A comprehensive study of hygroscopic properties of calcium- and magnesium-containing salts: implication for hygroscopicity of mineral dust and sea salt aerosols

Liya Guo,1,5,a Wenjun Gu,1,5,a Chao Peng,2,5 Weigang Wang,2 Yong Jie Li,3 Taomou Zong,4 Yujing Tang,1 Zhijun Wu,4 Qinhao Lin,1 Maofa Ge,2,5,6 Guohua Zhang,1 Min Hu,4 Xinhui Bi,1 Xinmin Wang,1,5,6 Mingjin Tang1,5,*

1 State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
2 State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
3 Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China
4 State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
5 University of Chinese Academy of Sciences, Beijing 100049, China
6 Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

*a These two authors contributed equivalently to this work.

* Correspondence: Mingjin Tang (mingjintang@gig.ac.cn)
Abstract

Calcium- and magnesium-containing salts are important components for mineral dust and sea salt aerosols, but their physicochemical properties are not well understood yet. In this study, the hygroscopic properties of eight Ca- and Mg-containing salts, including Ca(NO$_3$)$_2$·4H$_2$O, Mg(NO$_3$)$_2$·6H$_2$O, MgCl$_2$·6H$_2$O, CaCl$_2$·6H$_2$O, Ca(HCOO)$_2$, Mg(HCOO)$_2$·2H$_2$O, Ca(CH$_3$COO)$_2$·H$_2$O and Mg(CH$_3$COO)$_2$·4H$_2$O, were systematically investigated using two complementary techniques. A vapor sorption analyzer was used to measure the change of sample mass with relative humidity (RH) under isotherm conditions, and the deliquescence relative humidities (DRH) for temperature in the range of 5-30 °C as well as water-to-solute ratios as a function of RH at 5 and 25 °C were reported for these eight compounds. DRH values showed a large variation for these compounds; for example, at 25 °C the DRH values were measured to be ~28.5% for CaCl$_2$·6H$_2$O and >95% for Ca(HCOO)$_2$ and Mg(HCOO)$_2$·2H$_2$O. In addition, a humidity-tandem differential analyzer was used to measure the change in mobility diameter with RH (up to 90%) at room temperature, in order to determine the hygroscopic growth factors of aerosol particles generated by atomizing water solutions of these eight compounds. All the aerosol particles studied in this work, very likely to be amorphous, started to grow at very low RH (as low as 10%) and showed continuous growth with RH. The hygroscopic growth factors at 90% RH were found to range from 1.26±0.04 for Ca(HCOO)$_2$ and 1.79±0.03 for Ca(NO$_3$)$_2$, varying significantly for the eight types of aerosols considered herein. Overall, our work provides a systematical and comprehensive investigation of the hygroscopic properties of these Ca- and Mg-containing salts, largely improving our knowledge in the physicochemical properties of mineral dust and sea salt aerosols.
1 Introduction

Mineral dust, mainly emitted from arid and semi-arid regions with an annual flux of ~2000 Tg, is one of the most abundant types of aerosols in the troposphere (Textor et al., 2006; Ginoux et al., 2012). Mineral dust aerosol affects the climate system directly by scattering and absorbing solar and terrestrial radiation (Formenti et al., 2011; Ridley et al., 2016; Chen et al., 2017) and indirectly by serving as cloud condensation nuclei and ice nucleation particles (Hoose and Moehler, 2012; Creamean et al., 2013; Cziczo et al., 2013; Tang et al., 2016a). In addition, deposition of mineral dust particles is an important source of several nutrient elements (Fe and P, for example) for many ecosystems around the globe, thus having significant impacts on biogeochemical cycles in these regions (Jickells et al., 2005; Mahowald et al., 2009; Mahowald et al., 2011; Zhang et al., 2015).

Mineral dust aerosol has an average lifetime of a few days in the atmosphere and can thus be transported over thousands of kilometers (Textor et al., 2006; Uno et al., 2009). During transport mineral dust particles may undergo heterogeneous reactions with trace gases, impacting the abundance of a number of important reactive trace gases both directly and indirectly (Usher et al., 2003; Crowley et al., 2010; Romanias et al., 2012; Tang et al., 2017). These reactions can also lead to change in chemical composition of mineral dust particles (Usher et al., 2003; Li and Shao, 2009; Li et al., 2010; Tang et al., 2012; Romanias et al., 2016) and thereby modification of their physicochemical and optical properties (Krueger et al., 2003; Vlasenko et al., 2006; Liu et al., 2008b; Sullivan et al., 2009; Tang et al., 2016a; Pan et al., 2017). Mineral dust particles contain substantial amounts of carbonates, including CaCO₃ (calcite) and CaMg(CO₃)₂ (dolomite) (Nickovic et al., 2012; Formenti et al., 2014; Jeong and Achterberg, 2014; Journet et al., 2014; Scanza et al., 2015). These carbonates are largely insoluble and have very low hygroscopicity.
(Sullivan et al., 2009; Tang et al., 2016a); however, their reactions with acidic gases in the troposphere can form Ca- and Mg-containing salts with higher hygroscopicity (Gibson et al., 2006; Liu et al., 2008b; Sullivan et al., 2009; Tang et al., 2016a), such as Ca(NO$_3$)$_2$ and Mg(NO$_3$)$_2$. For example, numerous laboratory and field studies have found that due to the formation of Ca(NO$_3$)$_2$ and CaCl$_2$ from heterogeneous reactions with nitrogen oxides (Goodman et al., 2000; Liu et al., 2008a; Li et al., 2010; Tang et al., 2012; Tan et al., 2016) and HCl (Santschi and Rossi, 2006), solid CaCO$_3$ particles could be converted to aqueous droplets under tropospheric conditions (Krueger et al., 2003; Laskin et al., 2005; Liu et al., 2008b; Shi et al., 2008; Tobo et al., 2010). In addition, MgCl$_2$ is an important component in sea salt (as known as sea spray) aerosol. The presence of MgCl$_2$, in addition to NaCl, can alter the hygroscopicity of sea salt aerosol (Gupta et al., 2015; Zieger et al., 2017).

Nevertheless, hygroscopic properties of Ca(NO$_3$)$_2$, Mg(NO$_3$)$_2$, CaCl$_2$ and MgCl$_2$ have not been completely understood, especially in the two following aspects. First, hygroscopic growth factors were only measured by one or two previous studies for Ca(NO$_3$)$_2$ (Gibson et al., 2006; Jing et al., 2018), Mg(NO$_3$)$_2$ (Gibson et al., 2006), CaCl$_2$ (Park et al., 2009), and MgCl$_2$ aerosols (Park et al., 2009). Considering the importance of these compounds in the troposphere, additional measurements of their hygroscopic growth are clearly warranted. In addition, tropospheric temperatures range from ~200 to ~300 K; however, the effects of temperature on their phase transitions and hygroscopic growth remain largely unclear (Kelly and Wexler, 2005), due to lack of experimental data below room temperature.

Small carboxylic acids, such as formic and acetic acids, are abundant in the troposphere (Khare et al., 1999), and previous studies suggested that heterogeneous reactions of mineral dust with formic and acetic acids are efficient (Hatch et al., 2007; Prince et al., 2008; Tong et al., 2010;
It was shown that calcium and magnesium acetates were formed in heterogeneous reactions of gaseous acetic acid with MgO and CaCO₃ particles, leading to a significant increase in particle hygroscopicity (Ma et al., 2012). However, only a few previous studies explored hygroscopic growth of Mg(CH₃COO)₂ (Wang et al., 2005; Pang et al., 2015) and Ca(CH₃COO)₂ (Ma et al., 2012). To our knowledge, hygroscopic growth factors of aerosol particles have never been studied for Ca(HCOO)₂, Mg(HCOO)₂, Ca(CH₃COO)₂ and Mg(CH₃COO)₂.

