We greatly value the careful reading and the detailed comments provided by the referees. The responses to the comments of referee 1 in our direct reply (shown below) and within the revised manuscript (see marked copy) are provided. The pages and lines indicated below correspond to those in the marked copy.

Response to Referee 1 (Referees’ comments are italicized)

1. Referee comment: “The authors have well addressed my comments for an earlier version of manuscript except for the one on pH definition. The revised manuscript says that "rH+ is the molarity-based hydronium ion activity coefficient (assumed to be 1), Haq+ (mole L−1) is the molar concentration of hydronium ions in particle water (i.e., pH is calculated in terms of molarity)". My understanding is that the molarity (or molar concentration) is defined on the basis of volume of the solution instead of that of the water. Haq+ calculated by ISORROPIA is actually the molality (mole kg−1 water). Please correct me if I was wrong. See more here: https://en.wikipedia.org/wiki/Molar_concentration”

Author response: The referee is correct, and we have changed the manuscript to state that it is molality-based:

Page 10 line 273: “Since most thermodynamic equilibrium models (e.g., ISORROPIA-II, E-AIM) do not report liquid concentrations, but instead report species in terms of concentration per volume of air (e.g., µg m−3, µmol m−3), we have calculated the particle pH by:

$$pH = - \log_{10} \gamma_{H^+} H_{aq}^+ = - \log_{10} \frac{1000 \gamma_{H^+} H_{air}^+}{W_i + W_o} \cong - \log_{10} \frac{1000 \gamma_{H^+} H_{air}^+}{W_i}$$ (1b)

where γ_{H^+} is the hydronium ion activity coefficient (assumed to be 1), H_{aq}^+ is the concentration of hydronium ions in particle water in mole L−1 (i.e., the density of water is assumed to be 1000 kg m−3, and so pH is calculated in terms of molality), H_{air}^+ (µg m−3) is the hydronium ion concentration per volume of air, and W_i and W_o (µg m−3) are the bulk particle water concentrations associated with inorganic and organic species per volume of air, respectively. In equation 1b, the molecular weight of H+ is taken as 1 g mole−1, and 1000 is the factor needed for unit conversion of g L−1 to µg m−3. H_{air}^+ and W_i are outputs of the ISORROPIA-II model.”

The referee is correct in stating that H_{aq}^+ has units of molality (mol kg−1). However, H_{aq}^+ is not reported by ISORROPIA but is defined in equation 1b. As stated in the manuscript, ISORROPIA report species in terms of concentration per volume of air (e.g., µg m−3, µmol m−3). H_{air}^+ and W_i are outputs of the ISORROPIA model, and they are expressed in terms of µg m−3 by ISORROPIA. In using H_{air}^+ and W_i in Equation 1b to calculate the aerosol pH, we are defining H_{aq}^+ as a molality-based concentration.

We refer the referee to page 8 of the User’s Manual found on the ISORROPIA website (http://isorropia.eas.gatech.edu/index.php?title=User%27s_Manual) for more information regarding the units used by ISORROPIA.
2. Referee comment: “I have another minor comment on this change made in the revised manuscript: Page 25 line 791: “In addition, formic and acetic acids may not be internally mixed with most of the other PM1 aerosol components (e.g., SO4²-, NO3-, NH4+, CH3CO2H), and thus are not associated with acidic aerosols, as assumed above.” What does "CH3CO2H" mean here?"

Author response: CH3COOH is the chemical formula of acetic acid. We meant to write C2O4²-, chemical formula of oxalate, which has been shown to be internally mixed with PM1 aerosol components SO4²-, NO3-, NH4+ in section 3.5.1 of our manuscript. This is corrected in the revised manuscript:

Page 25 line 717: “In addition, formic and acetic acids may not be internally mixed with most of the other PM1 aerosol components (e.g., SO4²-, NO3-, NH4+, C2O4²-), and thus are not associated with acidic aerosols, as assumed above.”

