.7</td>
</tr>
</tbody>
</table>
Table 3. ATTREX 2014 all flights: AWAS observations, modelled boundary layer contribution, the modelled total mixing ratios for CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$. The boundary layer and background fractions are also given. Means and standard deviations (in brackets).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>0.04 (0.03)</td>
<td>0.02 (0.03)</td>
<td>0.07 (0.04)</td>
</tr>
<tr>
<td>16-17</td>
<td>0.11 (0.10)</td>
<td>0.04 (0.04)</td>
<td>0.09 (0.05)</td>
</tr>
<tr>
<td>15-16</td>
<td>0.16 (0.14)</td>
<td>0.09 (0.07)</td>
<td>0.15 (0.08)</td>
</tr>
<tr>
<td>14-15</td>
<td>0.17 (0.14)</td>
<td>0.15 (0.08)</td>
<td>0.19 (0.11)</td>
</tr>
<tr>
<td>CHBr$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>0.33 (0.14)</td>
<td>0.06 (0.06)</td>
<td>0.32 (0.16)</td>
</tr>
<tr>
<td>16-17</td>
<td>0.48 (0.13)</td>
<td>0.12 (0.09)</td>
<td>0.40 (0.17)</td>
</tr>
<tr>
<td>15-16</td>
<td>0.54 (0.13)</td>
<td>0.21 (0.12)</td>
<td>0.50 (0.19)</td>
</tr>
<tr>
<td>14-15</td>
<td>0.61 (0.13)</td>
<td>0.31 (0.12)</td>
<td>0.55 (0.16)</td>
</tr>
<tr>
<td>CH$_2$Br$_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>0.73 (0.06)</td>
<td>0.11 (0.09)</td>
<td>0.73 (0.09)</td>
</tr>
<tr>
<td>16-17</td>
<td>0.82 (0.08)</td>
<td>0.19 (0.14)</td>
<td>0.78 (0.15)</td>
</tr>
<tr>
<td>15-16</td>
<td>0.84 (0.09)</td>
<td>0.32 (0.16)</td>
<td>0.80 (0.17)</td>
</tr>
<tr>
<td>14-15</td>
<td>0.86 (0.07)</td>
<td>0.44 (0.15)</td>
<td>0.84 (0.17)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boundary Layer fraction [%]</th>
<th>Background fraction [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-18 12.7 (10.9)</td>
<td>87.3</td>
</tr>
<tr>
<td>16-17 22.3 (16.0)</td>
<td>77.7</td>
</tr>
<tr>
<td>15-16 37.8 (18.8)</td>
<td>62.2</td>
</tr>
<tr>
<td>14-15 51.7 (16.1)</td>
<td>48.3</td>
</tr>
</tbody>
</table>
Table 4. ATTREX 2013 all flights: AWAS observations, modelled boundary layer contribution, the modelled total mixing ratios for CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$. The boundary layer and background fractions are also given. Means and standard deviations (in brackets).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>0.03 (0.02)</td>
<td>0.00 (0.00)</td>
<td>0.03 (0.01)</td>
</tr>
<tr>
<td>16-17</td>
<td>0.03 (0.02)</td>
<td>0.00 (0.00)</td>
<td>0.03 (0.02)</td>
</tr>
<tr>
<td>15-16</td>
<td>0.04 (0.02)</td>
<td>0.01 (0.01)</td>
<td>0.03 (0.03)</td>
</tr>
<tr>
<td>14-15</td>
<td>0.04 (0.03)</td>
<td>0.01 (0.01)</td>
<td>0.05 (0.03)</td>
</tr>
</tbody>
</table>

CHBr$_3$			
17-18	0.31 (0.10)	0.01 (0.01)	0.31 (0.09)
16-17	0.39 (0.12)	0.02 (0.02)	0.35 (0.11)
15-16	0.54 (0.15)	0.04 (0.04)	0.49 (0.16)
14-15	0.53 (0.15)	0.07 (0.05)	0.53 (0.18)

CH$_2$Br$_2$			
17-18	0.79 (0.08)	0.02 (0.04)	0.78 (0.07)
16-17	0.83 (0.07)	0.04 (0.04)	0.81 (0.07)
15-16	0.90 (0.07)	0.07 (0.06)	0.87 (0.10)
14-15	0.91 (0.08)	0.12 (0.09)	0.89 (0.12)

<table>
<thead>
<tr>
<th>Boundary Layer fraction [%]</th>
<th>Background fraction [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-18 1.9 (2.3)</td>
<td>98.1</td>
</tr>
<tr>
<td>16-17 4.7 (4.9)</td>
<td>95.3</td>
</tr>
<tr>
<td>15-16 9.8 (7.9)</td>
<td>90.2</td>
</tr>
<tr>
<td>14-15 14.7 (11.1)</td>
<td>85.3</td>
</tr>
</tbody>
</table>
Table 5. Contribution from the very short-lived bromocarbons: CHBr$_3$ and CH$_2$Br$_2$ to the bromine in the TTL as given by modelled estimates and AWAS observations for ATTREX 2014 and 2013. [CHBr$_3$] and [CH$_2$Br$_2$] means are shown only.

