Nitrogen oxides in the global upper troposphere: interpreting cloud-sliced NO$_2$ observations from the OMI satellite instrument

Eloise A. Marais1,2, Daniel J. Jacob2,3, Sungyeon Choi4, Joanna Joiner4,5, Maria Belmonte-Rivas6, Ronald C. Cohen7,8, Steffen Beirle9, Lee T. Murray10, Luke Schiferl11,*, Viral Shah12, Lyatt Jaeglé12

1School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, UK.
2John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
3Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.
4Science Systems and Applications Inc., Lanham, MD.
5NASA Goddard Space Flight Center, Greenbelt, MD.
6Royal Netherlands Meteorology Institute, De Bilt, the Netherlands.
7Department of Chemistry, University of California at Berkeley, Berkeley, CA.
8Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA.
9Max-Planck-Institut für Chemie, Mainz, Germany.
10Department of Earth and Environmental Sciences, University of Rochester, Rochester, New York, USA.
11Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA.
12Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA.

* Now at: John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

Correspondence to: Eloise A. Marais (e.a.marais@bham.ac.uk)

Abstract. Nitrogen oxides (NO$_x$ = NO + NO$_2$) in the upper troposphere (UT) have a large impact on global tropospheric ozone and OH (the main atmospheric oxidant). New cloud-sliced observations of UT NO$_2$ at 450-280 hPa (~6-9 km) from the OMI satellite instrument produced by NASA and KNMI provide global coverage to test our understanding of the factors controlling UT NO$_x$. We find that these products offer useful information when averaged over coarse scales (20° × 32°, seasonal), and that the NASA product is more consistent with aircraft observations of UT NO$_2$. Correlation with LIS/OTDI satellite observations of lightning flash frequencies shows that lightning is the dominant source of NO$_x$ to the upper troposphere except for extratropical latitudes in winter. We infer a global mean NO$_x$ yield of 280 moles per lightning flash, with no significant difference between the tropics and mid-latitudes, and a global lightning NO$_x$ source of 5.6 Tg N a$^{-1}$. There is indication that the NO$_x$ yield per flash increases with lightning flash footprint and with flash energy.

1. Introduction

Nitrogen oxides (NO$_x$ = NO + NO$_2$) in the upper troposphere (UT) have profound effects on the oxidizing capacity of the atmosphere and on climate, but the factors controlling their concentrations are poorly understood. Here we use two new satellite products of UT NO$_2$ mixing ratios from the Ozone Monitoring Instrument (OMI), together with in situ aircraft measurements and the GEOS-Chem chemical transport model, to assess current understanding of UT NO$_x$ sources.

NO$_x$ in the UT impacts climate by efficiently producing ozone where it is a potent greenhouse gas (Dahlmann et al., 2011; Worden et al., 2011; Rap et al., 2015) and by increasing the concentration of OH (the main tropospheric oxidant) (Murray et al., 2012; 2014). Primary NO$_x$ sources in the UT include lightning, aircraft, convective injection, and downwelling from the stratosphere (Ehhalt et al., 1992; Jaeglé et al., 1998b; Bertram et al., 2007). NO$_x$ cycles chemically with reservoir species including nitric acid (HNO$_3$), pernitric acid (HNO$_4$), dinitrogen pentoxide (N$_2$O$_5$), peroxyacetylnitrate (PAN), and other organic...
nitrates, thus defining the NOy chemical family (NOy ≡ NOx + reservoirs). Effective loss of NOx from the UT is through subsidence of NOy to lower altitudes where deposition of HNO3 provides the ultimate sink. The residence time of NOy in the UT is 10-20 days (Prather and Jacob, 1997). The lifetime of NOx against conversion to short-lived reservoirs varies from ~3 hours in the convective outflow of thunderstorms to 0.5-1.5 days further afield (Nault et al., 2016). Chemical recycling from these reservoirs maintains relatively high UT NOx background concentrations (Bradshaw et al., 2000; Baehr et al., 2003; Nault et al., 2016).