Additional minor revisions

1. The affiliation of the first author was updated.

2. We changed the range of the x-axis of graphs shown in Figs. 4, 7, 8, S12 and S13. The x-axis of the previous version of these graphs had their range starting from pH value -2. The x-axis of the revised version of these graphs have their range starting from pH value -1. We made these changes because the particle pH of ambient aerosol does not go below -1. Note that these changes do not affect our results.
Figure 4: Analytically calculated S curves of $\varepsilon(\text{NH}_4^+)$ and $\varepsilon(\text{NO}_3^-)$ and ambient data plotted against ISORROPIA-predicted particle pH for this study, SENEX, SOAS and CalNex. For the ambient datasets, a narrow range of W_i (1 to 4 µg m$^{-3}$) and temperature (15 to 25 °C) are selected to be close to the analytical calculation input (i.e., $W_i = 2.5$ µg m$^{-3}$ and temperature = 20 °C). Similar to Guo et al. (2017a), $\gamma_{\text{NH}_4^+} = 1$ and $\gamma_{\text{H}^+\text{NO}_3^-} = \sqrt{\gamma_{\text{H}^+}\gamma_{\text{NO}_3^-}} = 0.28$ are used for the analytically calculated S curves.
Figure 7: Analytically calculated S curve of ε(C$_2$O$_4^{2-}$) and ambient data from 13 September to 6 October 2016 plotted against ISORROPIA-predicted particle pH. For the ambient data, a range in W_l (0.5 to 4 µg m$^{-3}$) and temperature (15 to 31 °C) are chosen to be close to the analytically calculated outputs. For the analytically calculated S curves, we used $\gamma_{C_2H_2O_4} = 0.0492$ (AIOMFAC predicted). We also assumed that $\gamma_{H^+} + \gamma_{C_2H_2O_4^-} = \gamma_{H^+} \gamma_{NO_3^-}$, and used the ISORROPIA-predicted $\gamma_{H^+} \gamma_{NO_3^-} = 0.265$. The black line is the S curve calculated using the selected time period’s average temperature (23.4 ± 4.0 °C) and W_l (1.6 ± 1.7 µg m$^{-3}$). The grey lines are S curves calculated using one standard deviation from the average temperature and W_l (i.e., temperature = 27.4 °C and $W_l = 0.5$ µg m$^{-3}$ for dotted grey line, temperature = 19.4 °C and $W_l = 3.3$ µg m$^{-3}$ for solid grey line).
Figure 8: Analytically calculated S curves of ε(HCOO$^-$) and ε(CH$_3$CO$_2^-$) (solid black lines) and ambient data from 13 September to 6 October 2016 plotted against ISORROPIA-predicted particle pH (shown in panels (a) and (b), respectively). For the ambient data, a narrow range in W_i (0.5 to 4 μg m$^{-3}$) and RH (20 to 90 %) is chosen to be close to the analytically calculated outputs. For the analytically calculated S curves, we used $\gamma_{HCOOH} = 0.334$ and $\gamma_{CH_3COOH} = 2.150$ (AIOMFAC predicted). We also assumed that $\gamma_{H^+} \gamma_{HCOO^-} = \gamma_{H^+} \gamma_{CH_3COO^-} = \gamma_{H^+} \gamma_{NO_3^-}$, and used the ISORROPIA-predicted $\gamma_{H^+} \gamma_{NO_3^-} = \sqrt{\gamma_{H^+} \gamma_{NO_3^-}} = 0.265$. The black lines are S curves calculated using the selected time period’s average temperature (23.4 ± 4.0 °C) and W_i (1.6 ± 1.7 μg m$^{-3}$). The grey lines are S curves calculated using one standard deviation from the average temperature and W_i (i.e., temperature = 27.4 °C and $W_i = 0.5$ μg m$^{-3}$ for dotted grey line, temperature = 19.4 °C and $W_i = 3.3$ μg m$^{-3}$ for solid grey line).
Figure S12: (a) Analytically calculated S curves of $\varepsilon(CO_4^{2-})$ at different times of the day: 00:30, 06:30 and 12:30. These S curves are calculated using values obtained from (b) the diurnal profiles of temperature and W_i. The set of 1-hour average temperatures and W_i at diurnal hours 00:30, 06:30 and 12:30 is used to calculate each S curve shown in panel (a). Similar to Fig. 7, we used $\gamma_{C_2H_2O_4} = 0.0492$ (AIOMFAC predicted) and assumed that $\gamma_{H^+ - NO_3^-} = \sqrt{\gamma_{H^+} \gamma_{NO_3^-}} = \sqrt{\gamma_{H^+} \gamma_{C_2H_2O_4^-}} = 0.265$ (ISORROPIA-II predicted) to generate these S curves.
Figure S13: Analytically calculated S curve of $\varepsilon(C_2O_4^{2-})$ and ambient data from 13 September to 6 October 2016 plotted against ISORROPIA-predicted particle pH. For the ambient data, a narrow range in W_i (0.5 to 4 μg m$^{-3}$) and RH (20 to 90 %) is chosen to be close to the analytically calculated outputs. We divided the ambient data into two sets: panel (a) 08:00 to 19:59, and panel (b) 20:00 to 07:59. For both analytically calculated S curves, we used $\gamma_{C_2H_2O_4} = 0.0492$ (AIOMFAC predicted). We also assumed that $\gamma_{H^+} + \gamma_{C_2H_2O_4}^{-} = \gamma_{H^+} + \gamma_{NO_3}^{-}$, and used the ISORROPIA-predicted $\gamma_{H^+} + \gamma_{NO_3}^{-} = \sqrt{\gamma_{H^+} + \gamma_{NO_3}^{-}} = 0.265$. In panel (a), we used the average temperature and W_i (25.7 ± 3.8 °C and 1.1 ± 1.1 μg m$^{-3}$) for the data between 08:00 to 19:59 to calculate the S curve (black line). In panel (b), we used the average temperature and W_i (21.3 ± 2.8 °C and 2.1 ± 2.0 μg m$^{-3}$) for the data between 20:00 to 07:59 to calculate the S curve (black line). Grey lines in both panels are S curves calculated using one standard deviation from the average temperature and W_i for the two datasets. In panel (a), the dotted grey line is the S curve calculated using 29.5 °C
and 0.5 µg m⁻³ while the solid grey line is the S curve calculated using 21.9 °C and 2.2 µg m⁻³. In panel (b), the dotted grey line is the S curve calculated using 24.1 °C and 0.5 µg m⁻³ while the solid grey line is the S curve calculated using 18.5 °C and 4.1 µg m⁻³.
Characterization of Aerosol Composition, Aerosol Acidity and Organic Acid Partitioning at an Agriculture-Intensive Rural Southeastern U.S. Site

Theodora Nah,1 Hongyu Guo,1 Amy P. Sullivan,2 Yunlei Chen,1 David J. Tanner,1 Athanasios Nenes,1,3,4,5 Armistead Russell,6 Nga Lee Ng,1,3 L. Gregory Huey1 and Rodney J. Weber1,*

1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
2Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
3School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
4ICE-HT, Foundation for Research and Technology, Hellas, 26504 Patras, Greece
5JERSD, National Observatory of Athens, P. Penteli, 15236, Athens, Greece
6School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
*Now at School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China

To whom correspondence should be addressed: rweber@ece.gatech.edu

Abstract

The implementation of stringent emission regulations has resulted in the decline of anthropogenic pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx) and carbon monoxide (CO). In contrast, ammonia (NH3) emissions are largely unregulated, with emissions projected to increase in the future. We present real-time aerosol and gas measurements from a field study conducted in an agricultural-intensive region in the southeastern U.S. during the fall of 2016 to investigate how NH3 affects particle acidity and secondary organic aerosol (SOA) formation via the gas-particle partitioning of semi-volatile organic acids. Particle water and pH were determined using the ISORROPIA-II thermodynamic model and validated by comparing predicted inorganic HNO3-NO3− and NH4-NH4+ gas-particle partitioning ratios with measured values. Our results showed that despite the high NH3 concentrations (average 8.1 ± 5.2 ppb), PM1 were highly acidic with pH values ranging from 0.9 to 3.8, and an average pH of 2.2 ± 0.6. PM1 pH varied by approximately 1.4 units diurnally. Formic and acetic acids were the most abundant gas-phase organic acids, and oxalate was the most abundant particle-phase water-soluble organic acid anion. Measured particle-phase water-soluble organic acids were on average 6% of the total non-refractory PM1 organic aerosol mass. The measured molar fraction of oxalic acid in the particle phase (i.e., particle-phase oxalic acid molar concentration divided by the total oxalic acid molar concentration) ranged between 47 and 90% for PM1 pH 1.2 to 3.4. The measured oxalic acid gas-particle partitioning ratios were in good agreement with their corresponding thermodynamic predictions, calculated based on oxalic acid’s physicochemical properties, ambient temperature, particle water and pH. In contrast, gas-particle partitioning of formic and acetic acids were not well predicted for reasons...
currently unknown. For this study, higher NH₃ concentrations relative to what has been measured in the region in previous studies had minor effects on PM₁ organic acids and their influence on the overall organic aerosol and PM₁ mass concentrations.

