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Table S1. (a) Data numbers and corresponding details of 15 different fuels used in PMF analysis. (b) Residuals of 2-factor
PMF solutions. (¢) Correlation of mass spectra of two factors between individual fuels and average of 15 fuels.

( ¢) Correlation with average VOC emission profile (Figure 3)

Fuel (a) Data number for combined PMF (b) Residual [%] * : oo N
High-temperature pyrolysis factor Low-temperature pyrolysis factor
Total Detail Average = STDV (maximum, minimum) Slope Correlation coefficient (r) Slope Correlation coefficient (r)
Realistic 5 (Fire 01, 02, 37,59, 72)
1. Ponderosa pine 10 Camopy 2 (Fire19,39) 15.7 £7.6 (28.9,7.7) 0.976 + 0.004 0.9692 1.012 £ 0.005 0.9615

Litter 1 (Fire 38)

Rottenlog 2 (Fire 13,73)

T Realistic 4 (Fire06,07,58,63)
2. Lodgepole pine 7 Canopy 1 (Fire 40) 14.8 £ 4.9 (23.3,10.9) 0.990 = 0.004 0.9791 0.990 + 0.002 0.9857

Litter 2 (Fire 21, 41)
3.Loblolly pine 2 ] Litter 2 (Fire35,53) ¢ 63+03(6.6,6.1) | 0.989£0.007 09307 0.960 £0.004 09414
T T Raalistic | 2 (Fire14,57)
4. Douglas fir 4 Canopy 1 (Fire18) 21.2 £9.3 (34.9, 14.9) 0.996 + 0.004 0.9751 0.999 +0.003 0.9779

Litter 1 (Fire43)

Realistic 1 (Fire 08) 205+ 2.4 (222, 18.8)" 0.999 = 0.006" 0.9497" 0.960 + 0.004" 0.9489"

5. Engelmann spruce 3 Canopy 1 (Fire 25)

Duff 1 (Fire 26) 82.0° - - - -
””””””””””””””””””””””” Realistic 2 (Fire47,67)
6. Subalpin fir 6 C.anopy 2 (Ffre 15,23) 1.001 +0.005" 0.9674" 0.999 + 0.003"° 0.9771°"

Litter 1 (Fire 51)

Duff 1 (Fire 56) 0° - - - -

13. Manzanita (contaminated) 2 Canopy 2 (Fire30,33)  13.0+11038123) 09970004 09668 1.034+0.004 09749
4. Manzanita (uncontaminated) 2 Camopy 2 (Fire28,3%) =~ 73:11@80,65  1015£0005 = 09607  1.043£0005 09604
15. Sage 2 Shrub 2 (Fire 66, 71) 7.0 £2.1 (8.5, 5.6) 0.993 £ 0.005 0.9511 1.011 £ 0.004 0.9647

* Residual [%] = [Total measured ion signal - Total synthetic ion signal of high- and low-temperature factors] / Total measured ion signal x 100
" "Duff" data is excluded.
¢ The third factor has large fraction.
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Figure S1. Time series of 2-factor PMF solution for Ponderosa pine dataset.
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Figure S2. Comparison of 2-factor PMF solution (the high- and low-temperature pyrolysis factors discussed in main text) to a
PMF solution with three factors. The individual factors from the 3-factor solution can be recreated with various linear
combinations of the factors from the 2-factor solution (e.g., Factor 1 from 3-factor PMF solution = axXHigh-T factor + bxLow-
T factor). The resulting synthetic 3-factor solution shown here is obtained from a linear best-fit of the high-/low-temperature
factors to each of the original 3 factors. The comparison between the synthetic 3-factor solution reconstructed from linear
combination of the high-/low-temperature factors, and the actual 3-factor solution directly derived from PMF is shown in (a)
correlation of mass spectrum (ncps/total VOC ncps) and (b) time series (ncps) for Ponderosa pine datasets.
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Figure S3. Comparison of 2-factor PMF solution (the high- and low-temperature pyrolysis factors discussed in main text) to a
PMF solution with four factors. The individual factors from the 4-factor solution can be recreated with linear combinations of
the factors from the 2-factor solution (e.g., Factor 1 from 4-factor PMF solution = axXHigh-T factor + bXLow-T factor). The
resulting synthetic 4-solution shown here is obtained from a linear best-fit of the high-/low-temperature factors to each of the
original 4 factors. The comparison between the synthetic 4-factor solution reconstructed from linear combination of the high-
/low-temperature factors, and the actual 4-factor solution directly derived from PMF is shown in (a) correlation of mass
spectrum (ncps/total VOC ncps) and (b) time series (ncps) for Ponderosa pine datasets.