Representation of lightning NOx in chemical transport models (CTMs) is highly uncertain. Physically-based parameterizations relating lightning frequency to deep convective cloud tops, convective mass flux, convective precipitation, or high-cloud ice content have poor predictive capability (Tost et al., 2007; Murray et al., 2012; Finney et al., 2014), limiting our ability to estimate the response of lightning NOx to future climate (Finney et al., 2016; 2018). An alternative is to prescribe flash densities from space-based observations and static NOx production rates per flash (Sauvage et al., 2007; Allen et al., 2010; Murray et al., 2012). NOx production efficiencies per flash in the literature vary from <10 to 5000 moles nitrogen per flash (mol N fl⁻¹) (Schumann and Huntrieser, 2007; Murray, 2016). Global models typically use 100-500 mol N fl⁻¹, and a global lightning NOx source of 3-7 Tg N a⁻¹, to match observations of tropospheric ozone and NOx species (Denman and Brasseur, 2007).

Our understanding of UT NOx has evolved mainly on the basis of observations from aircraft campaigns (Drummond et al., 1988; Jacob et al., 1996; Crawford et al., 1997; Jaeglé et al., 1998a; Bradshaw et al., 2000; Hudman et al., 2007; Stratmann et al., 2016). There are also long-term NOx measurements from instruments onboard commercial aircraft dating back to the 1990s, but these are mostly over the north Atlantic and the NOx measurements have low precision and interference from thermally unstable NOy reservoir compounds (Brunner et al., 2001).

Tropospheric column observations of NOx are obtained from space-based UV/visible spectrometers that measure solar-backscattered radiation. This provides global coverage, but with only one piece of vertical information. New cloud-sliced satellite NOx products at 280-450 hPa (~6-9 km) offer additional vertical resolution by retrieving partial NOx columns above clouds and exploiting differences in heights of neighboring clouds to calculate NOx mixing ratios (Belmonte-Rivas et al., 2015; Choi et al., 2014). A benefit of these satellite observations is continuous daily temporal and global spatial coverage. There are two new products of seasonal mean UT NOx mixing ratios retrieved from Ozone Monitoring Instrument (OMI) partial NOx columns by research groups at KNMI and NASA. The KNMI product has been evaluated against UT NOx from the Tracer Model version 4 (TM4) CTM. Large regional differences between OMI and TM4 are attributed to model deficiencies in lightning NOx and uplift of anthropogenic pollution (Belmonte-Rivas et al., 2015). The NASA UT product is new to this work and follows a similar retrieval approach to the mid-tropospheric product of Choi et al. (2014). That product was evaluated with aircraft observations of NOx and interpreted with the Global Modeling Initiative (GMI) CTM (Choi et al., 2014). Dominant contributors to mid-troposphere NOx include pollution outflow, uplift of anthropogenic pollution, and lightning. Choi et al. (2014) identified large discrepancies between modeled and observed NOx seasonality over regions influenced by pollution and lightning.

Here we compare the two UT NOx products, obtained with distinct retrieval methods, and use aircraft observations of NOx from multiple NASA DC8 aircraft campaigns to arbitrate and evaluate the information that can be derived from the satellite datasets. We go on to test current understanding of UT NOx using GEOS-Chem.
2. OMI observations of upper troposphere NO2

OMI is onboard the NASA Aura satellite launched into sun-synchronous orbit in October 2004. It has an overpass time of about 13h30 local time (LT), a swath width of 2600 km, and a horizontal resolution of 13 km × 24 km at nadir (Levett et al., 2006). Columns of NO2 along the instrument viewing path (slant columns) are obtained by spectral fitting of solar backscattered radiation in the 405-465 nm window (Boersma et al., 2011). Standard products include total and tropospheric column NO2 that are screened for cloudy scenes using a cloud radiance fraction threshold of 0.5. Partial columns of NO2 above cloudy scenes can be used to estimate vertically resolved NO2 mixing ratios, as was first demonstrated with satellite observations of ozone (Ziemke et al., 2001). This approach, so-called cloud slicing, assumes a uniform trace gas concentration between two horizontally nearby clouds at different altitudes, so that the UT NO2 mixing ratio is proportional to the slope of the partial columns versus the corresponding cloud pressures. Two UT NO2 products have been retrieved from OMI: a product from KNMI at 330-450 hPa for 2006 (Belmonte-Rivas et al., 2015) and from NASA at 280-450 hPa for 2005-2007 following an approach similar to that used to retrieve mid-tropospheric NO2 (Choi et al., 2014). In what follows we distinguish the two OMI NO2 products as KNMI and NASA.