1. Introduction

Ammonia (NH₃) is the most abundant basic gas in the troposphere and plays an important role in many atmospheric processes. It is a major neutralizer of atmospheric acidic species, reacting readily with sulfuric acid (H₂SO₄) and nitric acid (HNO₃) to form ammonium sulfate and nitrate salts (e.g., (NH₄)₂SO₄ and other forms such as NH₄HSO₄, (NH₄)H(SO₄)₂, and NH₄NO₃), which are often the main inorganic components of atmospheric aerosols. The formation of particle-phase ammonium sulfate and nitrate salts in the aerosol phase depends on the thermodynamic states of their precursors and the environmental conditions, which can consequently affect aerosol pH. For example, Guo et al. (2017b) showed that for Southeast U.S. summertime conditions, as aerosol pH increases, the relative fractions of SO₄²⁻ and HSO₄⁻ increases and decreases, respectively. Wet and dry deposition are the principle NH₃ sinks (Dentener and Crutzen, 1994). NH₃ is spatially heterogeneous, with the highest concentrations typically found near emission sources (Seinfeld and Pandis, 2016). The dominant NH₃ sources in rural areas are agricultural in nature, and include the application of fertilizers and volatilization of livestock waste (Reis et al., 2009; Ellis et al., 2013; Van Damme et al., 2014). Biomass burning, either from wildfires or from controlled burning during land-clearing operations, is also a significant source of NH₃ in rural environments. The primary source of NH₃ in urban areas are industrial emissions (e.g., NH₃ synthesis, manufacture of ammonium nitrate and urea, fluid and thermal catalytic cracking processes in petroleum refinery), though vehicular emissions can be a significant NH₃ source in some heavily populated cities (Reis et al., 2009; Lamarque et al., 2010; Yao et al., 2013; Sun et al., 2017). Vehicular NH₃ emissions are thought to be produced primarily from the reaction of nitrogen oxide with hydrogen in the presence of carbon monoxide in three-way catalysts of gasoline light duty vehicles (Barbier-Jr and Duprez, 1994; Whittington et al., 1995; Livingston et al., 2009; Suarez-Bertoa et al., 2014).

In the US, implementation of stringent emission controls on traditional anthropogenic air pollutants, such as sulfur dioxide (SO₂), nitrogen oxides (NOₓ) and carbon monoxide (CO), have led to steady decreases in their emissions, and consequently their concentrations (Blanchard et al., 2013b; Xing et al., 2013). In contrast, NH₃ emissions are largely unregulated, and are projected to
increase due to increased agricultural operations to feed a growing world population (Reis et al., 2009; Ellis et al., 2013). Satellite observations showed that gas-phase NH₃ concentrations have increased substantially in US agricultural areas from 2002 to 2014 (Warner et al., 2017). More wildfires from a changing climate, or from controlled burning for land clearing for agricultural use, may also lead to increased NH₃ emissions (Reis et al., 2009; Pechony and Shindell, 2010; Warner et al., 2016). These trends suggest that NH₃ could play an increasingly important role in atmospheric chemistry.

Previous laboratory studies have shown that NH₃ can influence secondary organic aerosol (SOA) formation and processing. For example, NH₃ increases SOA mass yields in the α-pinene ozonolysis system, and is hypothesized to be due to the formation of ammonium salts from the reaction of NH₃ with organic acids (Na et al., 2007). The heterogeneous uptake of NH₃ by SOA can also lead to the formation of particulate organonitrogen compounds, a class of brown carbon species that can reduce visibility and impact climate (Laskin et al., 2010; Updyke et al., 2012; Lee et al., 2013; Laskin et al., 2015).

The southeastern U.S. is a natural outdoor laboratory for studying the effects of biogenic-anthropogenic interactions on atmospheric aerosol formation and processing. Subtropical vegetation composed mainly of mixed conifer and deciduous forests emit large quantities of biogenic volatile organic compounds (BVOCs) that can act as precursors for SOA formation (Blanchard et al., 2011; Guenther et al., 2012; Blanchard et al., 2013a). Large urban centers and small towns are surrounded by large expanses of forests and widespread rural areas with agricultural activities. Scattered within the southeastern U.S. are also coal-burning power plants and industrial facilities. Anthropogenic activities in this region emit large concentrations of VOCs, SO₂, NOₓ, CO, NH₃ and aerosols (Blanchard et al., 2013c). Similar to other parts of the U.S., SO₂, CO and NOₓ concentrations have decreased steadily in the southeastern U.S. due to the implementation of emission controls (Blanchard et al., 2013b). In contrast, gas-phase NH₃ concentrations have increased in the southeastern U.S. over the same time period (Saylor et al., 2015). These factors make the southeastern U.S. an intriguing place to study the influence of NH₃ on atmospheric aerosol chemistry.

We performed aerosol and gas measurements during a field study conducted in Yorkville, Georgia, U.S., in the fall of 2016, with the goal of understanding how NH₃ affects aerosol acidity.
and SOA formation. The field site is surrounded by forest and agricultural land, affording an opportunity to make ambient observations in an area impacted by local emissions of BVOCs and NH$_3$. In this paper, we present gas and aerosol composition measurements that includes a suite of organic acids. The thermodynamic equilibrium model, ISORROPIA-II, is used to calculate particle water and pH based on measured inorganic aerosol and gas composition (Nenes et al., 1998; Fountoukis and Nenes, 2007), and these predictions are compared to observed gas-particle partitioning of NH$_3$, HNO$_3$ and organic acids. Together, these measurements are used to determine how aerosol acidity affects the mass concentration of particle-phase organic acids at this site.

2. Methods

2.1. Field site

Aerosol and gas measurements were conducted at the Yorkville, Georgia (33.929 N, 85.046 W) SouthEastern Aerosol Research and Characterization (SEARCH) field site from mid-August to mid-October 2016. This is one of the sampling sites for the Southeastern Center for Air Pollution and Epidemiology (SCAPE) study where aerosol characterization measurements were conducted in the summer and winter of 2012 (Xu et al., 2015a; Xu et al., 2015b). A detailed description of the field site can be found in Hansen et al. (2003). This rural site is situated in a mixed forest-agriculture area approximately 55 km northwest and generally upwind of Atlanta.

The immediate surrounding area is used for cattle grazing and poultry concentrated animal feeding operations (CAFOs) (Fig. S1). There are no major roads near the field site and nearby traffic emissions were negligible. A large coal-fired power plant (Plant Bowen) is situated approximately 25 km north of the site. Hence, the field site is impacted mainly by BVOC and NH$_3$ emissions, with occasional spikes in SO$_2$ and minimal influence from urban anthropogenic pollutants such as HNO$_3$, O$_3$, NO$_x$ and CO (Fig. S2). The sampling period was characterized by moderate temperatures (24.0 °C average, 32.6 °C max, 9.5 °C min) and high relative humidities (68.9 % RH average, 100 % RH max, 21.6 % RH min). Meteorological data are shown in Fig. S3. Data reported are displayed in eastern daylight time (EDT).

