Supporting Information for

Marine boundary layer aerosol in Eastern North Atlantic: seasonal variations and key controlling processes

Guangjie Zheng¹, Yang Wang¹, Allison C. Aiken², Francesca Gallo², Mike Jensen¹, Pavlos Kollias¹,³, Chongai Kuang¹, Edward Luke¹, Stephen Springston¹, Janek Uin¹, Robert Wood⁴, and Jian Wang¹,*

¹ Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, New York, USA
² Earth System Observations, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
³ School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York, USA
⁴ Department of Atmospheric Science, University of Washington, Seattle, USA

*Correspondence to: J. Wang (jian@bnl.gov)
S1. Data filtering methods

The Graciosa Airport is located nearby the ENA site, with the east-west extending aircraft runway 116 m north of the site (Wood et al., 2015). Pollution episodes associated with aircraft and road vehicles at Graciosa Airport are identified and screened out based on temporal variation of CN, following a similar method as described in Zheng et al. (2016). Briefly, the change rate of total aerosol number concentration (CN) is calculated first. Subsequently, all time points with change rates larger than 60 cm$^{-3}$ s$^{-1}$, which is roughly the 95th percentile of all CN change rates, are identified as episode candidates. Starting from these candidates, the program will look forward / backward until all pollution periods is found (Zheng et al., 2016). This method worked satisfactorily as a conservative estimate that can remove the most obvious local pollution periods, which typically constitutes 0 %~20 % of the data within the averaging interval of 1-h.

S2. Optical data corrections

B_{abs} can be derived by Bond’s correction of: $B_{abs} = B_{PSAP} - 0.0164 \times B_{NEPH}$ (Bond et al., 1999). For this purpose, conversion of B_{NEPH} from Nephelometer measurement wavelengths (450, 550, and 700 nm) to 3\times-PSAP measurement wavelengths (464, 529, and 648 nm) is needed, through interpolation based on the Scattering Ångström Exponent (SAE) (Costabile et al., 2013). For example, B_{NEPH} at 529 nm are derived by:

$$SAE_{NEPH}(550) = \frac{\log(B_{NEPH}(700) / B_{NEPH}(450))}{\log(700 / 450)}$$

and

$$B_{NEPH}(529) = B_{NEPH}(550) \left[\frac{529}{550} \right]^{-SAE_{NEPH}(550)}$$

where the numbers in parenthesis denoted the wavelengths in nm. Similarly, B_{NEPH} at 464 and 648 nm were derived from those measured at from 450 and 700 nm, using SAE derived by 450 nm /550 nm and 550 nm /700 nm wavelength pairs. Note that there’s another correction method proposed by Virkkula et al. (Bond et al., 1999; Virkkula et al., 2005; Virkkula, 2010). Based on our data, that correction will result in a 6 % lower value in B_{abs} at 529 nm, but showing the same trend with Bond’ correction ($R^2=0.99$). As here we only discussed about relative trends in B_{abs} here, the detailed correction method would not influence our conclusions.

For B_{sca}, truncation and angular illumination corrections using SAE are applied, following the method proposed by Anderson and Ogren (1998). Briefly, that is $B_{sca} = (a+b \cdot SAE) \times B_{NEPH}$, where the wavelength-dependent correction coefficient $a(\lambda)$ and $b(\lambda)$ are taken from Müller et al. (2011), with the “sub-μm” and “no cut” coefficients applied for PM$_1$ and PM$_{10}$ signals, respectively. After this correction, B_{sca} is further converted to PSAP-corresponding wavelengths through the SAE interpolation method as described above. Again, take data at 529 nm for example, it was derived by:

$$SAE(550) = \frac{\log(B_{sca}(700) / B_{sca}(450))}{\log(700 / 450)}$$

and

$$B_{sca}(529) = B_{sca}(550) \left[\frac{529}{550} \right]^{-SAE(550)}$$

S3. Estimation of k_{CCN} and k_{CN}

For CCN(0.1 %)$_{SSA}$, the influence of secondary processing is expected to be negligible. SSA over 100 nm would all have been activated under typical cloud ss, thus the ratio of CCN(0.1 %)$_{SSA}$ to N_{400} would be conserved during coalescence scavenging. Non-cloud processing would reduce N_{sc} through coagulation loss, while this influence is expected to be small (section 6.2, Table 3). Thus we have $k_{CCN} = 1$.