The KNMI product uses DOMINO v2.0 slant columns (Boersma et al., 2011) and OMCLDO2 cloud fractions and altitudes (Acarreta et al., 2004) over partially to very cloudy scenes (cloud radiance fraction > 0.5). Contamination due to NO2 from below (up to 66% over polluted land masses) is estimated using the TM4 model and removed. Stratospheric NO2 is from an assimilated product (Belmonte-Rivas et al., 2014) and is also removed. An air mass factor (AMF) that accounts for viewing geometry, surface albedo, light attenuation by gases and aerosols along the viewing path, and sensitivity to NO2 vertical distribution is applied to the resultant UT slant columns to convert to vertical columns. Additional data filtering removes scenes with solar zenith angle (SZA) ≥ 70° and surface albedo ≥ 30%. Resultant daily vertical partial columns are aggregated on consistent pressure and horizontal (1° × 1°) grids and used to determine seasonal mean UT NO2 mixing ratios for grid squares with at least 30 measurements. UT NO2 at 330-450 hPa is estimated as the difference between columns at 380 hPa to the tropopause and at 380-500 hPa. Biases from sampling cloudy scenes, such as the effect of clouds on photochemistry, are corrected using TM4. These are small (typically <20%) in the upper troposphere (Belmonte-Rivas et al., 2015).

The NASA UT NO2 product is for 2005-2007 at ~280-450 hPa and uses updated version 3 slant columns (OMNO2 v3.0) (Krotkov et al., 2017) that corrects for a positive bias in the DOMINO v2.0 product with improved spectral fitting (Marchenko et al., 2015; van Geffen et al., 2015). Partial columns are retrieved for individual OMI pixels above very cloudy scenes (cloud radiance fraction > 0.7) to minimize contamination from below. Cloud fraction and height is from the OMCLDO2 product (Acarreta et al., 2004). The AMF accounts for viewing path geometry and light scattering by near-Lambertian clouds. Data filtering is applied to remove scenes with SZA > 80° and snow/ice cover and severe aerosol pollution that could be misclassified as clouds. Daily UT NO2 is estimated for neighboring partial columns with sufficient cloud variability (cloud pressure distance > 160 hPa) and well-mixed NO2 (NO2 vertical gradient < 0.33 pptv hPa\(^{-1}\) diagnosed with the GMI CTM). The stratospheric column is assumed uniform above neighboring clouds. Daily values of UT NO2 are regridded to obtain seasonal means at 5° × 8° (latitude × longitude) for scenes with at least 50 measurements. Gaussian weighting is applied to assign higher weighting to UT NO2 closest to 350 hPa (Choi et al., 2014).

Figure 1 compares seasonal mean UT NO2 from the two satellite products in December-February and June-August. KNMI NO2 is regridded to the NASA coarse grid and NASA data are for 2005-2007. KNMI NO2 has greater coverage than the NASA...
product, due to a lower cloud fraction threshold in the retrieval. The two products exhibit very different spatial features.

Correlation between coincident gridsquares is weak ($R = 0.41$ in December-February, $R = 0.38$ in June-August). There is marginal improvement in the correlation with further spatial averaging. At $20^\circ \times 32^\circ$ $R = 0.50$ in December-February and $R = 0.45$ in June-August. The correlation only increases substantially in September-November from $R = 0.49$ at $5^\circ \times 8^\circ$ to $R = 0.66$ at $20^\circ \times 32^\circ$. KNMI is systematically lower than NASA in all seasons for coincident gridsquares, varying from 16% lower in June-August to 48% lower in December-February at $20^\circ \times 32^\circ$. The updated slant columns used by NASA correct for a high bias in the operational product and so act in opposition to the discrepancies between the two products.

![KNMI OMI upper troposphere NO$_2$ (2006)](image1)

![NASA OMI upper troposphere NO$_2$ (2005-2007)](image2)

Figure 1. Upper troposphere (UT) NO$_2$ from the OMI satellite instrument. Seasonal mean UT NO$_2$ from KNMI in 2006 at 330-450 hPa (top) is compared to NASA in 2005-2007 at 280-450 hPa (bottom). Data are at $5^\circ \times 8^\circ$ horizontal resolution for December-February (left) and June-August (right). Grey areas indicate no data and, for NASA, scenes with fewer than 50 measurements.

Contamination of UT NO$_2$ from below and from convective uplift appears in both products, despite attempts to correct for this in the case of KNMI and avoid this by only considering very cloudy scenes in the case of NASA. These include a large enhancement in KNMI NO$_2$ (> 90 pptv) over southern Africa in June-August when there is intense biomass burning, and the NO$_2$ hotspot over northeast China in all seasons in both products.

