Secondary organic aerosol formation from photooxidation of furan: effects of NOx level and humidity

Xiaotong Jiang¹, Narcisse T. Tsona¹, Long Jia², Shijie Liu¹, Yongfu Xu², Lin Du¹

¹ Environment Research Institute, Shandong University, Qingdao, 266237, China
² State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

Correspondence to: Lin Du (lindu@sdu.edu.cn)

Supplementary material
Figure S1: Schematic of the experimental set-up employed in this study.

Figure S2: Major gas phase inorganic chemical reactions during the experiments.
Figure S3: Variations of particle size distribution of number and mass concentrations in the beginning of the experiment and at the 3-h time point under different experimental conditions. Since the particle wall loss has a weak RH dependence in our chamber, a mean value 4.7×10^{-5} s$^{-1}$ wall loss correction was used. A density of 1.4 g m$^{-3}$ was used in SMPS.
Figure S4: Contour plots of SOA bursts formed under different experimental conditions.
Figure S5: GC-MS spectra of gas phase products formed from the photooxidation of furan.
Figure S6: Background-subtracting mass spectra of SOA in both positive ion mode (black) and negative ion mode (red) from the photooxidation of furan under different experimental conditions.