In terms of CN, the situation could be more complicated since it includes both CCN and interstitial aerosols. Coalescence scavenging would reduce $CCN_{(0.1\%)SSA}$ without impacting the interstitial aerosols, thus elevating actual $CN/CCN_{(0.1\%)SSA}$ ratio and underestimating the CN_{SSA}. To the contrary, coagulation loss and interstitial scavenging could be a major non-CCN loss term (section 6.2, Table 3), which will result in a lower actual $CN/CCN_{(0.1\%)SSA}$ ratio than theoretically predicted, and thus an overestimation in estimated CN_{SSA}. The overall influence depends on the relative strength of these two mechanisms. Assuming that both the $CCN_{(0.1\%)SSA}$ and the interstitial aerosols from SSA, $N_{INT,SSA}$, are in steady state (namely $\partial_t CCN_{(0.1\%)SSA} = 0$ and $\partial_t N_{INT,SSA} = 0$), then we have:

$$\int_{\ln 10}^{\ln 1000} f_{SSA}(\ln D_p) d \ln D_p = (E_{CCN} | _{PRCP} + E_{CCN} | _{COND} + E_{CCN} | _{FT, dilute}) CCN_{(0.1\%)SSA}$$

$$\int_{\ln 10}^{\ln 1000} f_{SSA}(\ln D_p) d \ln D_p = (E_{CN-CCN} | _{INT} + E_{CN-CCN} | _{COAG} + E_{CN-CCN} | _{COND} + E | _{FT, dilute}) N_{INT,SSA}$$

$$= (E_{CN-CCN} | _{INT} + E_{CN-CCN} | _{COAG} + E_{CN-CCN} | _{COND} + E | _{FT, dilute}) (CN_{SSA} - CCN_{(0.1\%)SSA})$$

where $E_{FT, dilute}$ is the dilution efficiency of FT air being -e/H_{MBL} (section 5). Combining these two equations, we have:

$$\frac{CN_{SSA} - CCN_{(0.1\%)SSA}}{CCN_{(0.1\%)SSA}} = \frac{E_{CCN} | _{COALES} + E_{CCN} | _{COND} + E | _{FT, dilute}}{E_{CN-CCN} | _{INT} + E_{CN-CCN} | _{COAG} + E_{CN-CCN} | _{COND} + E | _{FT, dilute}} \int_{\ln 10}^{\ln 100} f_{SSA}(\ln D_p) d \ln D_p$$

Thus k_{INT} could be estimated by:

$$k_{INT} = \frac{E_{CCN} | _{COALES} + E_{CCN} | _{COND} + E | _{FT, dilute}}{E_{CN-CCN} | _{INT} + E_{CN-CCN} | _{COAG} + E_{CN-CCN} | _{COND} + E | _{FT, dilute}} < \frac{E_{CCN} | _{COALES}}{E_{CN-CCN} | _{INT} + E_{CN-CCN} | _{COAG}}$$

The estimated coalescence scavenging efficiency ($17\% - 40\% \; CCN\; day^{-1}$) is 1.7-4.4 times stronger than the overall efficiency of coagulation loss and interstitial scavenging (Table 3). Correspondingly, the upper limit of k_{INT} is expected to be between 1.7 and 4.4 (Table 4).

Fig. S1 to S5
Figure S1. Raw and filtered CN during the first week in Jan. 2017, as an example of the outcome of the pollution episode filtering method used here.

Figure S2. Correlation of PM$_1$ B_{sc2} and total volume concentration derived from UHSAS measurements from 2015 to 2017. The value of r given referred to the Pearson correlation coefficient, while the regression line based on York et al. (2004) is also shown for reference.
Figure S3. Evidences of FT domination on ENA CO and O$_3$. (a) O$_3$-CO correlations during (a1) all periods, (a2) summer daytime and (a3) winter nighttime, where daytime indicated 8:00 to 20:00 LT. (b) Correlation of CO and O$_3$ with water vapor. Data during the identified dust and biomass burning episodes (section 3.3) is excluded here. The value of r given referred to the Pearson correlation coefficient, while the regression line based on York et al. (2004) is also shown for reference.
Figure S4. Dependence of BC to CO ratio with precipitation rate at cloud base (P_{CB}).

Figure S5. Comparison of observed CCN concentrations with relevant modal number concentrations. The 1:1 line is also shown for reference.
References