3. Evaluation of OMI upper troposphere NO$_2$ with aircraft observations

The aircraft observations we use to arbitrate between the OMI NO$_2$ products are from thermal-dissociation laser-induced fluorescence (TD-LIF) instruments (Day et al., 2002) for NASA DC8 aircraft campaigns over North America and Greenland in spring-summer when there is a high density of measurement campaigns. These include INTEX-A, INTEX-B, ARCTAS, DC3,
and SEAC4RS. Only INTEX-B is in the same year as the OMI products but we consider interannual variability to be only a small source of error. Measurements of NO\textsubscript{2} from TD-LIF are susceptible to interference from decomposition of thermally unstable reservoir compounds methyl peroxy nitrate (CH\textsubscript{3}O\textsubscript{2}NO\textsubscript{2}) and HNO\textsubscript{4}, in particular in the UT, where NO\textsubscript{2} concentrations are relatively low, temperature gradients between the instrument inlet and ambient air are large, and reservoir compounds are abundant (Browne et al., 2011). Publicly available DC3 and SEAC4RS TD-LIF NO\textsubscript{2} are already corrected for this interference.

We apply a correction for the other campaigns using the relationship between temperature and percentage interference from Browne et al. (2011). Observed mean ambient air temperature in the UT during INTEX-A is 246 K, corresponding to 20% interference. That for INTEX-B is 241 K (30% interference) and 236 K for ARCTAS (38% interference).

There are also NO\textsubscript{2} observations from the recent NASA ATom campaign, and from the In-service Aircraft for a Global Observing System (IAGOS) commercial aircraft campaign (Berkes et al., 2017). These use chemiluminescence instruments that are also susceptible to interference. Chemiluminescence and TD-LIF NO\textsubscript{2} are consistent during the SEAC4RS campaign for the altitude range considered in this work (6-9 km) (Travis et al., 2016), but the interference from chemiluminescence is challenging to quantify, due to dependence also on the operator and instrument design that varies across campaigns (Reed et al., 2016).

Figure 2 shows the sampling extent of TD-LIF UT NO\textsubscript{2} over North America and Greenland in spring-summer at 450-280 hPa, around the satellite overpass (11h00-16h00 LT) for scenes not influenced by the stratosphere (diagnosed with collocated ozone/CO > 1.25 mol mol-1 (Hudman et al., 2007)). Concentrations of UT NO\textsubscript{2} exceed 80 pptv over the eastern US due to lightning NO\textsubscript{x} emissions and are < 30 pptv over the rest of the domain.

Figure 3 shows the spatial correlation between March-August mean gridded aircraft and OMI UT NO\textsubscript{2} from the 2 products as a function of horizontal resolution. There is no spatial consistency between the OMI products and aircraft NO\textsubscript{2} at 5° × 8° (R < 0.1) and 10° × 16° (R < 0.2). The correlation improves for both products with further spatial averaging, peaking at 20° × 32° (R =
0.56 for KNMI, R = 0.64 for NASA). The satellite products are also spatially consistent at this resolution over this domain (R = 0.89), but KNMI is 43% lower than NASA.

Figure 3: Evaluation of OMI and GEOS-Chem upper troposphere NO$_2$ with aircraft observations. Individual points are Pearson’s correlation coefficients between gridded March-August mean UT NO$_2$ measured from the aircraft and OMI KNMI in 2006 (blue), OMI NASA in 2005-2007 (red), and GEOS-Chem in 2006 (green) at $5° \times 8°$ (latitude \times longitude), $10° \times 16°$, $15° \times 24°$, $20° \times 32°$, and $25° \times 40°$. Values inset are the number of points at each resolution. The domain sampled is shown in Figure 2.

Figure 4 compares the spatial distribution of OMI and aircraft UT NO$_2$ at $20° \times 32°$ over North America. Domain mean KNMI UT NO$_2$ is 38% lower than the aircraft observations, compared to 2.2% higher for NASA UT NO$_2$. Both products exhibit less variability (reduced major axis, RMA, regression slopes < 1) and high bias in background NO$_2$ compared to the aircraft observations (positive RMA intercepts of 5.9 ± 1.4 pptv for KNMI and 9.2 ± 2.7 pptv for NASA). We proceed with the NASA UT NO$_2$ product at $20° \times 32°$, as correlation peaks at this resolution and the NASA product is more consistent with domain mean aircraft UT NO$_2$ than the KNMI product.