2.2. Instrumentation

Instruments were housed in a temperature controlled (~20 °C) trailer during the field study. Gas-phase HNO$_3$, SO$_2$ and organic acids (formic, acetic, oxalic, butyric, glycolic, propionic,
valeric, malonic and succinic acids) were measured by a custom-built chemical ionization mass spectrometer (CIMS) using sulfur hexafluoride ions (SF₆⁻) as reagent ions. SO₂ and HNO₃ were detected as fluoride adducts (F⁻SO₂⁻ and NO₃⁻•HF, respectively) while the organic acids (HX) were detected primarily as conjugated anions (X⁻) by the quadrupole mass spectrometer (Huey et al., 1995; Huey et al., 2004; Nah et al., 2018). This CIMS is referred hereafter as the SF₆-CIMS. Gas-phase NH₃ was measured by an additional custom-built CIMS using protonated ethanol clusters ((C₂H₅OH)n⁺) as reagent ions. NH₃ was detected primarily as NH₄⁺ ions by the quadrupole mass spectrometer (Nowak et al., 2002; Yu and Lee, 2012; You et al., 2014a). This CIMS is referred hereafter as the NH₃-CIMS.

Since HNO₃, NH₃ and organic acids may condense on surfaces, both SF₆-CIMS and NH₃-CIMS used inlet configurations that minimized wall interactions (Huey et al., 2004; Nowak et al., 2006). Each CIMS was connected to an inlet (a 7.6 cm ID aluminum pipe) that protruded beyond the trailer’s wall by ~40 cm into the ambient air. Both inlets were ~2 m above the ground. A donut-shaped ring was attached to the ambient sampling port of each pipe to curtail the influence of crosswinds on the pipe’s flow dynamics. Both rings were wrapped with a fine wire mesh to prevent ingestion of insects. A flow of ~2800 L min⁻¹ was maintained in each pipe using regenerative blowers (AMETEK Windjammer 116637-03). Part of this flow (7 L min⁻¹ for the SF₆-CIMS and 4.6 L min⁻¹ for the NH₃-CIMS) was sampled through a custom-made three-way PFA Teflon valve, which connected the pipe’s center to the CIMS sampling orifice and could be switched automatically between ambient and background measurements.

Background measurements were performed every 25 min for 4 min for both the SF₆-CIMS and NH₃-CIMS. During each background measurement, the sampled air flow was passed through an activated charcoal scrubber (Sigma Aldrich) that removed SO₂, HNO₃ and organic acids prior to delivery into the SF₆-CIMS, and through a silicon phosphate scrubber (Perma Pure Inc.) that removed NH₃ prior to delivery into the NH₃-CIMS. > 99 % of the targeted species were removed during background measurements for both the SF₆-CIMS and NH₃-CIMS. Standard addition calibrations were performed every 5 h for the SF₆-CIMS using the outputs of a 1.12 ppm ³⁴SO₂ gas cylinder (Scott-Marrin Inc.) and a formic or acetic acid permeation device (VICI Metronics). Calibrations for the other gases measured by the SF₆-CIMS were performed in post-field laboratory work, details of which can be found in Nah et al. (2018) and SI section S1. Standard
addition calibrations were performed hourly for the NH$_3$-CIMS using the output of a NH$_3$ permeation device (KIN-TEK). The outputs of the formic and acetic acid permeation devices were measured periodically by scrubbing the output of the permeation tube in deionized water, followed by ion chromatography analysis for formate and acetate. The emission rate of the NH$_3$ permeation device was measured using UV optical absorption (Neuman et al., 2003).

The detection limits for species measured by the SF$_6$-CIMS and NH$_3$-CIMS were approximated from 3 times the standard deviation values (3σ) of the ion signals measured during background mode. The detection limits for HNO$_3$, SO$_2$ and the various organic acids measured by the SF$_6$-CIMS ranged from 1 to 60 ppt for 2.5 min integration periods, which corresponded to the length of a background measurement with a ~4 % duty cycle for each m/z (Table S1). Measurement uncertainties for the concentrations of HNO$_3$, SO$_2$ and the various organic acids originate mainly from calibration measurements, and were between 12 and 25 % (Table S1). The detection limit for NH$_3$ measured by the NH$_3$-CIMS was 1 ppb for 2.3 min integration periods, which corresponded to the length of a background measurement with a ~29 % duty cycle for the NH$_4^+$ ion. Measurement uncertainties for NH$_3$ concentrations were 13 %.

A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc.) was used to measure the elemental composition of ambient non-refractory PM$_1$ (particles with aerodynamic diameters < 1 µm). Ambient air was sampled at 16.7 L min$^{-1}$ through a URG PM$_1$ cyclone and then through a nafion dryer prior to delivery into the HR-ToF-AMS. Aerosols were dried to RH < 20 % to eliminate the influence of RH on the HR-ToF-AMS’s particle collection efficiency. A detailed description of the HR-ToF-AMS can be found in the literature (DeCarlo et al., 2006; Canagaratna et al., 2007; Canagaratna et al., 2015). Briefly, the aerodynamic lens of the HR-ToF-AMS focused the dried submicron aerosols into a narrow beam. The aerosols were then impacted onto a heated tungsten surface (~600 °C) where they were flash vaporized. The resulting vapors were ionized by electron impact ionization (70 eV), and the ions were detected by a time-of-flight mass spectrometer. Gas-phase interferences were accounted for by subtracting the signals obtained during daily measurements of filtered, particle-free sampling air. Ionization efficiency calibrations were performed weekly using 300 nm ammonium nitrate and ammonium sulfate particles. Composition-dependent collection efficiency (CDCE) values of 0.44 to 0.55 were determined using the procedure detailed by Middlebrook et al. (2012), where CDCE
values are derived based largely on aerosol inorganic species concentrations and the relative humidity in the sampling line. In addition, a constant collection efficiency (CE) value of 0.9 was determined from the comparison of raw HR-ToF-AMS SO_4^{2-} data with other particulate SO_4^{2-} measurements performed during the study. Comparisons of aerosol mass concentrations obtained from the application of CDCE values (i.e., 0.44 to 0.55) vs. a constant CE value (i.e., 0.9) to the raw HR-ToF-AMS data are discussed in section 3.2. Uncertainties in HR-ToF-AMS measurements were estimated to be approximately 25% (Canagaratna et al., 2007).