To better understand the hygroscopic properties of these Ca- and Mg-containing salts, two complementary techniques were employed in this work to investigate their phase transitions and hygroscopic growth. A vapor sorption analyzer, which measured the sample mass as a function of RH, was used to determine the DRH and solute-to-water ratios for Ca(NO₃)₂·4H₂O, Mg(NO₃)₂·6H₂O, CaCl₂·6H₂O, MgCl₂·6H₂O, Ca(HCOO)₂, Mg(HCOO)₂·2H₂O, Ca(CH₃COO)₂·H₂O and Mg(CH₃COO)₂·4H₂O at different temperatures (5-30 °C). Furthermore, hygroscopic growth factors of Ca(NO₃)₂, Mg(NO₃)₂, CaCl₂, MgCl₂, Ca(HCOO)₂, Mg(HCOO)₂, Ca(CH₃COO)₂ and Mg(CH₃COO)₂ aerosol particles were determined at room temperature up to 90% RH, using a tandem-differential mobility analyzer. This work would significantly increase our knowledge in the hygroscopicity of these compounds, leading to a better understanding of the physicochemical properties of mineral dust and sea salt aerosols.

2 Experimental section

Hygroscopic growth of Ca- and Mg-containing salts were investigated using two complementary techniques, i.e. a humidity-tandem differential mobility analyzer (H-TDMA) and a vapor sorption analyzer (VSA). Eight salts, all supplied by Aldrich, were investigated in this work, including calcium nitrate tetrahydrate (>99%), magnesium nitrate hexahydrate (99%),
calcium chloride hexahydrate (>99%), magnesium chloride hexahydrate (>99%), calcium formate (>99%), magnesium formate dihydrate (98%), calcium acetate monohydrate (>99%), and magnesium acetate tetrahydrate (99%).

2.1 H-TDMA experiments

H-TDMA measurements were carried out at Institute of Chemistry, Chinese Academy of Sciences, and the experimental setup was detailed in previous work (Lei et al., 2014; Peng et al., 2016). Hygroscopic growth of size-selected aerosol particles was determined by measuring changes in their mobility diameters at different RH. An atomizer (MSP 1500) was used to generate aerosol particles. Solutions used for atomization were prepared using ultrapure water, and their typical concentrations were 0.3-0.4 g L⁻¹. The aerosol flow exiting the atomizer was passed through a Nafion dryer and then a diffusion dryer filled with silica gel to reach a final RH of <5%. The aerosol flow was then delivered through a neutralizer and the first differential mobility analyzer (DMA) to produce quasi-monodisperse aerosol particles with a mobility diameter of 100 nm. After that, the aerosol flow was transferred through a humidification section with a residence time of ~27 s to be humidified to a given RH. After humidification, the size distribution of aerosol particles was measured using the second DMA coupled with a condensation particle counter (TSI 3776). For the second DMA, the aerosol flow and the sheath flow were always maintained at the same RH. The flow rate ratios of the aerosol flow to the sheath flow were set to 1:10 for both DMA.

All the experiments were carried out at 298±1 K, and in each experiment hygroscopic growth of aerosol particles was determined at 12 different RH, i.e. <5, 10, 20, 30, 40, 50, 60, 70, 75, 80, 85, and 90%. Hygroscopic growth of each compound was measured three times, and the performance of the H-TDMA setup was routinely checked by measuring the hygroscopic growth
of 100 nm (NH₄)₂SO₄ and NaCl aerosol particles, whose hygroscopic growth factors are well documented.

### 2.2 VSA experiments

The vapor sorption analyzer (Q5000SA), which measured the mass of a particle sample as a function of RH under isotherm conditions, was manufactured by TA Instruments (New Castle, DE, USA). These experiments were performed at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, and the instrument and experimental method were described elsewhere (Gu et al., 2017a; Gu et al., 2017b; Jia et al., 2018). Experiments could be conducted in a temperature range of 5-85 °C with an accuracy of ±0.1 °C and a RH range of 0-98% with an absolute accuracy of ±1%. The mass measurement had a range of 0-100 mg, and its sensitivity was stated to be <0.1 μg. Initial mass of samples used in an experiment was usually in the range of 0.5-1 mg.

Two different types of experiments were carried out. The mass hygroscopic growth was studied in the first type of experiments: after the sample was dried at <1% RH as a given temperature, RH was increased to 90% stepwise with an increment of 10% per step; after that, RH was set to 0% to dry the sample again. The second type of experiments were conducted to measure DRH values: the sample was first dried at a given temperature, and RH was increased to a value which was at least 5% lower than the expected DRH; RH was then increased stepwise with an increment of 1% until a significant increase in sample mass was observed, and the RH at which the sample mass showed a significant increase was equal to its DRH. At each RH the sample was considered to reach equilibrium with the environment when its mass change was <0.1% within 30 min, and RH was changed to the next value only after the sample mass was stabilized.
3 Results and discussion

3.1 Hygroscopicity of nitrates and chlorides

3.1.1 DRH at different temperature

First we investigated the effect of temperature on the DRH of Ca(NO$_3$)$_2$·4H$_2$O, Mg(NO$_3$)$_2$·6H$_2$O and MgCl$_2$·6H$_2$O, which are the most stable forms of corresponding salts for the temperature range (5-30 °C) considered in this work (Kelly and Wexler, 2005). Figure 1a shows the change of RH and normalized sample mass as a function of time in an experiment to measure the DRH of Mg(NO$_3$)$_2$·6H$_2$O at 25 °C. An abrupt and significant increase in sample mass was observed when RH was increased from 52 to 53%, suggesting that the deliquescence occurred between 52 and 53% RH. Therefore, its DRH was measured to be 52.5±0.5 %.

![Figure 1](image_url)

**Figure 1.** Change of normalized sample mass (blue curve, right y-axis) and RH (black curve, left y-axis) as a function of time. (a) A typical experiment conducted to measure the DRH; (b) A typical experiment conducted to measure mass hygroscopic growth factors. In the two experiments shown here, Mg(NO$_3$)$_2$·6H$_2$O was investigated at 25 °C.
Table 1 summarizes our measured DRH of Ca(NO$_3$)$_2$·4H$_2$O, Mg(NO$_3$)$_2$·6H$_2$O and MgCl$_2$·6H$_2$O as a function of temperature (5-30 °C). DRH values show a strong dependence on temperature for Ca(NO$_3$)$_2$·4H$_2$O (decreasing from 60.5% at 5 °C to 46.0% at 30 °C) and a weaker temperature dependence for Mg(NO$_3$)$_2$·6H$_2$O (decreasing from 57.5% at 5 °C to 50.5% at 30 °C); in contrast, the DRH values of MgCl$_2$·6H$_2$O (31.5-32.5 %) exhibit little variation with temperature (5-30 °C). Several previous studies have reported the DRH values of Ca(NO$_3$)$_2$·4H$_2$O, Mg(NO$_3$)$_2$·6H$_2$O and MgCl$_2$·6H$_2$O, and their results are compared with our work in the following paragraphs.

Table 1. DRH (in %) of Ca(NO$_3$)$_2$·4H$_2$O, Mg(NO$_3$)$_2$·6H$_2$O and MgCl$_2$·6H$_2$O measured in this work as a function of temperatures (5-30 °C). Solubility data (mol per kg water) compiled by Kelly and Wexler (2005) was used to calculate solubilities in mol per mol water. All the errors (±1 σ) are statistical only.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Ca(NO$_3$)$_2$·4H$_2$O</th>
<th>Mg(NO$_3$)$_2$·6H$_2$O</th>
<th>MgCl$_2$·6H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60.5±1.0</td>
<td>57.5±1.0</td>
<td>32.5±1.0</td>
</tr>
<tr>
<td>10</td>
<td>58.0±1.0</td>
<td>56.5±1.0</td>
<td>32.5±1.0</td>
</tr>
<tr>
<td>15</td>
<td>55.5±1.0</td>
<td>54.5±1.0</td>
<td>32.5±1.0</td>
</tr>
<tr>
<td>20</td>
<td>52.5±1.0</td>
<td>53.5±1.0</td>
<td>32.5±1.0</td>
</tr>
<tr>
<td>25</td>
<td>49.5±1.0</td>
<td>52.5±1.0</td>
<td>31.5±1.0</td>
</tr>
<tr>
<td>30</td>
<td>46.0±1.0</td>
<td>50.5±1.0</td>
<td>31.5±1.0</td>
</tr>
<tr>
<td>solubility (mol per kg water)</td>
<td>8.4</td>
<td>4.9</td>
<td>5.84</td>
</tr>
<tr>
<td>solubility (A, mol per mol water)</td>
<td>0.1512</td>
<td>0.0882</td>
<td>0.1051</td>
</tr>
<tr>
<td>A·ΔH/R (K)</td>
<td>913±59</td>
<td>427±28</td>
<td>105 *</td>
</tr>
<tr>
<td>ΔH$_s$ (kJ mol$^{-1}$)</td>
<td>50.2±3.3</td>
<td>40.3±2.6</td>
<td>8.31 *</td>
</tr>
</tbody>
</table>