Comparison of emission profile
between each fuel and average (ncps/total VOC ncps)

( a ) High-temperature pyrolysis factor
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Figure S4. Comparison of (a) high- and (b) low-temperature pyrolysis VOC emission profiles (ncps/total VOC ncps) between
each fuel and average of 15 different fuels shown in Figure 3.
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Figure S4. Continued.
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Figure S4. Continued.
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( b ) Low-temperature pyrolysis factor
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Figure S4. Continued.
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Variability in VOC composition relative to
normalized fractions of high- and low-temperature pyrolysis factor
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Calculated vs. measured VOC emission from biomass burning
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Figure S7. Scatter plots of calculated versus measured emissions for three literature data.
Calculate emissions were obtained by fitting the VOC emission profiles (Figure 3).
Laboratory study reported by Gilman et al. (2015) used fuels from southwestern,
southeastern, and northern U.S. (e.g., pine, spruce, fir, chaparral, mesquite, and oak),
while in the case of Stockwell et al. (2015), several types of grass, spruce, and chaparral

were used.



§1. Preparation of datasets for PMF analysis
§1.1. Ion signal datasets

Ion signal datasets for PMF analysis were prepared using five steps. (i) 2 Hz time series data
were averaged to 1 Hz. (ii) Background was subtracted from each ion signal before application
of PMF, to avoid having PMF return a factor that describes the background. Background was
determined from a 30-second to 5-minute measurement of combustion chamber air immediately
prior to the fire. (iii) Points where instrument signal was negative or less than 0.01 were replaced
with 0.01, which is based on the lowest limit of ion signal (ncps) of the PTR-ToF-MS. (iv) Data
were restricted to the time period of active fire emissions, defined by the first enhancement of
benzene above background (start) to when the PTR-ToF-CIMS stopped sampling (end). (v) The
resulting time series for all fires of a particular fuel type (e.g., Ponderosa pine) were

concatenated into a single data matrix.

§1.2. Uncertainty datasets

PMF also requires an estimate of measurement uncertainty of ion signals at each time point

for each ion mass (m/z). The uncertainties (0,.) were estimated as o,,/, (ncps) = 2.0 X

\/ Nin/zw/o B (NCPS), Where Ny wio Bg is background-subtracted ion signal. The derivation is
described below.

The uncertainty used in the present work is in units of “normalized counts-per-second
(ncps)”. The ncps uncertainty should have the same value relative to the ncps signal, as the
uncertainty of the raw ion signal in units of counts-per-second (cps) relative to the cps signal.
The raw ion signal (cps) is without normalization by the H3O" ion intensities and correction for
the ToF-duty cycle. The present uncertainty value (0,,:) for a given m/z ion signal (N,,.) can be

calculated as follows:
Om/z (Ncps) = A X [Ny, (ncps) X t (S1-a)

106 m/zreference
A= X X 1-
%m/z j lra0s (@9) N miz (S1-b)




A is a scaling factor of \/ Ny, /,. o 18 a coefficient relative to the Poisson (counting) statistics

(6 = VN) that accounts for additional noise to the ion signals of the masses due to the high-
resolution peak fitting of the ToF mass spectra (Cubison et al., 2015; Corbin et al., 2015; Yuan et
al., 2016). 30+ is the raw intensity of the H;O" reagent ion, #/Zeference i an arbitrary reference

mass (in this work, 7/Zieference = 55), and ¢ the sampling time (in this case, # = 1 s). The factors

m/z o . ..
10%/I30+ and \/ [Zreference are to undo normalization by the H;O" ion intensities and

m/z
correction for the ToF-duty cycle, respectively.

Here we estimated a scaling factor a,,. in Eq. (S1) suitable for the present instrumentation.
Figure §1 shows standard deviations of the background signals (in units of cps) versus the
background signals themselves from the individual zeroing periods for the 574 ion species listed
in Table S2 during one burn (Fire #02). Most of data points are observed in the region between
VN and 3 x VN, suggesting that high-resolution peak fitting in this work can increase the errors
in the ion signals by as much as a factor of 3 for the ion peaks. Figure §2 shows the empirically
determined coefficient a,. (i.e., the ratio of standard deviation to vVN) and scaling factor 4 (Eq.
S1-b) for each m/z ion. It is seen that both the factors can be approximated as a constant (1.2 +
0.4 and 0.6 + 0.2, respectively), across a wide range of m/z. Accordingly, the empirical
determined scaling factor 4 in Eq. (S1) can be approximated as 0.6, independent of the m/z value.