Particle-phase water-soluble organic acids, inorganic cations and anions were measured using two Particle-into-Liquid Sampler (PILS) systems coupled to ion chromatographs (ICs) (Orsini et al., 2003). Each PILS sampled ambient air at nominally 16.7 L min$^{-1}$ through a URG PM$_1$ cyclone. Before PILS1, which was used to measure water-soluble inorganic cation and anions, two long (24 cm) URG glass annular denuders coated with sodium carbonate and phosphorous acid were used to remove acidic and basic gases. Before PILS2, which measured water-soluble organic acids, a 28 cm parallel plate carbon denuder (Sunset Lab) was used to remove organic gases (Eatough et al., 1993). In each PILS, aerosols were mixed with water vapor at ~100 °C generated from heated ultrapure deionized water (Weber et al., 2001; Orsini et al., 2003). The resulting droplets were impacted onto a plate, with the resulting liquid sample analyzed by ICs. Each IC system was calibrated at the beginning and end of the study using five multi-compound standards in order to create calibration curves. Periodically, a HEPA filter (Pall Life Sciences) was placed on the inlet to determine the background in near real-time. The measurement uncertainty for each IC system was about 10%.

PILS1 was connected to two Dionex ICS-1500 ICs (Thermo Fisher Scientific) to measure the water-soluble inorganic ions. These two IC systems include an isocratic pump, self-regenerating anion or cation suppressor, and conductivity detector. This system will be referred hereafter as the PILS-IC. Anions were separated using a Dionex IonPac AS15 guard and analytical column (4 x 250 mm, Thermo Fisher Scientific) employing an eluent of 38 mM sodium hydroxide at a flow rate of 1.5 mL min$^{-1}$. Cations were separated using a Dionex IonPac CS12A guard and analytical column (4 x 250 mm, Thermo Fisher Scientific) employing an eluent of 18 mM methanesulfonic acid at a flow rate of 1 mL min$^{-1}$. A new chromatogram was obtained every 30
min with a sample loop fill time (i.e., ambient sample integration time) of 20 min. The limit of
detection for the various anions and cations was approximately 0.01 µg m⁻³.

PILS2 was coupled to a Dionex ICS-4000 capillary high-pressure ion chromatography
(HPIC) system to measure the water-soluble organic acids. The HPIC includes an eluent generator,
isocratic pump, degasser, suppressor, carbonate removal device, and conductivity detector. This
system will be referred hereafter as the PILS-HPIC. The organic acids were separated using a
Dionex AS11-HC-4 µm capillary guard and analytical column (0.4 x 250 mm, Thermo Fisher
Scientific), which used a potassium hydroxide gradient separation method at a flow rate of 0.015
mL min⁻¹. A new chromatogram was obtained every 60 min with a sample loop fill time of 2 min.
The limit of detection for the various organic acids was approximately 0.001 µg m⁻³.

Particle- and gas-phase water-soluble organic carbon (WSOCₚ and WSOC₃, respectively)
were measured using two Sievers 900 series total organic carbon (TOC) analyzers (GE Analytical
Instruments), as described by Sullivan et al. (2004). For WSOCₚ measurements, ambient air was
sampled at 15.2 L min⁻¹ through a URG PM₁₁ cyclone and a parallel plate carbon denuder into a
PILS coupled to the first TOC analyzer. For WSOC₃ measurements, ambient air was sampled at
20 L min⁻¹ through a Teflon filter (45 mm diameter, 2.0 µm pore size, Pall Life Sciences) to remove
carbons in the air stream. This filter was changed every 3 to 4 days. The particle-free air was then
directed to a MIST chamber filled with ultrapure deionized water, which scrubbed the soluble
gases at an air flow rate of 20 L min⁻¹. Soluble gases with Henry’s law constants greater than 10⁴
mole L⁻¹ atm⁻¹ were scrubbed into deionized water in the MIST chamber (Spaulding et al., 2002).
The resulting MIST chamber liquid sample was analyzed by the second TOC analyzer. The TOC
analyzers converted the organic carbon in the liquid samples to carbon dioxide using UV radiation
and chemical oxidation. The carbon dioxide formed was then measured by conductivity. The
amount of organic carbon in the liquid samples is proportional to the measured increase in
conductivity of the dissolved carbon dioxide. Each WSOCₚ and WSOC₃ measurement lasted 4
min. Background WSOCₚ and WSOC₃ measurements were performed for 45 min every 12 h by
stopping the sample air flow and rinsing the system with deionized water. Both TOC analyzers
were calibrated at the beginning and end of the study using varying concentrations of sucrose
solutions to create calibration curves (as specified by the instrument manual). The limit of
detections for WSOCₚ and WSOC₃ were 0.2 and 0.4 µgC m⁻³, respectively. The measurement
uncertainties for WSOC_p and WSOC_g were estimated to be 10% based on uncertainties in the TOC analyzer, sample air and liquid flows.

A suite of instruments operated by the SEARCH network provided supporting gas and aerosol measurements (Hansen et al., 2003; Edgerton et al., 2005, 2006). O_3 was measured by a UV absorption instrument (Thermo Fisher Scientific) with a temporal resolution of 1 min. NO and NO_3 were measured by a chemiluminescence instrument (Thermo Fisher Scientific) with a temporal resolution of 1 min. NO_2 was obtained from the difference between NO and NO_3. CO was measured by a non-dispersive infrared absorption instrument (Thermo Fisher Scientific) with a temporal resolution of 1 min. NO_2 was obtained from the difference between NO and NO_3. CO_2 was measured by a non-dispersive infrared absorption instrument (Thermo Fisher Scientific) with a temporal resolution of 1 min. NH_3 was measured by a denuder-based instrument (ARA) with a temporal resolution of 5 min. Comparisons of measurements by the NH_3-CIMS and denuder-based instrument will be presented in section 3.1. A filter-based particle composition monitor (ARA) provided 24 h-integrated PM_{2.5} measurements of particle mass and major inorganic ions measured offline by ion chromatography. Organic carbon (OC) and elemental carbon (EC) in PM_{2.5} were measured by a OCEC Analyzer (Sunset Labs) with a temporal resolution of 1 h. This analyzer determined OC by thermal optical transmittance. VOCs were measured by a gas chromatography-flame ionization detector (GC-FID, Agilent Technologies) with a temporal resolution of 1 h.