*: The estimated of A·ΔH/R and ΔH$_s$ may have large uncertainties (probably at least a factor of 2) for MgCl$_2$·6H$_2$O. Please refer to Section 3.1.1 for further details.
Ca(NO$_3$)$_2$·4H$_2$O: RH of air in equilibrium with saturated Ca(NO$_3$)$_2$·4H$_2$O solutions, i.e. the DRH values of Ca(NO$_3$)$_2$·4H$_2$O, were measured to be 55.9, 55.4, 50.5 and 46.7% at 15, 20, 25 and 30 °C (Adams and Merz, 1929), and the absolute differences in DRH reported by Adams and Merz (1929) and our work are <3%. The water vapor pressures of saturated Ca(NO$_3$)$_2$·4H$_2$O solutions were measured to be 0.693, 0.920, 1.253, 1.591 and 1.986 kPa at 10, 15, 20, 25 and 30 °C (Apelblat, 1992), corresponding to DRH values of 56, 54, 54, 50 and 47%, respectively; therefore, DRH measured in our work are in good agreement with those derived from vapor pressure measurements by Apelblat (1992). In another study (Al-Abadleh et al., 2003), RH over the saturated Ca(NO$_3$)$_2$·4H$_2$O solution was measured to be 57±5% at room temperature, also in consistence with our work.

Mg(NO$_3$)$_2$·6H$_2$O: Water vapor pressures of saturated Mg(NO$_3$)$_2$·6H$_2$O solutions were determined to be 0.737, 1.017, 1.390, 1.813 and 2.306 kPa at 10, 15, 20, 25 and 30 °C (Apelblat, 1992), giving DRH values of 60, 60, 59, 57 and 54% at corresponding temperatures. The vapor pressure of saturated Mg(NO$_3$)$_2$·6H$_2$O solutions at 25 °C were reported to be 1.674 and 1.666 kPa by another two studies (Biggs et al., 1955; Robinson and Stokes, 1959), corresponding to a DRH value of ~53%. In addition, the water activity of the saturated Mg(NO$_3$)$_2$ solution was measured to be 0.528 at 25 °C (Rard et al., 2004), also suggesting a DRH value of ~53%; similarly, RH over the saturated Mg(NO$_3$)$_2$ solution was reported to be ~53% at 22-24 °C (Li et al., 2008b). Al-Abadleh and Grassian (2003) investigated the phase transition of the Mg(NO$_3$)$_2$·6H$_2$O film, and its DRH was determined to be 49-54% at 23 °C. As shown in Table 1, DRH measured in our work agree very well with those derived from most of previous studies (Biggs et al., 1955; Robinson...
and Stokes, 1959; Al-Abadleh and Grassian, 2003; Rard et al., 2004), but are always 3-5% lower than those derived from Apelblat (1992).

**MgCl$_2$·6H$_2$O:** Kelly and Wexler (2005) calculated DRH of MgCl$_2$·6H$_2$O from vapor pressures of saturated MgCl$_2$·6H$_2$O solutions measured by previous work, and found that DRH values were in the range of 33-34% for temperatures at 0-40 °C. In addition, water activity of the saturated MgCl$_2$ solution was reported to be 0.3278 at 25 °C (Rard and Miller, 1981), corresponding to a DRH value of ~33% for MgCl$_2$·6H$_2$O. The DRH values of MgCl$_2$·6H$_2$O measured in our work, as summarized in Table 1, show excellent agreement with those reported by previous work (Rard and Miller, 1981; Kelly and Wexler, 2005). Phase transition and deliquescence behavior of CaCl$_2$·6H$_2$O were also investigated in our work and found to be very complex, and the result will be discussed in Section 3.1.3.

The dependence of DRH on temperature can usually be approximated by the Clausius-Clapeyron equation (Zeng et al., 2014; Gu et al., 2017a; Jia et al., 2018):

$$\ln[DRH(T)] = \ln[DRH(298)] + \frac{A \Delta H_s}{R} \left( \frac{1}{T} - \frac{1}{298} \right) \quad (1)$$

where $T$ is temperature (K), DRH($T$) and DRH(298) are the DRH values at $T$ and 298 K, $R$ is the gas constant (8.314 J mol$^{-1}$ K$^{-1}$), and $\Delta H_s$ is the enthalpy of solution (J mol$^{-1}$). The dimensionless constant, $A$, is numerically equal to the water solubility of the salt under investigation in the unit of mol per mol water. Figure 2 shows the dependence of DRH values on temperature for Ca(NO$_3$)$_2$·4H$_2$O and Mg(NO$_3$)$_2$·6H$_2$O, confirming that Eq. (1) can indeed approximate the temperature dependence. The slope, which is equal to $A \Delta H_s / R$, was determined to be 913±59 K for Ca(NO$_3$)$_2$·4H$_2$O and 427±28 K for Mg(NO$_3$)$_2$·6H$_2$O, and thus $\Delta H_s$ was translated to be 50.2±3.3 kJ mol$^{-1}$ for Ca(NO$_3$)$_2$·4H$_2$O and 40.3±2.6 kJ mol$^{-1}$ for Mg(NO$_3$)$_2$·6H$_2$O. The variation of DRH...
values with temperature was very small for MgCl₂·6H₂O and thus could not be fitted with Eq. (1). Instead, we used its DRH values at 5 and 30 °C (i.e. 278 and 303 K) to estimate the ΔHₛ, using Eq. (2):

\[
\frac{A \cdot \Delta H_S}{R} = \frac{\ln[\text{DRH}(303)] - \ln[\text{DRH}(278)]}{(1/303 - 1/278)}
\]  

(2)

The values of A·ΔHₛ/R and ΔHₛ were estimated to be 105 K and 8.31 kJ mol⁻¹ for MgCl₂·6H₂O. It should be emphasized that the estimated ΔHₛ value for MgCl₂·6H₂O had a large uncertainty (probably a factor of >2) due to the very small dependence of its DRH on temperature.

**Figure 2.** Dependence of DRH values on temperature for Ca(NO₃)₂·4H₂O and Mg(NO₃)₂·6H₂O.

### 3.1.2 Water-to-solute ratios as a function of RH

The change of sample mass with RH (0-90%) was measured at 5 and 25 °C for Ca(NO₃)₂·4H₂O, Mg(NO₃)₂·6H₂O and MgCl₂·6H₂O, using the vapor sorption analyzer. The mass change, relative to that at 0% RH, can be used to calculate water-to-solute ratios (WSR, defined in
this work as the molar ratio of H$_2$O to Ca$^{2+}$ or Mg$^{2+}$) for deliquesced samples. As summarized in Table 2, decrease in temperature would lead to increase in WSR at 90% RH: WSR were determined to be 28.78±0.20 at 25 °C and 31.80±0.96 at 5 °C for Ca(NO$_3$)$_2$·4H$_2$O, 36.87±0.23 at 25 °C and 41.40±1.36 at 5 °C for Mg(NO$_3$)$_2$·6H$_2$O, and 36.26±1.76 at 25 °C and 39.55±2.43 at 5 °C for MgCl$_2$·6H$_2$O, respectively. Several previous studies have measured RH over aqueous Ca(NO$_3$)$_2$, Mg(NO$_3$)$_2$, and MgCl$_2$ solutions at given concentrations, and their results are compared with our work, as discussed below.

Table 2. Mass growth factors ($m/m_0$, defined as the ratio of sample mass at a given RH to that at 0% RH) and water-to-solute ratios (WSR) as a function of RH (0-90%) at 25 and 5 °C for Ca(NO$_3$)$_2$·4H$_2$O, Mg(NO$_3$)$_2$·6H$_2$O and MgCl$_2$·6H$_2$O. WSR were only calculated for RH exceeding the DRH (i.e. when the sample was deliquesced). All the errors (±1 σ) are statistical only.