Based on the results described above, we first performed PMF using datasets of ion signals
with backgrounds and uncertainties calculated from the empirical determined scaling factor 4 =
0.6 for single burn data (Fire #02, Ponderosa pine realistic mixture). The resulting 3-factor
solution returned the high-temperature and low-temperature pyrolysis mass spectral and time
series profiles as well as background profiles, but O/Q., value was quite high (9.69 with fPeak
and seed of zero). “Q” is a fit parameter of the PMF algorithm and is expressed by summation of
squared scaled residuals for each experimental data points, i.e., O = Z(Resid/0)* (Paatero, 1997;
Ulbrich et al., 2009). Scaled residual (Resid/0) at a certain data point is calculated as the ratio of
residual (Resid) not fit by the PMF to uncertainty (o) at that point. “Qe,”, expected O, is
associated with abs Resid/o ~ 1. The value of O/Qcp >> 1 indicates underestimation of the
uncertainties (Ulbrich et al., 2009). Thus, we performed several tests to see how sensitive the
PMF results are to the uncertainty estimate, by setting 4 = 1.0, 1.5, 2.0, 2.5, and 3.0 and applying

PMF. The profiles of the 3-factor solutions for individual uncertainty datasets were nearly



identical to the case of 4 = 0.6 (correlation coefficient > 0.99 as shown in Figure §3). Some
small differences were seen in the quality of fit for ions with average enhancements of less than
10 ncps (corresponding to approximately 130 pptv and << 1% of total signal). These differences
do not affect any of our conclusions. Interestingly, the O/Qcx, value decreased with increasing
the number of 4: O/Qcyp = 4.95, 2.65, 1.64, 1.12, and 0.78 for 4 = 1.0, 1.5, 2.0, 2.5, and 3.0,
respectively (fPeak = seeds = 0, discussed in next section). Taking into account the O/Qcy, value
and the quality of fit, we decided 4 = 2.0 as the best number here.

Furthermore, we investigated changes to the PMF solution when using (i) the background-
subtracted ion signals and (ii) concatenated burn data. If backgrounds are subtracted, or burns
concatenated, the PMF results are quite similar to the base case obtained from the ion signals
with backgrounds, 4 = 0.6, and single burn data (correlation coefficient » > 0.97 as shown in

Figure §4). Consequently, the uncertainty datasets for concatenated burn data were prepared

O-m/z (TleS) = 2.0 X \/Nm/z,w/o BG (TleS).

§1.3. Effect of rotational ambiguity (fPeak) and starting points (seeds) on PMF results
A subset of the rotational freedom of the 2-factor PMF solutions was explored by varying
the fPeak values from -1.0 to +1.0, for the concatenated burn datasets consisting of the

background-subtracted ion signals N,.w. sc (ncps), and the uncertainty o/, (ncps) =

2.0 X \/ Nin/zw /o B (ncps). In this study, solutions obtained from nonzero fPeak values (fPeak #

0) were generally consistent with those from zero fPeak value (fPeak = 0). The resulting Q/Qcxp
are almost constant (3.0292 + 0.0003, as shown in Figure §5a). This means that the results shown
in this work are associated to no rotation in the PMF analysis. In contrast, different random
starting points (seeds = 0 — 10) were tried to find the local minimum of Q/Q, in the 2-factor
PMF solutions (Paatero, 1997). The local minimum was obtained at seeds = 0 (Figure §5b).
Therefore, the discussion in Section 3 in the main text is based on the 2-factor PMF solutions at

fPeak = seeds = 0.
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Figure §1. Scatterplot of the standard deviations of background signals versus the
measured background signals from Fire #02 for 574 ion peaks which were used for PMF

analysis. In this graph, the signals are not corrected for the H;O" ion intensities and the

ToF duty cycle. The two dashed lines are VN and 3 X /N, respectively.
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Dependence of uncertainty datasets (scaling factor A) on PMF results
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Figure §3. Dependence of uncertainty datasets, scaling factor 4 in Eq. (S1), on PMF results
(mass spectra and time series for high- and low-temperature pyrolysis factors at fPeak =
seeds = 0). The PMF results obtained from scaling factor 4 = 1.0, 1.5, 2.0, 2.5, and 3.0 are
compared with the results from A4 = 0.6. Single fire data (Fire #02, Ponderosa pine realistic
mixture) and ion signals with backgrounds are used. “s” and “r” in each panel represent

the slope and correlation coefficient for the linear line of the best fit, respectively.



Dependence of ion signal and uncertainty datasets on PMF results
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Figure §4. Dependence of ion signal and uncertainty datasets on PMF results (mass spectra
and time series for high- and low-temperature pyrolysis factors at fPeak = seeds = 0). The
PMF results obtained from concatenated burn data (10 Ponderosa pine burn data),
background-subtracted ion signals, and the scaling factor A = 2.0 in Eq. (S1) are compared
with the results from single burn data (Fire #02, Ponderosa pine realistic mixture), ion

signals with backgrounds, and 4 = 0.6.



Dependence of rotational ambiguity (fPeak) and starting point (seeds) on Q/Q,,,

( a ) fPeak dependence (seeds = 0) ( b ) seeds dependence (fPeak = 0)
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Figure §5. Dependence of rotational ambiguity (fPeak) and starting point (seeds) on Q/Qecxp
for the 2-factor PMF solutions of the concatenated Ponderosa pine burn datasets. These

datasets consist of the background-subtracted ion signals N,..., sc (ncps), and the

uncertainty 6., /, (ncps) = 2.0 X \/Np54/0 g6 (NCPS).