4. Constraints on upper tropospheric NO$_x$

The NASA product provides near-global coverage of UT NO$_2$ to assess current understanding of regional UT NO$_x$ sources and dynamics by comparing to UT NO$_2$ from the GEOS-Chem CTM (version 10-01; http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_v10-01) driven with NASA MERRA-2 reanalysis meteorology. The model horizontal resolution is $2° \times 2.5°$ and the output is regridded to $20° \times 32°$ for comparison with OMI. GEOS-Chem is sampled under all-sky conditions. We find that the effect on NO$_2$ of sampling the model under cloudy conditions is small. Isolating NO$_2$ under very cloudy conditions using MERRA-2 cloud fractions decreases modeled UT NO$_2$ by no more than 5 pptv in the tropics/subtropics and less at higher latitudes. We use output from the model for 2006 following a one-year spin-up for chemical initialization. Interannual variability in UT NO$_2$ determined as the difference between modeled 2006 and multi-year (mean 2005-2007) UT NO$_2$, is small (< 4 pptv) everywhere except central Africa year-round (4-12 pptv), the Arctic north of 60°N (up to 25 pptv), and the Middle East in June-August and northern India in March-May (both 10-20 pptv).
Figure 4. March–August upper troposphere NO$_2$ over North America. All data are at $20^\circ \times 32^\circ$. Background colors in the different panels show concentrations from KNMI, NASA, and GEOS-Chem (GC). Circles show the aircraft observations (same in all panels). Aircraft observations are for 11h00–16h00 LT. The model is sampled in the satellite overpass time window (12h00–15h00 LT). Model and aircraft data are at 280–450 hPa and screened for stratospheric influence using ozone/CO > 1.25 mol mol$^{-1}$. Inset boxes show reduced major axis (RMA) regression statistics and mean NO$_2$ for coincident gridsquares. Grey gridsquares indicate no observations.

Emission sources of UT NO$_x$ include aircraft emissions and lightning conversion of N$_2$ and O$_2$ to reactive NO$_x$. In the model, global aircraft emissions in the model from the AEIC inventory (Stettler et al., 2011) total 0.82 Tg N in 2006; much less than lightning in the same year (6.5 Tg N). Lightning in the model is estimated using the parameterization implemented by Murray et al. (2012). This includes an initial estimate of lightning flashes using the Price and Rind (1992, 1993, 1994) relationship between cloud-top height and lightning flashes. These are then scaled to the same annual global flash frequency (46 fl s$^{-1}$) as the climatology from the combined Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) high-resolution monthly climatology (LIS/OTD HRMC) (Cecil et al., 2014). LIS/OTD is used again to redistribute lightning flashes horizontally to match the location of lightning flashes in the satellite monthly climatology. Flashes are assigned production rates of 500 mol N fl$^{-1}$ in the northern midlatitudes (north of 35°N) and 260 mol N fl$^{-1}$ everywhere else. The resultant lightning NO$_x$ emissions are distributed vertically from the surface to the top of clouds using regional vertical profiles from Ott et al. (2010). We find that GEOS-Chem overestimates UT NO$_2$ in summer across the northern midlatitudes by 10–20 pptv (not shown) compared to OMI.
that we attribute to excessive lightning NOx emissions. We correct for this overestimate by instead using a single global NOx production rate of 260 mol N m⁻² in the model. This decreases global lightning NOx emissions by 15% from 6.5 to 5.5 Tg N a⁻¹.

Figure 3 shows the spatial correlation between the model and aircraft observations. The model is more consistent with the aircraft observations than OMI at fine spatial resolution. Like OMI, GEOS-Chem correlation with the aircraft observations improves with spatial averaging, peaking at 20° × 32° (R = 0.75). Figure 4 also shows comparison of March-August GEOS-Chem UT NOx with the aircraft observations at 20° × 32°. The model is sampled over the same pressure range as NASA (280-450 hPa) around the OMI overpass (12h00-15h00 LT) and is filtered for stratospheric influence using model ozone/CO > 1.25 mol mol⁻¹. Domain average UT NOx from the model is 19% lower than the aircraft measurements and the model also overestimates background UT NOx (intercept = 7.5 ± 1.0 pptv) and underestimates the variability (slope = 0.45 ± 0.09).