<table>
<thead>
<tr>
<th>RH (%)</th>
<th>$m/m_0$</th>
<th>WSR</th>
<th>$m/m_0$</th>
<th>WSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000±0.001 --</td>
<td>1.000±0.001 --</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.000±0.001 --</td>
<td>1.001±0.001 --</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.014±0.005 --</td>
<td>1.005±0.003 --</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.016±0.007 --</td>
<td>1.005±0.002 --</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1.017±0.009 --</td>
<td>1.009±0.003 --</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1.237±0.006 7.10±0.03</td>
<td>1.032±0.005 4.41±0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1.363±0.008 8.76±0.05</td>
<td>1.041±0.002 4.54±0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>1.550±0.009 11.22±0.06</td>
<td>1.610±0.010 12.00±0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1.897±0.012 15.77±0.10</td>
<td>1.979±0.027 16.85±0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>2.889±0.020 28.78±0.20</td>
<td>3.119±0.095 31.80±0.96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RH (%)</th>
<th>$m/m_0$</th>
<th>WSR</th>
<th>$m/m_0$</th>
<th>WSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000±0.001 --</td>
<td>1.000±0.001 --</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.000±0.001 --</td>
<td>1.000±0.001 --</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ca(NO₃)₂: Water activities of Ca(NO₃)₂ solutions at 25 °C were measured to be 0.904, 0.812 and 0.712 when the concentrations were 2.0, 3.5, and 5.0 mol kg⁻¹, respectively (El Guendouzi and Marouani, 2003); in other words, WSR were found to be 11.1, 15.9 and 27.8 at 71.2, 81.2 and 90.4 % RH, respectively. As shown in Table 2, in our work WSR were determined to be 11.22±0.06, 15.77±0.10 and 28.78±0.20 at 70, 80 and 90% RH for Ca(NO₃)₂ solutions at the same temperature, suggesting good agreement with El Guendouzi and Marouani (2003).

Mg(NO₃)₂: Water activities of Mg(NO₃)₂ solutions were reported to be 0.897, 0.812 and 0.702 when the concentrations were 1.6, 2.5 and 3.5 mol kg⁻¹ at 25 °C, respectively (Rard et al., 2003).
this means that WSR were equal to 15.9, 22.2 and 34.7 at 70.2, 81.2 and 89.7% RH. Ha and Chan (1999) fitted their measured water activities of Mg(NO$_3$)$_2$ as a function of molality concentration at 20-24 °C with a polynomial equation, and WSR were derived to be 12.93, 16.12, 21.50 and 36.09 at 60, 70, 80 and 90% RH. As shown in Table 2, WSR were measured to be 13.15± 0.01, 16.30± 0.01, 21.94± 0.01 and 36.87± 0.23 at 60, 70, 80 and 90% RH for deliquesced Mg(NO$_3$)$_2$ at 25 °C. Therefore, it can be concluded that for WSR of Mg(NO$_3$)$_2$ solutions at ~25 °C, our work shows good agreement with the two previous studies (Ha and Chan, 1999; Rard et al., 2004).

**MgCl$_2$:** Water activities of MgCl$_2$ solutions were reported to be 0.909, 0.800, 0.692, 0.491 and 0.408 when the concentrations were 1.4, 2.4, 3.2, 4.6 and 5.2 mol kg$^{-1}$ (Rard and Miller, 1981), i.e. WSR were equal to 10.7, 12.1, 17.4, 23.1 and 39.7 at 40.8, 49.1, 69.2, 80.0 and 90.9% RH. In another work (Ha and Chan, 1999), an electrodynamic balance was used to investigate hygroscopic growth of MgCl$_2$ particles at 20-24 °C, and the measured molality concentrations of MgCl$_2$ solutions as a function of water activity were fitted by a polynomial equation; it can be derived from Ha and Chen (1999) that WSR were equal to 10.65, 12.34, 14.29, 17.04, 22.24 and 34.78 when RH were 40, 50, 60, 70, 80 and 90%, respectively. WSR measured in our work, as listed in Table 2, are 9.89±0.42, 11.52±0.48, 1.677±0.072, 16.74±0.72, 22.18±1.06 and 36.26±1.76 at 40, 50, 60, 70, 80 and 90% RH. As a result, our work agrees well with the two previous studies (Rard and Miller, 1981; Ha and Chan, 1999) for WSR of MgCl$_2$ solutions as a function of RH at ~25 °C.

### 3.1.3 Phase transition of CaCl$_2$·xH$_2$O

The change in sample mass of CaCl$_2$·6H$_2$O with RH was also investigated at 25 °C. As shown in Figure 3, when dried at 0% RH, the sample mass was reduced by 1/3 (from ~1.5 to ~1.0),...
and it is speculated that CaCl₂·6H₂O was converted to CaCl₂·2H₂O. When RH was increased to 10%, no significant increase in sample mass was observed. As RH was further increased to 20%, the sample mass was increased by 48±7%; this may indicate that CaCl₂·2H₂O was converted to CaCl₂·6H₂O, as the ratio of molar mass of CaCl₂·6H₂O (219 g mol⁻¹) to CaCl₂·2H₂O (147 g mol⁻¹) is 1.49, equal to the ratio of sample mass at 20% RH to that at 10% RH. Further increase in RH to 30% would lead to additional increase in sample mass, implying the deliquescence of the sample and the formation of an aqueous CaCl₂ solution.

Figure 3. Change of normalized sample mass (blue curve, right y-axis) and RH (black curve, left y-axis) as a function of time for CaCl₂·xH₂O at 25 °C.

Assuming that CaCl₂·6H₂O was converted to CaCl₂·2H₂O after being dried at 0% RH, we could use the change of sample mass as a function of RH to calculate WSR (defined as molar ratio of H₂O to Ca²⁺), and the results are listed in Table 3. Please note that we did not calculate WSR at
20% RH, since it is speculated that the significant mass increase at 20% RH was caused by the transformation of CaCl₂·2H₂O to CaCl₂·6H₂O, as mentioned above. Water activities of aqueous CaCl₂ solutions as a function of molality concentration reported in a previous study (Rard et al., 1977) were used to calculate WSR as a function of RH, and the results are also included in Table 3 for comparison. As evident from Table 3, at same/similar RH, WSR measured in our work are in good agreement with those derived from Rard et al. (1977), supporting our assertion that CaCl₂·6H₂O was converted to CaCl₂·2H₂O after being dried at 0% RH. In fact, theoretical calculations (Kelly and Wexler, 2005) and experimental measurements (Gough et al., 2016) both suggested that when RH is gradually increased, solid-solid phase transition from CaCl₂·2H₂O to CaCl₂·6H₂O would occur before deliquescence takes place.

Table 3. Mass growth factors (m/m₀, defined as the ratio of sample mass at a given RH to that at 0% RH) and water-to-solute ratios (WSR) as a function of RH (0-90%) at 25 °C for CaCl₂·xH₂O. WSR derived from RH over aqueous CaCl₂ solutions as a function of concentration (mol kg⁻¹) at 25 °C (Rard et al., 1977) are also included for comparison. All the errors (±1 σ) are statistical only.