<table>
<thead>
<tr>
<th>Altitude [km]</th>
<th>[CHBr$_3$] [ppt]</th>
<th>[CH$_2$Br$_2$] [ppt]</th>
<th>Br from CHBr$_3$ [ppt]</th>
<th>Br from CH$_2$Br$_2$ [ppt]</th>
<th>Br-VSL$_{org}$ [ppt]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTREX 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>0.32</td>
<td>0.73</td>
<td>0.96</td>
<td>1.46</td>
<td>2.42</td>
</tr>
<tr>
<td>16-17</td>
<td>0.40</td>
<td>0.78</td>
<td>1.20</td>
<td>1.56</td>
<td>2.76</td>
</tr>
<tr>
<td>15-16</td>
<td>0.50</td>
<td>0.80</td>
<td>1.50</td>
<td>1.60</td>
<td>3.10</td>
</tr>
<tr>
<td>14-15</td>
<td>0.55</td>
<td>0.84</td>
<td>1.65</td>
<td>1.68</td>
<td>3.33</td>
</tr>
<tr>
<td>AWAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>0.33</td>
<td>0.73</td>
<td>0.99</td>
<td>1.46</td>
<td>2.45</td>
</tr>
<tr>
<td>16-17</td>
<td>0.48</td>
<td>0.82</td>
<td>1.44</td>
<td>1.64</td>
<td>3.08</td>
</tr>
<tr>
<td>15-16</td>
<td>0.54</td>
<td>0.84</td>
<td>1.62</td>
<td>1.68</td>
<td>3.30</td>
</tr>
<tr>
<td>14-15</td>
<td>0.61</td>
<td>0.86</td>
<td>1.83</td>
<td>1.72</td>
<td>3.55</td>
</tr>
<tr>
<td>ATTREX 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>0.31</td>
<td>0.78</td>
<td>0.93</td>
<td>1.56</td>
<td>2.49</td>
</tr>
<tr>
<td>16-17</td>
<td>0.35</td>
<td>0.81</td>
<td>1.05</td>
<td>1.62</td>
<td>2.67</td>
</tr>
<tr>
<td>15-16</td>
<td>0.49</td>
<td>0.87</td>
<td>1.47</td>
<td>1.74</td>
<td>3.21</td>
</tr>
<tr>
<td>14-15</td>
<td>0.53</td>
<td>0.89</td>
<td>1.59</td>
<td>1.78</td>
<td>3.37</td>
</tr>
<tr>
<td>AWAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>0.31</td>
<td>0.79</td>
<td>0.93</td>
<td>1.58</td>
<td>2.51</td>
</tr>
<tr>
<td>16-17</td>
<td>0.39</td>
<td>0.83</td>
<td>1.17</td>
<td>1.66</td>
<td>2.83</td>
</tr>
<tr>
<td>15-16</td>
<td>0.54</td>
<td>0.90</td>
<td>1.62</td>
<td>1.80</td>
<td>3.42</td>
</tr>
<tr>
<td>14-15</td>
<td>0.53</td>
<td>0.91</td>
<td>1.59</td>
<td>1.82</td>
<td>3.41</td>
</tr>
</tbody>
</table>
Figure 1: Vertical distribution of CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$ in the TTL, as measured during Research Flight 02, ATTREX 2014: AWAS measurements along the flight track (left), observations grouped into 1 km TTL segments (right, means (star symbols), standard deviations (coloured whiskers), minimum, lower and upper quartiles, median and maximum (black box and whiskers)).
Figure 2: Vertical distribution of NAME 1 km fractions (the fractions which reach the boundary layer within 12 days - indicative of boundary layer air influence) in the TTL (2a, left). Distribution of transport times taken for the trajectories to first cross below 1 km (reach boundary layer) for all the NAME runs and the NAME runs grouped into 1 km TTL segments, Research Flight 02, ATTREX 2014 (2b, right).
Figure 3: Crossing location distribution maps for all the NAME runs released from 4-1 km TTL altitudes: 14-18 km. Strong influence of local boundary air is noted for a 14-15 km segment (lower TTL), whereas the boundary air from remote locations dominates for a 17-18 km segment (upper TTL), Research Flight 02, ATTREX 2014.

Figure 4: NAME modelled CH₃I, CHBr₃ and CH₂Br₂ boundary layer contribution to the TTL, Research Flight 02, ATTREX 2014.

Figure 5: Background mixing ratios for CH₃I, CHBr₃ and CH₂Br₂ for all NAME runs for all flights in ATTREX 2014 (top row) and ATTREX 2013 (bottom row). Little convective influence is indicated by selecting means from NAME 1 km fractions of <1 (blue star), 5 (red diamond) and 10 (green diamond) %.
Figure 6: Vertical distribution of NAME modelled CH\textsubscript{3}I, CHBr\textsubscript{3} and CH\textsubscript{2}Br\textsubscript{2} (sums of boundary layer and background contribution) in the TTL for Research Flight 02, ATTREX 2014.
Figure 7: CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$ vertical distribution in the TTL for ATTREX 2014 flights: AWAS observations (top row), NAME modelled boundary layer contribution (middle row), and NAME modelled sums of boundary layer and background contributions (bottom row).

Figure 8: CH$_3$I, CHBr$_3$ and CH$_2$Br$_2$ vertical distribution in the TTL for ATTREX 2013 flights: AWAS observations (top row), NAME modelled boundary layer contribution (middle row), and NAME modelled sums of boundary layer and background contributions (bottom row).
Figure 9: Contribution of CHBr$_3$ (star symbol) and CH$_2$Br$_2$ (square symbol) to the bromine budget in the TTL, inferred from the NAME modelled estimates (left) and AWAS observations (right); separately ATTREX 2014 (red) and 2013 (blue). Star and square symbols represent the bromine atomicity products from CHBr$_3$ and CH$_2$Br$_2$, respectively. Diamonds show the bromine contribution from the VSL bromocarbons in the TTL (as a sum of the CHBr$_3$ and CH$_2$Br$_2$ bromine atomicity products).