Figure 5 compares seasonal mean OMI and GEOS-Chem UT NOx in December-February and June-August. Formation of PAN, HNO4 and CH3ONO2 is the dominant loss pathway for NOx in all seasons (>75% branching ratio), according to GEOS-Chem. Lower UT NOx in the northern hemisphere winter compared to summer in the model is because lightning activity is at a minimum and there is reduced formation of NOx from thermal decomposition of PAN and photolysis of PAN and HNO3. The model underestimates UT NOx in the northern midlatitudes in winter by 20-40 pptv, suggesting misrepresentation of another process in the model or contamination of OMI UT NOx from NOx below clouds. The latter effect is likely to be worst over polluted regions in winter when NO2 at the surface is long-lived and abundant.

Figure 5. Observed and modelled upper troposphere NOx. NASA OMI for 2005-2007 (top) and GEOS-Chem (bottom) seasonal mean UT NOx. The model is sampled at 280-450 hPa during the satellite overpass (12h00-15h00 LT), and filtered for stratospheric influence. Data are at 20° × 32° horizontal resolution for December-February (left) and June-August (right). Grey gridsquares in the top panel indicate no OMI data.
Figure 6 shows the relationship between seasonal mean LIS/OTD lightning flash climatology and seasonal mean UT NO$_2$ from OMI and GEOS-Chem. Data are divided into seasonal means for the northern mid-latitudes and tropics. OMI UT NO$_2$ and lightning flashes are spatially consistent (R > 0.5) and slopes for the northern mid-latitudes and the tropics are similar, providing no support for the previously reported higher lightning NO$_x$ production rates in the mid-latitudes than the tropics (Schumann and Huntrieser, 2007; Ott et al., 2010; Laughner and Cohen, 2017; Nault et al., 2017). NO$_2$ varies with the log of lightning frequency, suggesting faster NO$_x$ loss and shorter NO$_x$ lifetime at high lightning frequencies. The model deviates from the observed log-linear relationship at low lightning frequencies either due to too fast NO$_x$ loss or because the observations are uncertain at low concentrations of NO$_2$.

![NASA OMI](image1)

![GEOS-Chem](image2)

Figure 6. Spatial consistency between upper troposphere NO$_2$ and lightning flash frequencies. Individual points are seasonal mean UT NO$_2$ from OMI (left) and GEOS-Chem (right) versus seasonal mean LIS/OTD lightning flash climatologies for coincident 20° × 32° grid squares in the northern mid-latitudes (> 30°N; blue) and tropics (< 30°N; orange). Northern mid-latitude points exclude December-February that show poor correlation with lightning flashes (see text for details). Values inset are Pearson’s correlation coefficients and RMA regression statistics.

The northern mid-latitudes data points in Figure 6 exclude December-February, when lightning is at a minimum and correlation between NO$_2$ and lightning flashes is weak (R = 0.33). Results from multi-model sensitivity studies indicate UT NO$_2$ is then predominantly from surface sources, with a smaller contribution from extra-tropical lightning (Grewe et al., 2001). The model reproduces the observed slopes in Figure 6. Spatial correlation between OMI and LIS/OTD suggests that OMI UT NO$_2$ can be used to derive spatially and seasonally varying lightning NO$_x$ production rates per flash by scaling 260 mol N fl$^{-1}$ by the local ratio of observed-to-modelled (OMI/GEOS-Chem) UT NO$_2$.

Figure 7 shows the resultant seasonal mean OMI-derived lightning NO$_x$ production rates at 20° × 32°. Production rates vary from 100 to 900 mol N fl$^{-1}$. The largest deviation from 260 mol fl$^{-1}$ is in Southeast Asia year-round. OMI-derived lightning NO$_x$ production rates are lower over North America in summer (269 mol N fl$^{-1}$) than autumn (379 mol N fl$^{-1}$), similar to the generally lower production rates estimated from aircraft observations in Colorado in July (21-465 mol N fl$^{-1}$) compared to September (481-1445 mol N fl$^{-1}$) (Schumann and Huntrieser, 2007). A large range in NO$_x$ production rates is obtained from field experiments in the tropics (23-814 mol N fl$^{-1}$) and mid-latitudes (21-1445 mol N fl$^{-1}$). Models often assume higher production rates in the mid-latitudes than the tropics (Hudman et al., 2007; Ott et al., 2010; Murray et al., 2012), whereas values estimated using OMI are...
opposite and not significantly different: 300 ± 60 mol N fl⁻¹ in the tropics (excluding Southeast Asia) and 270 ± 100 mol N fl⁻¹ in the northern mid-latitudes. The global average OMI-derived lightning NOₓ production rate (280 ± 80 mol N fl⁻¹ excluding Southeast Asia) is similar to 310 mol N fl⁻¹ obtained using multiple satellite observations of atmospheric composition (Miyazaki et al., 2014).