<table>
<thead>
<tr>
<th>RH (%)</th>
<th>m/m₀</th>
<th>WSR</th>
<th>RH (%)</th>
<th>molality</th>
<th>WSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000±0.001</td>
<td>--</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>1.000±0.001</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>20</td>
<td>1.448±0.072</td>
<td>--</td>
<td>30</td>
<td>7.97±0.03</td>
<td>7.94</td>
</tr>
<tr>
<td>30</td>
<td>1.724±0.007</td>
<td>7.97±0.03</td>
<td>31.2</td>
<td>7.0</td>
<td>9.26</td>
</tr>
<tr>
<td>40</td>
<td>1.929±0.008</td>
<td>9.64±0.04</td>
<td>39.2</td>
<td>6.0</td>
<td>9.26</td>
</tr>
<tr>
<td>50</td>
<td>2.144±0.010</td>
<td>11.40±0.05</td>
<td>49.9</td>
<td>5.0</td>
<td>11.11</td>
</tr>
<tr>
<td>60</td>
<td>2.408±0.012</td>
<td>13.55±0.07</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>70</td>
<td>2.786±0.015</td>
<td>16.64±0.09</td>
<td>70.1</td>
<td>3.4</td>
<td>16.34</td>
</tr>
<tr>
<td>80</td>
<td>3.448±0.020</td>
<td>22.05±0.13</td>
<td>79.8</td>
<td>2.6</td>
<td>21.37</td>
</tr>
</tbody>
</table>
Additional experiments, in which RH was stepwise increased from 0% with an increment of 1% per step, were carried out in attempt to measure the DRH of CaCl$_2$·xH$_2$O at 25 °C. In all of these experiments, CaCl$_2$·6H$_2$O was always transformed to CaCl$_2$·2H$_2$O after being dried at 0% RH. In some of these experiments the deliquescence took place at RH of ~28.5%, which is consistent with the DRH of CaCl$_2$·6H$_2$O reported in the literature (Kelly and Wexler, 2005), suggesting that CaCl$_2$·2H$_2$O was first transformed to CaCl$_2$·6H$_2$O prior to deliquescence. However, in some experiments the deliquescence occurred at RH of ~18.5%, corresponding to the DRH of CaCl$_2$·2H$_2$O reported previously (Kelly and Wexler, 2005), implying that CaCl$_2$·2H$_2$O was deliquesced without being transformed to CaCl$_2$·6H$_2$O. The dual deliquescence processes, i.e. 1) transformation of CaCl$_2$·2H$_2$O to CaCl$_2$·6H$_2$O prior to deliquescence and 2) direct deliquescence of CaCl$_2$·2H$_2$O, were also observed using Raman spectroscopy at low temperatures (223-273 K) (Gough et al., 2016). It seems that the competition of these two mechanisms are both thermodynamically and kinetically dependent. Since phase transitions of CaCl$_2$ are not only important for atmospheric aerosols but may also play a role in the existence of liquid water in some hyperarid environments (Gough et al., 2016), further investigation is being carried out by combining the vapor sorption analyzer technique with vibrational spectroscopy.

### 3.1.4 Hygroscopic growth of aerosol particles

Hygroscopic growth factors (GF), which were measured using H-TDMA at room temperature, are displayed in Figure 4 for Ca(NO$_3$)$_2$, CaCl$_2$, Mg(NO$_3$)$_2$ and MgCl$_2$ aerosols, and the results are also compiled in Table 4. Here GF is defined as the ratio of measured mobility diameters at a given RH to that at dry conditions:
\[ GF = \frac{d}{d_0} \]  (3)

where \( d_0 \) and \( d \) are the measured mobility diameters at <5% RH and at a given RH, respectively.

It was found in our work that all the four types of aerosols exhibit high hygroscopicity, with GF at 90% RH being around 1.7 or larger. In addition, all the four types of aerosol particles, instead of having distinct solid-liquid phase transitions, showed significant hygroscopic growth at very low RH (even as low as 10%), and their GF increased continuously with RH. This phenomenon is due to the fact that these aerosol particles, generated by drying aqueous droplets, were likely in amorphous states. It was also observed in previous work that certain types of particles generated by drying aqueous droplets would be amorphous, such as Ca(NO\(_3\))\(_2\) (Tang and Fung, 1997; Gibson et al., 2006; Jing et al., 2018), Mg(NO\(_3\))\(_2\) (Zhang et al., 2004; Gibson et al., 2006; Li et al., 2008a), CaCl\(_2\) (Park et al., 2009; Tobo et al., 2009) and MgCl\(_2\) (Cziczo and Abbatt, 2000; Park et al., 2009).

**Figure 4.** Hygroscopic growth factors (GF) of aerosol particles as a function of RH measured using H-TDMA. (a): Ca(NO\(_3\))\(_2\) and Mg(NO\(_3\))\(_2\); (b) CaCl\(_2\) and MgCl\(_2\).
Ca(NO$_3$)$_2$ and Mg(NO$_3$)$_2$ aerosols: Two previous studies (Gibson et al., 2006; Jing et al., 2018) employed H-TDMA to examine the hygroscopic growth of Ca(NO$_3$)$_2$ aerosol particles at room temperature. GF were determined to be 1.51 at 80% RH and ~1.77 at 85% RH by Gibson et al. (2008). It should be pointed out that though the DMA-selected dry particle diameters were 100 nm for Ca(NO$_3$)$_2$ as well as Mg(NO$_3$)$_2$ aerosols, the dry diameters used by Gibson et al. (2006) were extrapolated to 0% RH using the theoretical growth curve based on the Köhler theory, determined to be were 89 nm for Ca(NO$_3$)$_2$ and 77 nm for Mg(NO$_3$)$_2$. The Köhler theory is based on assumption of solution ideality and may not be applicable to highly concentrated aerosol droplets at very low RH (Seinfeld and Pandis, 2006). If the dry diameter selected using the DMA (i.e. 100 nm) was used for calculation instead, GF reported by Gibson et al. (2006) would be ~1.34 and ~1.58 at 80 and 85% RH, respectively. In the second study (Jing et al., 2018), GF were determined to 1.56 and 1.89 at 80 and 90% RH. As summarized in Table 4, GF of Ca(NO$_3$)$_2$ aerosol were measured to be 1.51±0.02, 1.62±0.01 and 1.79±0.03 for 80, 85 and 90% RH in our work, showing reasonably good agreement with the two previous studies (Gibson et al., 2006; Jing et al., 2018).

Table 4. Hygroscopic growth factors (GF) of Ca(NO$_3$)$_2$, CaCl$_2$, Mg(NO$_3$)$_2$ and MgCl$_2$ aerosol particles measured using H-TDMA. The given RH values were estimated to have an absolute uncertainty of ±2%.

<table>
<thead>
<tr>
<th>RH (%)</th>
<th>Ca(NO$_3$)$_2$</th>
<th>CaCl$_2$</th>
<th>Mg(NO$_3$)$_2$</th>
<th>MgCl$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.00±0.01</td>
<td>1.00±0.01</td>
<td>1.00±0.01</td>
<td>1.00±0.01</td>
</tr>
<tr>
<td>10</td>
<td>1.09±0.01</td>
<td>1.05±0.01</td>
<td>1.05±0.02</td>
<td>1.03±0.01</td>
</tr>
<tr>
<td>20</td>
<td>1.17±0.02</td>
<td>1.11±0.02</td>
<td>1.10±0.01</td>
<td>1.08±0.01</td>
</tr>
</tbody>
</table>
To our knowledge, only one previous study investigated the hygroscopic growth of Mg(NO$_3$)$_2$ aerosol using the H-TDMA (Gibson et al., 2006), and GF was measured to be 1.94±0.02 at 83% RH; as stated above, the theoretical extrapolated diameter (77 nm) at 0% RH, instead of the dry diameter (100 nm) selected using the DMA, were used as the dry diameter to calculate their reported GF (Gibson et al., 2006). If the DMA-selected dry diameter (100 nm) was used in calculation, the GF reported by Gibson et al. (2006) would be ~1.49 at 83% RH. For comparison, in our work GF were determined to be 1.45±0.04 and 1.53±0.03 at 80 and 85% RH, in very good agreement with the results reported by Gibson et al. (2006) if the DMA-selected dry diameter was used in their GF calculation.

**CaCl$_2$ and MgCl$_2$ aerosol:** Hygroscopic growth of CaCl$_2$ and MgCl$_2$ aerosol particles was explored using a H-TDMA (Park et al., 2009), and as far as we know, this was the only study which reported the H-TDMA measured hygroscopic growth factors of the two aerosols. GF were measured to be around 1.27, 1.38, 1.48 and 1.59 at 60, 75, 80 and 90 % RH for CaCl$_2$ (Park et al., 2009). For comparison, GF were determined to be 1.33±0.01, 1.45±0.01, 1.51±0.01 and 1.71±0.03 at 60, 75, 80 and 90 %, slightly larger than those reported by Park et al. (2009) (though the
difference may be insignificant when compared with the relatively large uncertainties associated with their GF which were only presented graphically).