2.2. Particle pH and water calculation

The thermodynamic equilibrium model ISORROPIA-II was used to determine the phase state and composition of an NH_4^+-SO_4^{2-}-NO_3^--Cl^-Na^+-Ca^{2+}-K^+-Mg^{2+}-water inorganic aerosol in equilibrium with its corresponding gas-phase species (Fountoukis and Nenes, 2007; Nenes et al., 1998). This approach was used in previous studies to determine particle water and pH in different parts of the world (Guo et al., 2015; Bougiatioti et al., 2016; Guo et al., 2016; Weber et al., 2016; Guo et al., 2017a; Guo et al., 2017c; Shi et al., 2017). The pH of an aqueous solution is defined as the negative logarithm of the hydronium ion (H_3O^+) activity on a molality basis (www.goldbook.iupac.org/html/P04524.html, last access: 6 July 2018):

\[
pH = -\log_{10}[a(H^+)] = -\log_{10}[m(H^+)/m^\theta]
\]

where \(a(H^+)\) is the hydronium ion activity in an aqueous solution, \(m(H^+)\) is the hydronium ion molality, \(\gamma_m(H^+)\) is the molality-based hydronium ion activity coefficient, and \(m^\theta\) is the standard molality (1 mol kg\(^{-1}\)). For simplicity, H_3O^+ is denoted here as H^+ even though we recognize that
the unhydrated hydrogen ion is rare in aqueous solutions. Since most thermodynamic equilibrium models (e.g., ISORROPIA-II, E-AIM) do not report liquid concentrations, but instead report species in terms of concentration per volume of air (e.g., μg m⁻³, μmol m⁻³), we have calculated the particle pH by:

\[
\text{pH} = -\log_{10} \gamma_H^+ H^+_{aq} = -\log_{10} \frac{1000 \gamma_H^+ H^+_{air}}{W_i + W_o} = -\log_{10} \frac{1000 \gamma_H^+ H^+_{air}}{W_i} \quad (1b)
\]

where \(\gamma_H^+\) is the hydronium ion activity coefficient (assumed to be 1), \(H^+_{aq}\) is the concentration of hydronium ions in particle water in mole L⁻¹ (i.e., the density of water is assumed to be 1000 kg m⁻³, and so pH is calculated in terms of molality), \(H^+_{air}\) (μg m⁻³) is the hydronium ion concentration per volume of air, and \(W_i\) and \(W_o\) (μg m⁻³) are the bulk particle water concentrations associated with inorganic and organic species per volume of air, respectively. In equation 1b, the molecular weight of \(H^+\) is taken as 1 g mole⁻¹, and 1000 is the factor needed for unit conversion of g L⁻¹ to μg m⁻³. \(H^+_{air}\) and \(W_i\) are outputs of the ISORROPIA-II model. Previous studies have shown that particle pH values predicted using only \(W_i\) are reasonably accurate since the sensitivity of particle pH to the effects of \(W_o\) is small (Guo et al., 2015). For the southeastern U.S., Guo et al. (2015) reported that particle pH values predicted using only \(W_i\) were systematically 0.15 to 0.23 units lower than those predicted using \(W_i + W_o\) during the 2013 Southern Oxidant Aerosol Study (SOAS) and SCAPE campaigns. Given this small deviation and that organic aerosol hygroscopicity was not measured in this field study, we report particle pH only considering \(W_i\).

ISORROPIA-II was run in “forward” mode, which assumes that aerosols are “metastable” with no solid precipitates, to predict particle pH and the partitioning of semi-volatile compounds. In “forward” mode, the model calculates the gas-particle equilibrium partitioning concentrations based on the input of the total concentration of a species (i.e., gas + particle). In “reverse” mode, the model calculates the gas-particle equilibrium partitioning concentrations based on the input of only the particle-phase concentration of a species. We used “forward” mode because the “reverse” mode is sensitive to measurement errors, which often result in large model biases in the predicted particle pH (Hennigan et al., 2015). The measured particle-phase inorganic \(\text{NH}_4^+\), \(\text{SO}_4^{2-}\) and \(\text{NO}_3^-\) concentrations and gas-phase \(\text{HNO}_3\) and \(\text{NH}_3\) concentrations were used as model inputs. The “metastable” assumption is reasonable since the high RH (average RH 68.9 %) observed during the study indicated that the aerosols had likely deliquesced. We excluded data for periods where...
the RH was above 95% since the exponential growth in particle liquid water with RH introduces large pH uncertainties (Malm and Day, 2001; Guo et al., 2015).

In using ISORROPIA-II to predict particle pH and the partitioning of semi-volatile compounds, we also assumed that the aerosols are internally mixed and that the particle pH does not change with particle size (i.e., the overall particle pH is characterized by the particle’s bulk properties). As long as some small fraction of sulfate is mixed with various aerosol components, (e.g., non-volatile cations), the assumption that aerosols are completely internally mixed has a small effect on the predicted pH (Guo et al., 2017b). However, the presence of multiple organic and inorganic species in ambient aerosols may lead to multiple phases within the particle (i.e., phase separation). Consequently, this may result in the unequal distribution of inorganic species among different phases, each with its own water activity and inorganic concentration. Previous studies have shown that liquid-liquid and solid-liquid phase separations may occur for mixed organic and inorganic aerosols at low RH and organic aerosol oxygen-to-carbon atomic ratios (O/C) (Bertram et al., 2011; Song et al., 2012; You et al., 2013; You et al., 2014b; You and Bertram, 2015). Phase separations were always observed at O/C ≤ 0.5, while no phase separation was observed at O/C ≥ 0.8. The probability for the occurrence of phase separation decreased at higher RH for 0.5 < O/C < 0.8. The average O/C for this field study is 0.69 ± 0.06. Organic acids were not included in the calculation of particle pH. This is reasonable since their total mass concentration was small compared to the total inorganic mass concentration. The average ratio of the organic acid mass concentration to the inorganic mass concentration is 0.25. Furthermore, Song et al. (2018) showed that including organic acid mass concentrations in thermodynamic model calculations had minor effects on particle pH if the system is in equilibrium. The validity of these assumptions and the resulting thermodynamic model predictions will be evaluated by comparing the predicted gas-particle partitioning ratios of semi-volatile inorganic compounds with measured values in section 3.3.

3. Results and Discussion

3.1. NH$_3$ observations

Continuous measurements of NH$_3$ were made using the NH$_3$-CIMS from 13 September to 12 October. Figures 1a and 1b show the time series and average diurnal profile of NH$_3$.
respectively. NH$_3$ concentrations ranged from 0.7 to 39.0 ppb (0.5 to 28.5 µg m$^{-3}$), and exhibited consistent diurnal cycles. NH$_3$ was generally higher in the late mornings and early afternoons. Concentrations started to increase at 07:30, which coincided with an increase in temperature at sunrise (Fig. S3). Possible reasons for the morning increase include volatilization of particulate ammonium and animal waste, entrainment from the residual layer where NH$_3$ may not have been depleted, evaporation of dew or fog that contained dissolved NH$_3$, and emission from plant stomata (Ellis et al., 2011). NH$_3$ decreased at 14:30, approximately 1 hour before temperature decreased, and may be due to changes in the boundary layer height. However, this hypothesis cannot be tested since the boundary layer height was not measured during the study. The diurnal plot does not account for dilution as the boundary layer expanded, and only indicates that if emissions were solely from the surface and lower concentrations aloft, these NH$_3$ sources were of significant magnitude.

