Sources and Characteristics of Summertime Organic Aerosol in the Colorado Front Range: Perspective from Measurements and WRF-Chem Modeling

Roya Bahreini 1,2, Ravan Ahmadov 3,4, Stu A. McKeen 3,4, Kennedy T. Vu 2, Justin H. Dingle 2, Eric C. Apel 5, Donald R. Blake 6, Nicola Blake 6, Teresa L. Campos 5, Chris Cantrell 7, Frank Flocke 5, Alan Fried 8, Jessica B. Gilman 5, Alan J. Hills 5, Rebecca S. Hornbrook 5, Greg Huey 9, Lisa Kaser 5, Brian M. Lerner 3,4,10, Roy L. Mauldin 7, Simone Meinardi 6, Denise D. Montzka 5, Dirk Richter 8, Jason R. Schroeder 6,11, Meghan Stell 5, David Tanner 9, James Walega 8, Peter Weibring 8, Andrew Weinheimer 5

1 Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
2 Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
3 Earth Systems Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA
4 Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80301, USA
5 Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
6 Department of Chemistry, University of California, Irvine, CA 92697, USA
7 Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80303, USA
8 Institute for Arctic and Alpine Research, University of Colorado, Boulder, CO 80303, USA
9 Department of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30033, USA
10 Now at Aerodyne Research, Inc., Billerica, MA, 01821
11 Now at NASA Langley Research Center, Newport News, VA, 23666

Correspondence to: Roya Bahreini (Roya.Bahreini@ucr.edu)
Supplemental Information