At 50, 70, 80, 85 and 90% RH, GF of MgCl$_2$ aerosol were measured to be about 1.17, 1.29, 1.47, 1.59 and 1.79 by Park et al. (2009) and 1.23±0.01, 1.36±0.01, 1.46±0.01, 1.57±0.02 and 1.71±0.03 in our work, suggesting good agreement between the two studies. Microscopy was used to investigate the hygroscopic growth of micrometer-size MgCl$_2$ particles deposited on substrates (Gupta et al., 2015), and the ratios of 2-D particle areas, relative to that at <5% RH, were measured to be around 1.65, 1.92, 2.02 and 2.28 at 60, 70, 75 and 80% RH, corresponding to diameter-based GF of approximately 1.28, 1.38, 1.42 and 1.51, respectively. GF of MgCl$_2$ aerosol, as shown in Table 4, were determined to be 1.29±0.01, 1.36±0.01, 1.41±0.01 and 1.46±0.02 at 60, 70, 75 and 80% RH in our work, agreeing well with those reported by Gupta et al. (2015).

**Comparison between growth factors with CCN activities:** GF measured using H-TDMA can be used to calculate the single hygroscopicity parameter, $\kappa_{gf}$, using Eq. (4) (Petters and Kreidenweis, 2007; Kreidenweis and Asa-Awuku, 2014; Tang et al., 2016a):

$$\kappa_{gf} = \left( GF^3 - 1 \right)^{1-RH/RH}$$

(4)

where GF is the growth factor at a given RH. In our work, GF data at 90% RH were used to derive $\kappa_{gf}$, as usually done in many previous studies (Kreidenweis and Asa-Awuku, 2014). The single hygroscopicity parameter, $\kappa_{ccn}$, can also be derived from experimental measurements or theoretical calculations of CCN activities (Petters and Kreidenweis, 2007; Kreidenweis and Asa-Awuku, 2014), and comparison between $\kappa_{gf}$ and $\kappa_{ccn}$ is discussed below.

1) For Ca(NO$_3$)$_2$ aerosol, $\kappa_{ccn}$ were measured to be 0.44-0.64 by Sullivan et al. (2009) and 0.57-0.59 by Tang et al. (2015); in our work GF at 90% RH was measured to be 1.79±0.03, giving
κgf of 0.49-0.56, in good agreement with κccn reported by the two previous studies (Sullivan et al., 2009; Tang et al., 2015).  

2) For CaCl2 aerosol, κccc were measured to be 0.46-0.58 by Sullivan et al. (2009) and 0.51-0.54 by Tang et al. (2015); GF at 90% RH was determined to be 1.71±0.03 in the present work, giving κgf of 0.42-0.47, slightly lower than κccn values measured previously (Sullivan et al., 2009; Tang et al., 2015).  

3) To our knowledge, CCN activities of Mg(NO3)2 and MgCl2 aerosols have not been experimentally explored yet, and κccn were predicted to be 0.8 for Mg(NO3)2, 0.3 for Mg(NO3)2·6H2O, and ~1 for MgCl2 (Kelly et al., 2007; Kreidenweis and Asa-Awuku, 2014), exhibiting a large variation for the same compound with different hydrate states under dry conditions. In our work, GF were determined to be 1.67±0.03 and 1.71±0.03 for Mg(NO3)2 and MgCl2 at 90% RH, corresponding to κgf of 0.38-0.43 for Mg(NO3)2 and 0.42-0.47 for MgCl2. As discussed in previous work (Kelly et al., 2007; Zieger et al., 2017), the hydration states, which are not entirely clear for Mg(NO3)2 and MgCl2 aerosol particles under atmospherically relevant conditions, can have large impacts on their hygroscopicity and CCN activities. Therefore, experimental measurements of CCN activities of Mg(NO3)2 and MgCl2 aerosols are highly desired.  

3.2 Hygroscopicity of formates and acetates  

3.2.1 DRH and water-to-solute ratios  

We measured the mass change of Ca(HCOO)2, Mg(HCOO)2·2H2O and Ca(CH3COO)2·H2O samples as a function of RH at 25 °C, and found that the sample mass remained essentially constant for all the three compounds when RH was increased from 0 to 90%. Therefore, a series of experiments in which RH was increased to 95% were conducted, and for each compounds three duplicate experiments were carried out. As shown in Figure 5a, when RH
was increased from 0 to 95%, a significant while small increase in sample mass (>3%) was observed for Ca(HCOO)$_2$. The average ratio of sample mass at 95% RH to that at 0% RH, was determined to be for 1.043±0.018 Ca(HCOO)$_2$ and 1.028±0.008 for Mg(HCOO)$_2$·2H$_2$O (not shown in Figure 5), probably indicating that the DRH values were >95% for both compounds at 25 °C.

Figure 5. Change of normalized sample mass (blue curve, right y-axis) and RH (black curve, left y-axis) as a function of time at 25 °C. (a) Ca(HCOO)$_2$; (b) Ca(CH$_3$COO)$_2$·H$_2$O.

When RH was increased from 0 to 95%, a very large increase in sample mass (almost by a factor of 6), as shown in Figure 6b, was observed for Ca(CH$_3$COO)$_2$·H$_2$O. On average, the ratio of sample mass at 95% RH to that at 0% RH was measured to be 5.849±0.064, corresponding to a WSR (defined as the molar ratio of H$_2$O to Ca$^{2+}$) of 48.42±0.53 for the aqueous Ca(CH$_3$COO)$_2$ solution at 95% RH. This observation suggested that the deliquescence of Ca(CH$_3$COO)$_2$·H$_2$O at 25 °C occurred between 90 and 95% RH, and the DRH value of Ca(CH$_3$COO)$_2$·H$_2$O, measured by
further experiments, was determined to be 90.5±1.0 % at 25 °C in our work. The DRH of Ca(CH$_3$COO)$_2$ and internally mixed CaCO$_3$/Ca(CH$_3$COO)$_2$ particles were measured to be 85 and 88% at 5 °C (Ma et al., 2012), using a modified physisorption analyzer. Since in these two studies the DRH values were measured at different temperatures (25 °C in our work and 5 °C by Ma et al.), the agreement in their reported DRH values can be considered to be quite good for Ca(CH$_3$COO)$_2$.

Table 5 summarizes the ratios of sample mass at a given RH to that at 0% RH for Mg(CH$_3$COO)$_2$·4H$_2$O as a function of RH at 25°C. Being different from Ca(HCOO)$_2$, Mg(HCOO)$_2$·2H$_2$O and Ca(CH$_3$COO)$_2$·H$_2$O, a large increase in sample mass was observed for Mg(CH$_3$COO)$_2$·4H$_2$O when RH was increased from 70 to 80%. This observation suggested that the deliquescence of Mg(CH$_3$COO)$_2$·4H$_2$O occurred between 70 and 80% RH. Further experiments were carried out to measure its DRH value, which was determined to be 71.5±1.0 % at 25 °C. The RH over the saturated Mg(CH$_3$COO)$_2$ solution at ~23 °C was measured to be 65% (Wang et al., 2005), slightly lower than the DRH value determined in our work.

<table>
<thead>
<tr>
<th>RH (%)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/m$_0$</td>
<td>1.000±0.001</td>
<td>1.012±0.021</td>
<td>1.012±0.022</td>
<td>1.013±0.022</td>
<td>1.013±0.022</td>
</tr>
<tr>
<td>WSR</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RH (%)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/m$_0$</td>
<td>1.014±0.023</td>
<td>1.015±0.025</td>
<td>1.033±0.031</td>
<td>2.029±0.013</td>
<td>3.100±0.021</td>
</tr>
<tr>
<td>WSR</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>16.24±0.11</td>
<td>28.97±0.20</td>
</tr>
</tbody>
</table>

Table 5. Mass growth factors (m/m$_0$, defined as the ratios of sample mass at a given RH to that at 0% RH) and water-to-solute ratios (WSR) as a function of RH (0-90%) at 25 °C for Mg(CH$_3$COO)$_2$·4H$_2$O. WSR are only calculated for RH exceeding the DRH (i.e. when the sample was deliquesced). All the errors (±1 σ) are statistical only.
The ratios of sample mass, relative to that at 0% RH, were measured to be 2.029±0.013 and 3.100±0.021 at 80 and 90% RH, corresponding to WSR of 16.24±0.11 at 80% RH and 28.97±0.20 at 90% RH for aqueous Mg(CH$_3$COO)$_2$ solutions. A electrodynamic balance coupled to Raman spectroscopy was employed to study the hygroscopic growth of Mg(CH$_3$COO)$_2$ at ~23 °C (Wang et al., 2005), and WSR was determined to be ~15.6 at 80% RH, in good agreement with our work. Ma et al. (2012) found that after heterogeneous reaction with CH$_3$COOH(g) at 50% RH for 12 h, the hygroscopicity of MgO particles, which was initially rather non-hygroscopic, was substantially increased due to the formation of Mg(CH$_3$COO)$_2$. The conclusion drawn by Ma et al. (2012) is qualitatively consistent with the results obtained in our work.