Figure 7. Lightning NOₓ production rates per flash estimated with OMI and GEOS-Chem. Maps show seasonal mean nitrogen (N) produced per flash at 20° × 32° for gridsquares with lightning flashes > 5 × 10⁴ flashes km⁻² min⁻¹. Values inset are the range in production rates for each season. White gridsquares remain unchanged (260 mol N fl⁻¹).

Figure 8. Relationship between OMI-derived lightning NOₓ production rates and LIS lightning properties: energy (radiance), duration, and footprint area. Individual points are seasonal means at 20° × 32° from Figure 7 at 40°N–40°S. Properties of lightning flashes, including energy, duration and footprint area, have been retrieved from the OTD and LIS sensors (Beirle et al., 2014). The flash footprint area is the spatial extent of lightning detection events contributing to the flash (collection
of local events) diagnosed by the satellite data. Figure 8 shows the relationship between OMI-derived lightning NO\textsubscript{x} production rates from Figure 7 and LIS lightning properties from Beirle et al. (2014). The strongest correlation is with lightning extent (R = 0.50), followed by energy (R = 0.40). The correlation with flash duration is weak (R = 0.25). The relationships in Figure 8 suggest a dependence of lightning NO\textsubscript{x} production rates on lightning flash energy of 510 ± 80 mol N (J m-2 sr-1 µm-1)-1 and on flash footprint area of 2.0 ± 0.3 mol N km-2.

OMI-derived NO\textsubscript{x} production rates in Figure 7 and lightning interannual variability from LIS applied to GEOS-Chem yield global lightning NO\textsubscript{x} emission of 5.6 Tg N a-1.

5. Conclusions

The majority of measurements of NO\textsubscript{x} in the upper troposphere (UT) are from measurement campaigns that are limited in space and time. Two new UT NO\textsubscript{2} products from the Ozone Monitoring Instrument (OMI) offer the potential to address uncertainties in our understanding of UT NO\textsubscript{x} sources. We intercompare these products, use aircraft observations to arbitrate, and test the potential to constrain UT NO\textsubscript{x} sources using the GEOS-Chem model.

The OMI UT NO\textsubscript{2} products use different retrieval methods to obtain distinct and inconsistent (R < 0.5) NO\textsubscript{2} mixing ratios in the UT (~280-450 hPa). The product retrieved by NASA is more consistent with aircraft observations of NO\textsubscript{2} for spring-summer over North America than the product retrieved by KNMI and offers information about seasonal UT NO\textsubscript{2} at very coarse spatial scales (20° × 32°; latitude × longitude).

The majority of the spatial variability in OMI UT NO\textsubscript{2} can be attributed to lightning, except in the northern midlatitudes in winter. A similar relationship between UT NO\textsubscript{2} and lightning flashes from the LIS/OTD climatology in the tropics and northern mid-latitudes offers no support for higher lightning NO\textsubscript{x} production rates in the northern mid-latitudes than the tropics. We derive a global mean lightning NO\textsubscript{x} production rate of 280 mol N fl-1 and estimate global lightning NO\textsubscript{x} emissions of 5.6 Tg N for 2006.

Data Availability

Data from this work can be made available upon request to E. A. Marais for GEOS-Chem output, M. Belmonte-Rivas for KNMI UT NO\textsubscript{2}, and S. Choi and J. Joiner for NASA OMI UT NO\textsubscript{2}, and S. Beirle for LIS lightning properties.

Competing Interests

The authors declare that they have no conflicts of interest.

Acknowledgements

This work was funded by the NASA Tropospheric Chemistry Program and a University of Birmingham Research Fellowship awarded to EAM. Model simulations were performed on the University of Birmingham's BlueBEAR High Performance Cluster. The authors would like to thank the BlueBEAR support team for IT and HPC support.

References

