Supplement for manuscript

Effects of meteorology and emissions on urban air quality: a quantitative statistical approach to long-term records (1999–2016) in Seoul, South Korea

Jihoon Seo, Doo-Sun R. Park, Jin Young Kim, Daeok Youn, Yong Bin Lim, Yumi Kim

1Green City Technology Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
2School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
3Department of Earth Sciences, Chosun University, Gwangju 61452, South Korea
4Department of Earth Science Education, Chungbuk National University, Cheongju 28644, South Korea
5Division of Resource and Energy Assessment, Korea Environment Institute, Sejong 30147, South Korea

Correspondence to: Jin Young Kim (jykim@kist.re.kr), Daeok Youn (dyoun@chungbuk.ac.kr)

Contents: 1 table and 7 figures
Table S1. Degrees of freedom (dof) of each time series of short-term, baseline, and long-term components calculated based on Leith (1973).

<table>
<thead>
<tr>
<th>dof</th>
<th>PM$_{10}$</th>
<th>SO$_2$</th>
<th>NO$_2$</th>
<th>CO</th>
<th>O$_3$8h</th>
<th>T</th>
<th>T$_{\text{max}}$</th>
<th>P</th>
<th>RH</th>
<th>WS</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{ST}</td>
<td>1054</td>
<td>1084</td>
<td>1084</td>
<td>1626</td>
<td>1084</td>
<td>1084</td>
<td>1084</td>
<td>1084</td>
<td>1084</td>
<td>1626</td>
<td>1622</td>
</tr>
<tr>
<td>X_{BL}</td>
<td>45</td>
<td>45</td>
<td>55</td>
<td>35</td>
<td>50</td>
<td>46</td>
<td>47</td>
<td>47</td>
<td>60</td>
<td>36</td>
<td>58</td>
</tr>
<tr>
<td>X_{LT}</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>$X_{\text{LT}}^{\text{emis}}$</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$X_{\text{LT}}^{\text{met}}$</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S1. (a) Numbers of available air quality monitoring sites in Seoul, of which missing data are less than 10% of the total. (b) Average and (c) standard deviation of PM$_{10}$ concentrations in Seoul. Asian dust events those were excluded from the PM$_{10}$ analysis are marked with orange color.
Figure S2. Number distribution of (a) daily average PM$_{10}$ concentration and (b) log-transformed daily average PM$_{10}$ concentration. The bell shaped curves show normal (Gaussian) distributions, and #, μ, and σ denote the total number of days, mean values, and standard deviation, respectively. Asian dust event days were excluded from the analysis.
Figure S3. Decompositions of (a) PM$_{10}$ and (b) O$_{3 \text{8h}}$ time series in Seoul for 1999–2016.
Figure S4. Power spectra of (a) log-transformed daily average PM$_{10}$ concentration time series (a black line) and its (b) short-term, (c) seasonal, and (d) long-term components (red lines). Effective filter widths for $KZ_{(15,5)}$ filter (33 days) and $KZ_{(365,3)}$ filter (632 days) are marked with blue vertical dashed lines.
Figure S5. An example of obtaining horizontal gradient of long-term component (X_{LT}) of PM$_{10}$ on 23 February 2014. (a) Locations of 70 air quality monitoring sites in Cartesian coordinates centered at the Seoul weather station (37.57° N, 126.97° E), of which data availability were more than 75% for the period of 1999–2016. (b) Meridional gradients of the baseline ($\frac{\partial X_{BL}}{\partial y}$) and seasonal component ($\frac{\partial X_{SN}}{\partial y}$) obtained by linear regressions. (c) Zonal gradients of the baseline ($\frac{\partial X_{BL}}{\partial x}$) and seasonal component ($\frac{\partial X_{SN}}{\partial x}$). Zonal and meridional gradient of the long-term component can be gained by subtracting the seasonal component gradients from the baseline gradients ($\frac{\partial X_{LT}}{\partial x} = \frac{\partial X_{BL}}{\partial x} - \frac{\partial X_{SN}}{\partial x}$, $\frac{\partial X_{LT}}{\partial y} = \frac{\partial X_{BL}}{\partial y} - \frac{\partial X_{SN}}{\partial y}$).
Figure S6. Long-term component of (a) zonal wind (u_{LT}) and (b) meridional wind (v_{LT}) at the Seoul weather station. Zonal gradient ($\partial X_{LT}/\partial x$, red lines) and meridional gradients ($\partial X_{LT}/\partial y$, blue lines) of the long-term components and transport term ($-\mathbf{V}_{LT} \cdot \nabla X_{LT}$, violet lines) by long-term components of horizontal winds ($\mathbf{V}_{LT} = (u_{LT}, v_{LT})$) for (c–d) PM$_{10}$, (e–f) CO, (g–h) SO$_2$, (i–j) NO$_2$, (k–l) O$_3$.

S8
Figure S7. (a) Mean geopotential height (contours with interval of 20 gpm) and wind fields (arrows with reference scale of 3 m s\(^{-1}\)) at 850 hPa, and linear trends of (b) geopotential height (contours with interval of 0.5 gpm yr\(^{-1}\)) and wind (arrows with reference scale of 0.1 m s\(^{-1}\) yr\(^{-1}\)) at 850 hPa and (c) 10 m wind speed (contours with interval of 0.01 m s\(^{-1}\) yr\(^{-1}\)) for the period of 2000–2015. The trends statistically significant at 95% confidence level in (b) and (c) are represented as gray shaded areas and wind arrows. Seoul is marked by solid red circles.