Table 5 also reveals that a small increase in sample mass (by ~3%, relative to that at 0% RH) was observed for Mg(CH$_3$COO)$_2$$\cdot$4H$_2$O when RH was increased to 70% before its deliquescence occurred. This could be due to the possibility that Mg(CH$_3$COO)$_2$$\cdot$4H$_2$O samples used in our work may contain a small fraction of amorphous Mg(CH$_3$COO)$_2$, which would take up some amount of water at RH below the DRH of Mg(CH$_3$COO)$_2$$\cdot$4H$_2$O (Wang et al., 2005; Pang et al., 2015).

### 3.2.2 Hygroscopic growth of aerosol particles

Figure 6 and Table 6 display hygroscopic growth factors of Ca(HCOO)$_2$, Mg(HCOO)$_2$, Ca(CH$_3$COO)$_2$ and Mg(CH$_3$COO)$_2$ aerosols, measured in our work using H-TDMA. To the best of our knowledge, this is the first time GF of these four types of aerosols have been reported. For Mg(HCOO)$_2$, aerosol particles showed gradual while small growth for RH up to 30%, and further increase in RH led to significant growth; the average GF of Mg(HCOO)$_2$ aerosol at 90% RH was determined to be 1.69±0.03, similar to those for Mg(NO$_3$)$_2$ (1.67±0.03) and MgCl$_2$ (1.71±0.03) at
the same RH. For RH up to 85%, Ca(HCOO)$_2$ aerosol particles exhibited gradual and small growth; when RH was increased to 90%, abrupt and large growth was observed, with GF being 1.54±0.02, significantly smaller than that for Mg(HCOO)$_2$ aerosol at the same RH. This is distinctively different from what was observed in VSA experiments, in which the mass of Ca(HCOO)$_2$ and Mg(HCOO)$_2$$\cdot$2H$_2$O powdered samples was only increased by <5% when RH was increased from 0 to 95%. This difference may be explained by the different states of samples used in these two types of experiments (i.e. crystalline samples in VSA experiments, while likely amorphous aerosol particles in H-TDMA measurements), leading to different hygroscopic behaviors.

Figure 6. Hygroscopic growth factors (GF) of aerosol particles as a function of RH measured using H-TDMA. (a): Ca(HCOO)$_2$ and Mg(HCOO)$_2$; (b) Ca(CH$_3$COO)$_2$ and Mg(CH$_3$COO)$_2$.

As shown in Figure 6b, gradual and small growth was also observed for Ca(CH$_3$COO)$_2$ and Mg(CH$_3$COO)$_2$ aerosols at low RH. Fast increase in GF started at about 80% RH for Ca(CH$_3$COO)$_2$ aerosol, and the GF was determined to be 1.26±0.04 at 90% RH. As discussed in
Section 3.2.1, in VSA experiments no significant increase in sample mass was observed for Ca(CH$_3$COO)$_2$\cdot$H$_2$O when RH was increased from 0 to 90%, being different from H-TDMA results. This difference may again be explained (at least partly) by different states of particles used in these two types of experiments, as mentioned above.

When RH increased from 0 to 70%, small and gradual growth occurred for Mg(CH$_3$COO)$_2$ aerosol particles, indicating that these particles may contain some amount of amorphous materials. It was also found in previous work (Li et al., 2008a; Li et al., 2008b) that Mg(NO$_3$)$_2$ particles generated by drying aqueous droplets were amorphous. Figure 6b reveals that further increase in RH led to large increase in growth factors, and this is largely consistent with the occurrence of deliquescence at ~71.5% RH at 25 °C for Mg(CH$_3$COO)$_2$\cdot$4$H$_2$O, as mentioned in Section 3.2.1. At 90% RH, GF of Mg(CH$_3$COO)$_2$ aerosol was determined to be 1.53±0.01, much larger than that for Ca(CH$_3$COO)$_2$ (1.26±0.04).

At 90% RH, for the four Ca-containing salts considered in our study, nitrate and chloride have very similar GF (1.79±0.03 versus 1.71±0.03), which are large than that of formate (1.54±0.02), and acetate has the smallest GF (1.26±0.04); for comparison, the variation in GF at 90% RH was found to be much smaller (from ~1.53 to ~1.71) for the four Mg-containing salts studied herein.

Table 6. Hygroscopic growth factors of Ca(HCOO)$_2$, Ca(CH$_3$COO)$_2$, Mg(HCOO)$_2$ and Mg(CH$_3$COO)$_2$ aerosol particles measured using H-TDMA. The given RH values were estimated to have an absolute uncertainty of ±2%.

<table>
<thead>
<tr>
<th>RH (%)</th>
<th>Ca(HCOO)$_2$</th>
<th>Ca(CH$_3$COO)$_2$</th>
<th>Mg(HCOO)$_2$</th>
<th>Mg(CH$_3$COO)$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.00±0.01</td>
<td>1.00±0.01</td>
<td>1.00±0.01</td>
<td>1.00±0.01</td>
</tr>
<tr>
<td>10</td>
<td>1.01±0.01</td>
<td>1.01±0.01</td>
<td>1.02±0.01</td>
<td>1.01±0.01</td>
</tr>
</tbody>
</table>
20 1.01±0.01 1.01±0.02 1.02±0.01 1.01±0.01
30 1.01±0.01 1.01±0.01 1.02±0.01 1.02±0.01
40 1.01±0.01 1.02±0.01 1.04±0.01 1.02±0.01
50 1.02±0.01 1.03±0.01 1.11±0.01 1.04±0.01
60 1.02±0.01 1.01±0.01 1.18±0.01 1.04±0.01
70 1.03±0.01 1.00±0.01 1.27±0.01 1.10±0.02
75 1.04±0.01 1.02±0.02 1.33±0.01 1.16±0.02
80 1.04±0.01 1.07±0.01 1.41±0.01 1.25±0.01
85 1.01±0.01 1.13±0.01 1.52±0.02 1.37±0.01
90 1.54±0.02 1.26±0.04 1.69±0.03 1.53±0.01

According to Eq. (4), GF measured at 90% RH can be used to calculate \( \kappa_{gf} \), which were determined to be 0.28-0.31 for Ca(HCOO)\(_2\), 0.09-0.13 for Ca(CH\(_3\)COO)\(_2\), 0.40-0.45 for Mg(HCOO)\(_2\), and 0.28-0.29 for Mg(CH\(_3\)COO)\(_2\). A previous study (Tang et al., 2015) investigated the CCN activities of Ca(HCOO)\(_2\) and Ca(CH\(_3\)COO)\(_2\) aerosols and reported their single hygroscopicity parameters (\( \kappa_{ccn} \)), while the CCN activities of Mg(HCOO)\(_2\) and Mg(CH\(_3\)COO)\(_2\) have never been measured before. For Ca(HCOO)\(_2\), \( \kappa_{ccn} \) was reported to be 0.47-0.52 (Tang et al., 2015), significantly larger than \( \kappa_{gf} \) (0.28-0.31) determined in our work; for Ca(CH\(_3\)COO)\(_2\), Tang et al. (2015) reported \( \kappa_{ccn} \) to be in the range of 0.37-0.47, again much larger than \( \kappa_{gf} \) (0.09-0.13) derived from the present work.