<table>
<thead>
<tr>
<th>VOC specie</th>
<th>Mean (ppbv)</th>
<th>R coefficient CH$_4$ regress</th>
<th>R coefficient C$_2$H$_6$ regress</th>
<th>R coefficient C$_3$H$_8$ regress</th>
<th>Oil/Gas CH$_4$ emission ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$</td>
<td>1975.7</td>
<td>1.0</td>
<td>0.52</td>
<td>0.678</td>
<td>1.0</td>
</tr>
<tr>
<td>CO</td>
<td>146</td>
<td>0.303</td>
<td>0.854</td>
<td>0.186</td>
<td>0.0</td>
</tr>
<tr>
<td>NOx</td>
<td>5.03</td>
<td>0.369</td>
<td>0.68</td>
<td>0.231</td>
<td>0.0</td>
</tr>
<tr>
<td>C$_2$H$_6$</td>
<td>13.8</td>
<td>0.72</td>
<td>0.44</td>
<td>0.987</td>
<td>0.185</td>
</tr>
<tr>
<td>C$_3$H$_8$</td>
<td>11.1</td>
<td>0.678</td>
<td>0.41</td>
<td>0.994</td>
<td>0.0905</td>
</tr>
<tr>
<td>N-Butane</td>
<td>5.76</td>
<td>0.68</td>
<td>0.41</td>
<td>0.994</td>
<td>0.0905</td>
</tr>
<tr>
<td>Iso-Butane</td>
<td>2.33</td>
<td>0.676</td>
<td>0.406</td>
<td>0.997</td>
<td>0.0379</td>
</tr>
<tr>
<td>N-Pentane</td>
<td>2.27</td>
<td>0.701</td>
<td>0.44</td>
<td>0.985</td>
<td>0.036</td>
</tr>
<tr>
<td>Iso-Pentane</td>
<td>1.97</td>
<td>0.702</td>
<td>0.452</td>
<td>0.987</td>
<td>0.0297</td>
</tr>
<tr>
<td>2methyl-Pentane</td>
<td>0.215</td>
<td>0.73</td>
<td>0.496</td>
<td>0.966</td>
<td>0.00257</td>
</tr>
<tr>
<td>Hexane</td>
<td>0.668</td>
<td>0.731</td>
<td>0.472</td>
<td>0.965</td>
<td>0.00872</td>
</tr>
<tr>
<td>Heptane</td>
<td>0.207</td>
<td>0.736</td>
<td>0.497</td>
<td>0.941</td>
<td>0.00236</td>
</tr>
<tr>
<td>Octane</td>
<td>0.0583</td>
<td>0.739</td>
<td>0.531</td>
<td>0.894</td>
<td>0.000583</td>
</tr>
<tr>
<td>Nonane</td>
<td>0.00668</td>
<td>0.64</td>
<td>0.5</td>
<td>0.726</td>
<td>8.65e-05</td>
</tr>
<tr>
<td>Decane</td>
<td>0.0174</td>
<td>0.668</td>
<td>0.732</td>
<td>0.65</td>
<td>6.25e-05</td>
</tr>
<tr>
<td>Undecane</td>
<td>0.0115</td>
<td>0.571</td>
<td>0.698</td>
<td>0.513</td>
<td>3.44e-05</td>
</tr>
<tr>
<td>Cyclopentane</td>
<td>0.119</td>
<td>0.712</td>
<td>0.452</td>
<td>0.973</td>
<td>0.00186</td>
</tr>
<tr>
<td>1m-Cyclopentane</td>
<td>0.741</td>
<td>0.723</td>
<td>0.48</td>
<td>0.963</td>
<td>0.00997</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>0.187</td>
<td>0.724</td>
<td>0.474</td>
<td>0.96</td>
<td>0.00271</td>
</tr>
<tr>
<td>1m-Cyclohexane</td>
<td>0.193</td>
<td>0.712</td>
<td>0.464</td>
<td>0.952</td>
<td>0.00267</td>
</tr>
<tr>
<td>1e-Cyclohexane</td>
<td>0.0226</td>
<td>0.654</td>
<td>0.483</td>
<td>0.881</td>
<td>0.000325</td>
</tr>
<tr>
<td>11dm-Cyclopentane</td>
<td>0.014</td>
<td>0.717</td>
<td>0.463</td>
<td>0.955</td>
<td>0.000196</td>
</tr>
<tr>
<td>c13dm-Cyclohexane</td>
<td>0.0232</td>
<td>0.683</td>
<td>0.452</td>
<td>0.927</td>
<td>0.000382</td>
</tr>
<tr>
<td>t12dm-Cyclohexane</td>
<td>0.00899</td>
<td>0.704</td>
<td>0.478</td>
<td>0.921</td>
<td>0.000139</td>
</tr>
<tr>
<td>t13dm-Cyclohexane</td>
<td>0.00426</td>
<td>0.714</td>
<td>0.521</td>
<td>0.922</td>
<td>5.61e-05</td>
</tr>
<tr>
<td>113tm-Cyclohexane</td>
<td>0.00659</td>
<td>0.637</td>
<td>0.47</td>
<td>0.783</td>
<td>7.92e-05</td>
</tr>
<tr>
<td>1e1m-Cyclohexane</td>
<td>0.00308</td>
<td>0.708</td>
<td>0.621</td>
<td>0.846</td>
<td>3.45e-05</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.166</td>
<td>0.746</td>
<td>0.658</td>
<td>0.904</td>
<td>0.00114</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.234</td>
<td>0.722</td>
<td>0.723</td>
<td>0.781</td>
<td>0.00126</td>
</tr>
<tr>
<td>m+p Xylenes</td>
<td>0.0882</td>
<td>0.712</td>
<td>0.749</td>
<td>0.722</td>
<td>0.000423</td>
</tr>
<tr>
<td>1ethyl-Benzene</td>
<td>0.025</td>
<td>0.639</td>
<td>0.836</td>
<td>0.591</td>
<td>6.7e-05</td>
</tr>
<tr>
<td>o Xylene</td>
<td>0.0311</td>
<td>0.677</td>
<td>0.799</td>
<td>0.646</td>
<td>0.000113</td>
</tr>
<tr>
<td>ipropyl-Benzene</td>
<td>0.0013</td>
<td>0.681</td>
<td>0.783</td>
<td>0.662</td>
<td>5.43e-06</td>
</tr>
<tr>
<td>npropyl-Benzene</td>
<td>0.00321</td>
<td>0.615</td>
<td>0.834</td>
<td>0.548</td>
<td>7.66e-06</td>
</tr>
<tr>
<td>1e-3,4m-Benzene</td>
<td>0.0174</td>
<td>0.608</td>
<td>0.798</td>
<td>0.53</td>
<td>3.61e-05</td>
</tr>
<tr>
<td>1e-2m-Benzene</td>
<td>0.0023</td>
<td>0.565</td>
<td>0.827</td>
<td>0.468</td>
<td>4.11e-06</td>
</tr>
<tr>
<td>123tm-Benzene</td>
<td>0.00504</td>
<td>0.581</td>
<td>0.793</td>
<td>0.471</td>
<td>1.04e-05</td>
</tr>
<tr>
<td>124tm-Benzene</td>
<td>0.0201</td>
<td>0.621</td>
<td>0.793</td>
<td>0.546</td>
<td>5.76e-05</td>
</tr>
<tr>
<td>135tm-Benzene</td>
<td>0.00841</td>
<td>0.654</td>
<td>0.762</td>
<td>0.606</td>
<td>3.6e-05</td>
</tr>
<tr>
<td>C$_2$H$_4$</td>
<td>0.177</td>
<td>0.52</td>
<td>1.0</td>
<td>0.414</td>
<td>0.0</td>
</tr>
<tr>
<td>C$_3$H$_4$</td>
<td>0.32</td>
<td>0.594</td>
<td>0.798</td>
<td>0.508</td>
<td>0.000561</td>
</tr>
<tr>
<td>C$_3$H$_6$</td>
<td>0.079</td>
<td>0.567</td>
<td>0.653</td>
<td>0.502</td>
<td>0.00021</td>
</tr>
<tr>
<td>1-Butene</td>
<td>0.00884</td>
<td>0.558</td>
<td>0.741</td>
<td>0.496</td>
<td>1.68e-05</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>0.00336</td>
<td>0.443</td>
<td>0.687</td>
<td>0.346</td>
<td>5.55e-06</td>
</tr>
</tbody>
</table>

Table S1. Statistical summary of VOC and NO$_x$ measurements at the BAO tower during the 2012 SONNE study. Shown are means from ~780 samples, r-coefficients from linear regressions relative to CH$_4$, acetylene and propane, and the derived emission ratios relative to CH$_4$ specifically from oil/gas activities (ppbv/ppbv).
Figure S1. Terrain height (above sea level, in m) in the WRF-Chem model domain, 4 km resolution
Figure S2. Correlation plots of PMF-derived OOA vs. CO (a) and odd oxygen, O_x defined as $O_3 + NO_2$ (b) in aged plumes.
Figure S3. Flight tracks of C130 in the Front Range BL, color coded with ethane values from measurements (a) and BC-tlOG scenario (b). Locations of the O&G wells are shown with yellow dots.