The average NH$_3$ concentration measured by the NH$_3$-CIMS is 8.1 ± 5.2 ppb. This is approximately 2 times higher than the average NH$_3$ concentration (3.8 ± 2.9 ppb) measured by the denuder-based instrument operated by the SEARCH network over the same time period (Fig. S4). Differences in NH$_3$ concentrations measured by the two instruments may be due to positive and negative sampling artifacts caused by differences in sampling inlets (e.g., inlet length and location), frequency of calibration and background measurements, and (in the case of the denuder-based instrument) possible sample contamination during chemical analysis. Discussions on how differences in measured NH$_3$ concentrations affect PM$_2.5$ pH predictions will be presented in section 3.3. Nevertheless, there is a record of NH$_3$ concentrations measured by the denuder-based instrument at this site since 2008. Just prior to, and during this study, NH$_3$ concentrations are generally the highest observed since 2011 (Fig. S5). These elevated NH$_3$ concentrations may be due to sporadic biomass burning episodes caused by elevated temperatures and widespread drought across the southeastern U.S. in 2016 (Park Williams et al., 2017; Case and Zavodsky, 2018).

The NH$_3$-CIMS measurements are examined with the meteorological data to gain insights on the primary NH$_3$ sources during the sampling period. To account for wind speed, the 1-hour averaged NH$_3$ concentrations are first multiplied by their corresponding 1-hour averaged wind speeds. These normalized NH$_3$ concentrations are then used to construct a wind direction polar...
plot showing the average normalized NH$_3$ concentration per 10 degrees bin (Fig. 1c). The wind
direction polar plot shows that the normalized NH$_3$ is approximately 2 times greater than the
average when air masses are transported from the south-east, the general direction of the poultry
CAFOs located approximately 2 km from the field site (Fig. S1), which are known for high NH$_3$
emissions. This conclusion is reaffirmed by NH$_3$ measurements by the SEARCH network’s
denuder-based instrument.

NH$_3$ concentrations measured by the two instruments in this study are substantially higher
than those measured in three recent field studies conducted in the continental U.S.: 2010 California
Nexus (CalNex) study, 2013 Southeast Nexus (SENEX) study and 2013 SOAS study (see Table
1). The differences in NH$_3$ may be attributed to differences in land use, proximity to CAFOs and
meteorological conditions. The high NH$_3$ concentrations in this study allow us to make ambient
observations of the effect of NH$_3$ on particle acidity and the gas-particle partitioning of semi-
volatile inorganic and organic compounds, and compare them with previous studies.

3.2. PM$_1$ composition

The aerosol inorganic chemical composition was measured by several instruments during
this study. The HR-ToF-AMS, PILS-IC and PILS-HPIC measured the composition of PM$_1$, while
a filter-based particle composition monitor measured the composition of PM$_{2.5}$. Comparisons of
aerosol SO$_4^{2-}$, NO$_3^-$ and NH$_4^+$ mass concentrations obtained from the application of CDCE values
to the raw HR-ToF-AMS data are compared to those measured by the other three instruments in
Fig. S6. NH$_4^+$ measurements by the PILS-IC are not available for comparison due to denuder
breakthrough that occurred during the study.

SO$_4^{2-}$ measurements by the various instruments are generally well correlated with each
other, with R2 values ranging from 0.64 to 0.92. Although PM$_1$ SO$_4^{2-}$ measurements by the two
PILS systems show good agreement with each other, HR-ToF-AMS CDCE-applied SO$_4^{2-}$
measurements are approximately two times higher than the PILS and filter measurements. Similar
systematic differences are also observed for NO$_3^-$ and NH$_4^+$ measurements. NO$_3^-$ and NH$_4^+$
measurements by the four instruments are moderately correlated (R$^2 = 0.54$ to 0.79 and R$^2 = 0.94$,
respectively). NO$_3^-$ measurements by the PILS and filter systems are mostly similar; however, HR-
ToF-AMS CDCE-applied PM$_1$ NO$_3^-$ and NH$_4^+$ measurements are approximately three times and
two times higher than the PILS and filter measurements. One possible reason is that the calculated CDCE is lower due to organics dominating the aerosol composition during the study (average of 74.2 ± 7.9 % of the non-refractory PM$_i$ mass concentration). Lee et al. (2015) suggested that a high organic mass fraction may impede the complete efflorescence of aerosols when they are passed through the drier prior to delivery into the HR-ToF-AMS, thus reducing the particle bounce and increasing the CE value. Hence, we estimated HR-ToF-AMS PM$_i$ mass concentrations that would be consistent with PILS and filter measurements by multiplying all the raw HR-ToF-AMS data by a constant CE value of 0.9, which was obtained from comparisons of the raw HR-ToF-AMS SO$_4^{2-}$ data with PILS-IC and PILS-HPIC SO$_4^{2-}$ measurements. The constant CE-applied HR-ToF-AMS data is used in all our subsequent analyses.

Figure 2 shows the time series and average diurnal profiles of non-refractory PM$_i$ species. The average non-refractory PM$_1$ organics, SO$_4^{2-}$, NO$_3^-$ and NH$_4^+$ mass concentrations are 5.0 ± 2.3, 1.6 ± 0.4, 0.2 ± 0.1 and 0.4 ± 0.2 µg m$^{-3}$, respectively. Organics are the dominant non-refractory PM$_1$ species, accounting for 74.2 ± 7.9 % of the non-refractory PM$_1$ mass concentration during the field study. Organic aerosol mass concentration was slightly higher at night, which is likely caused by changes in the boundary layer height, emission sources and SOA formation processes (Xu et al., 2015b). Previous studies have shown that nighttime SOA production in the Southeastern U.S. is largely attributed to nitrate radical oxidation and ozonolysis of monoterpenes, which are abundant at night (Pye et al., 2015; Xu et al., 2015a; Xu et al., 2015b; Lee et al., 2016; Zhang et al., 2018). Specifically, the nitrate radical oxidation of some monoterpenes (e.g., β-pinene) could form low volatility organic nitrates that are condensable and could contribute substantially to the nocturnal organic aerosol mass (Boyd et al., 2015; Boyd et al., 2017; Ng et al., 2017). Apportionment of organic aerosol sources will be discussed in an upcoming publication.