As discussed in Section 3.1.4, for Ca(NO\(_3\))\(_2\) and CaCl\(_2\) aerosols, \( \kappa_{gf} \) derived from H-TDMA experiments in the present work show fairly good agreement with \( \kappa_{ccn} \) derived from CCN activities measured in previous studies (Sullivan et al., 2009; Tang et al., 2015); in contrast, for Ca(HCOO)\(_2\) and Ca(CH\(_3\)COO)\(_2\) aerosols, \( \kappa_{gf} \) derived from our H-TDMA experiments are significantly smaller than \( \kappa_{ccn} \) reported by the previous study (Tang et al., 2015). This is largely caused by the difference in water solubilities of Ca(NO\(_3\))\(_2\), CaCl\(_2\), Ca(HCOO)\(_2\) and Ca(CH\(_3\)COO)\(_2\), Ca(NO\(_3\))\(_2\)·4H\(_2\)O and CaCl\(_2\)·6H\(_2\)O, the solubilities of which are 1983 and 1597 g per kg water at 25 °C (Kelly and Wexler,
2005), can be considered to be highly soluble; for comparison, the solubilities were reported to be 166 g per kg water for Ca(HCOO)$_2$ at 25 °C and 347 g per kg water for Ca(CH$_3$COO)$_2$·2H$_2$O at 20 °C (Dean, 1973). Due to their limited water solubilities, Ca(HCOO)$_2$ and Ca(CH$_3$COO)$_2$ aerosol particles may not be fully dissolved when exposed to 90% RH in the H-TDMA experiments but would be dissolved to a larger extent (if not completely) for RH >100% in CCN activity measurements (Petters and Kreidenweis, 2008; Kreidenweis and Asa-Awuku, 2014). Therefore, for Ca(HCOO)$_2$ and Ca(CH$_3$COO)$_2$ aerosols, $\kappa_{gf}$ derived from H-TDMA measurements would be smaller than $\kappa_{ccn}$ derived from CCN activity measurements. In fact, the observation that $\kappa_{gf}$ appeared to be significantly smaller than $\kappa_{ccn}$, largely caused by limited water solubilities of compounds under investigation, has been well documented in the literature for laboratory-generated and ambient aerosol particles (Chang et al., 2007; Prenni et al., 2007; Wex et al., 2009; Good et al., 2010; Massoli et al., 2010).

4. Conclusion and atmospheric implications

Ca- and Mg-containing salts, including nitrates, chlorides, formates and acetates, are important components for mineral dust and sea salt aerosols; however, their hygroscopic properties are not well understood yet. In this work, phase transition and hygroscopic growth of these eight compounds were systematically examined using a vapor sorption analyzer and a humidity-tandem differential mobility analyzer. DRH values decreased from 60.5±1.0% at 5 °C to 46.0±1.0% at 30 °C for Ca(NO$_3$)$_2$·4H$_2$O and from 57.5±1.0% at 5 °C to 50.5±1.0% at 30 °C for Mg(NO$_3$)$_2$·6H$_2$O, both showing negative dependence on temperature, while no significant dependence of DRH (around 31-33%) on temperature (5-30 °C) was observed for MgCl$_2$·6H$_2$O. CaCl$_2$·6H$_2$O, found to deliquesce at ~28.5% RH at 25 °C, exhibited complex phase transition processes in which CaCl$_2$·2H$_2$O, CaCl$_2$·6H$_2$O and aqueous CaCl$_2$ solutions were involved. Furthermore, DRH values
were determined to be 90.5±1.0% for Ca(CH$_3$COO)$_2$∙H$_2$O and 71.5±1.0% for Mg(CH$_3$COO)$_2$∙4H$_2$O at 25 °C; for comparison, the sample mass was only increased by <5% for Ca(HCOO)$_2$ and Mg(HCOO)$_2$∙2H$_2$O when RH was increased from 0 to 95%, suggesting that the DRH values of these two compounds were >95%.

We have also measured the change of sample mass as a function of RH up to 90% to derive the water-to-solute ratios (WSR) for deliquesced samples. WSR were determined at 25 and 5 °C for deliquesced Ca(NO$_3$)$_2$∙4H$_2$O, Mg(NO$_3$)$_2$∙6H$_2$O and MgCl$_2$∙6H$_2$O samples, and at 25 °C for deliquesced CaCl$_2$∙6H$_2$O and Mg(CH$_3$COO)$_2$∙4H$_2$O samples. We found that compared to that at 0% RH, large increases in sample mass only occurred when RH was increased from 90 to 95% for Ca(CH$_3$COO)$_2$∙H$_2$O, and the WSR value was determined to be 5.849±0.064 at 95% RH. Besides, deliquescence was not observed even when RH was increased to 95% for Ca(HCOO)$_2$ and Mg(HCOO)$_2$∙2H$_2$O, and the ratios of sample mass at 95% to that at 0% RH, were determined to be for 1.043±0.018 for Ca(HCOO)$_2$ and 1.028±0.008 for Mg(HCOO)$_2$∙2H$_2$O. Despite that these compounds are important components for tropospheric aerosols, in general they have not been included in widely used aerosol thermodynamic models, such as E-AIM (Clegg et al., 1998) and ISORROPIA II (Fountoukis and Nenes, 2007). The systematical and comprehensive datasets which we have obtained in this work are highly valuable and can be used to validate thermodynamic models if they are extended to include these compounds.

In addition, hygroscopic growth of aerosol particles was measured at room temperature for these eight compounds. Being different from solid samples for which the onset of deliquescence was evident, aerosol particles were found to grow in a continuous manner since very low RH (as low as 10%), implying that dry aerosol particles of these eight compounds generated from aqueous droplets were amorphous. Hygroscopic growth factors of aerosol particles at 90% RH were
determined to be 1.79±0.03 and 1.67±0.03 for Ca(NO$_3$)$_2$ and Mg(NO$_3$)$_2$, 1.71±0.03 for both CaCl$_2$ and MgCl$_2$, 1.54±0.02 and 1.69±0.03 for Ca(HCOO)$_2$ and Mg(HCOO)$_2$, and 1.26±0.04 and 1.53±0.01 for Ca(HCOO)$_2$ and Mg(HCOO)$_2$. GF at 90% show a significant variation (from ~1.26 to ~1.79) for the Ca-containing salts investigated here: among them nitrate and chloride have very similar GF (1.79±0.03 versus 1.71±0.03), which are larger than that of formate (1.54±0.02), while acetate has the smallest GF (1.26±0.04). Interestingly, for the four Mg-containing salts considered in this work, the variation in GF at 90 % RH was found to be much smaller (from ~1.53 to ~1.71).

GF at 90% RH were used to derive the single hygroscopicity parameters ($\kappa$), which were determined to be 0.49-0.56 and 0.38-0.43 for Ca(NO$_3$)$_2$ and Mg(NO$_3$)$_2$, 0.42-0.47 for both CaCl$_2$ and MgCl$_2$, 0.28-0.31 and 0.40-0.45 for Ca(HCOO)$_2$ and Mg(HCOO)$_2$, and 0.40-0.45 and 0.28-0.29 for Ca(HCOO)$_2$ and Mg(HCOO)$_2$ aerosols, respectively. Ca(NO$_3$)$_2$ and CaCl$_2$ are very soluble in water, and thus their $\kappa$ values derived from our H-TDMA experiments are consistent with those reported by previous CCN activity measurements (Sullivan et al., 2009; Tang et al., 2015); on the other hand, due to limited water solubilities, for Ca(HCOO)$_2$ and Ca(CH$_3$COO)$_2$, $\kappa$ values derived from our H-TDMA experiments are significantly smaller than those derived from CCN activities measured in a previous study (Tang et al., 2015). Overall, our work would significantly improve our knowledge in the hygroscopic properties of Ca- and Mg-containing salts, and thereby help better understand the physicochemical properties of mineral dust and sea salt aerosols.

**Acknowledgement**

Financial support provided by the National Natural Science Foundation of China (91744204, 91644106 and 41675120), the Chinese Academy of Sciences international collaborative project (132744KYSB20160036) and the special fund of State Key Joint Laboratory
of Environment Simulation and Pollution Control (17K02ESPCP) is acknowledged. Mingjin Tang also would like to thank the CAS Pioneer Hundred Talents program for providing a starting grant.

Yuying Tang contributed to this work as an undergraduate intern at Guangzhou Institute of Geochemistry.

References

Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K^+−Ca^{2+}−Mg^{2+}−NH_4^{+}−Na^+−SO_4^{2−}−NO_3^{−}−Cl^{-}−H_2O aerosols, Atmos. Chem. Phys., 7, 4639-4659, 2007.


Completely Processed Calcium Carbonate Dust Particles, Faraday Discuss., 130, 453-468, 2005.