SO$_4^{2-}$ is the second most abundant non-refractory PM$_1$ species (16.3 ± 5.7 % mass fraction), followed by NH$_4^+$ (5.9 ± 2 % mass fraction) and NO$_3^-$ (3.6 ± 2.2 % mass fraction). SO$_4^{2-}$ mass concentration peaked in the afternoon due to enhanced SO$_2$ photooxidation (Weber et al., 2003). The NO$_3^-$ mass concentration measured by the HR-ToF-AMS is the nitrate functional group (-ONO$_2$) present on organic and inorganic nitrates. Hence, the diurnal profile of the NO$_3^-$ mass concentration in Fig. 2 has contributions from both organic and inorganic nitrates. The mass concentrations of organic and inorganic nitrates increased after sunset and peaked at sunrise (Fig. S7), likely due to the formation of organic nitrates from nighttime NO$_3$ chemistry and increased
gas-to-particle partitioning of organic and inorganic nitrates as temperature decreased (Xu et al., 2015a; Xu et al., 2015b). Quantification and characterization of organic nitrates based on HR-ToF-AMS and PILS-IC PM$_1$ NO$_3^-$ measurements will be discussed in a future publication. NH$_4^+$ mass concentration has moderate diurnal variations with marginally higher concentrations in the afternoon, likely due to the contrasting day/night phases of ammonium sulfate and ammonium nitrate formation. SO$_4^{2-}$, NO$_3^-$ and NH$_4^+$ molar concentrations indicated that NH$_4^+$ is mainly associated with SO$_4^{2-}$ in PM$_1$.

3.3. PM$_1$ pH predictions

CIMS HNO$_3$ and NH$_3$ data, HR-ToF-AMS PM$_1$ SO$_4^{2-}$ and NH$_4^+$ data, PILS-IC PM$_1$ NO$_3^-$ and non-volatile cation (Cl$^-$, Na$^+$, Ca$^{2+}$, K$^+$ and Mg$^{2+}$) data, measured temperature and RH are used as ISORROPIA-II model inputs to predict PM$_1$ W_i and pH from 13 September to 6 October. Figure 3 shows the time series and average diurnal profiles of ISORROPIA-predicted PM$_1$ W_i and pH. PM$_1$ are highly acidic with pH values ranging from 0.9 to 3.8, and an average pH of 2.2 ± 0.6. The average PM$_1$ pH was 2.5 ± 0.6 during periods where the NH$_3$ concentration was higher than 13.3 ppb (i.e., average NH$_3$ concentration + 1 standard deviation = 8.1 + 5.2 = 13.3 ppb). The PM$_1$ pH values in this study are generally similar to those reported by Guo et al. (2015) at the same field site during winter 2012. Our observation that PM$_1$ are acidic despite the high NH$_3$ concentrations in this study is consistent with previous studies showing that particle pH has weak sensitivities to wide NH$_3$ and SO$_4^{2-}$ mass concentration ranges due to pH buffering caused by the partitioning of NH$_3$ between the gas and particle phases (Weber et al., 2016; Guo et al., 2017c). This weak particle pH sensitivity also explains the small changes in PM$_1$ pH values (about 10% lower, Fig. S8) when NH$_3$ measurements by the SEARCH network denuder-based instrument are used in ISORROPIA-II calculations (instead of NH$_3$-CIMS measurements).

PM$_1$ pH varied by approximately 1.4 units throughout the day. W_i has an average value of 1.6 ± 1.7 µg m$^{-3}$. PM$_1$ W_i and pH showed similar diurnal profiles, with both peaking in the mid-morning and reaching their minima in the mid-afternoon. These diurnal trends are consistent with those previously reported by Guo et al. (2015) for PM$_1$ measured during the summer and winter in different parts of the southeastern U.S. Also shown in Fig. 3b is the diurnal profile of H^+_{air}, which peaked in the mid-afternoon. The W_i and H^+_{air} maximum/minimum ratios are comparable (6.5 and
5.3, respectively), thus indicating that the diurnal variation in particle pH is driven by both W_i and H_{air}^+. The average PM$_1$ pH for this study is about 1 unit higher than those for the SENEX and SOAS campaigns (Table 1), and is likely due to the much higher abundance of NH$_3$ in this study. The average NH$_3$ mass concentration in this study is approximately 49 times and 15 times higher than those in the SENEX and SOAS campaigns, respectively. The average PM$_1$ pH for this study is similar to that for the CalNex campaign even though the average NH$_3$ mass concentration in this study is only approximately 4 times higher than that in the CalNex campaign (Guo et al., 2017a). This may be due, in part, to PM$_1$ SO$_4^{2-}$ and NO$_3^-$ mass concentrations at CalNex being approximately 2 times and 18 times larger than those of this study, respectively. Aerosol inorganic SO$_4^{2-}$ and NO$_3^-$ species are hygroscopic species. The much higher NO$_3^-$ mass concentrations in the CalNex campaign (due, in part, to high NO$_3$ emissions) increased particle W_i substantially, which diluted H$^+$ and raised particle pH, resulting in more gas-to-particle partitioning of NO$_3^-$, and eventually leading to pH levels similar to those observed in this study. This type of feedback does not happen in the southeastern U.S. where non-volatile SO$_4^{2-}$ dominates the uptake of particle water. It is also possible that the higher RH and lower temperatures during the CalNex campaign (relative to this study) contributed to high particle W_i, which diluted H$^+$ and raised particle pH levels similar to those observed in this study.

The validity of this study’s thermodynamic model predictions is evaluated by comparing the predicted gas-particle partitioning ratios of semi-volatile inorganic compounds (i.e., NO$_3^-$ and NH$_4^+$) with measured values (Fig. S9). CIMS HNO$_3$ and NH$_3$ data, PILS-IC NO$_3^-$ and HR-ToF-AMS NH$_3$ data are used in this comparison. ε(NO$_3^-$) and ε(NH$_4^+$) are defined as the particle-phase molar concentration divided by the total molar concentration (gas + particle), i.e., ε(NO$_3^-$) = NO$_3^-$ / (HNO$_3$ + NO$_3^-$) and ε(NH$_4^+$) = NH$_4^+$ / (NH$_3$ + NH$_4^+$). Predicted NH$_3$, NH$_4^+$ and ε(NH$_4^+$) values are generally within 10% of and are highly correlated ($R^2 = 0.96$ to 0.99) with measured values (Fig. S9). While predicted HNO$_3$ values generally agreed with measurements, substantial scatter can be seen between the predicted and measured values for NO$_3^-$ and ε(NO$_3^-$). This scatter can be attributed, at least in part, to uncertainties brought about by the low PM$_1$: NO$_3^-$ mass concentrations and effects of coarse mode cations (e.g., Na$^+$, Ca$^{2+}$, K$^+$ and Mg$^{2+}$) on fine mode HNO$_3$-NO$_3^-$ gas-particle equilibrium (i.e., HNO$_3$ can partition to both fine and coarse modes, thereby affecting fine
mode NO$_3^-$ concentrations; no such effect occurs for NH$_3$-NH$_4^+$ gas-particle equilibrium). In general, the overall good agreement between model predictions and measurements indicated that our assumptions that aerosols are metastable (i.e., aerosols are supersaturated aqueous droplets) with no phase separation for the thermodynamic calculations are reasonable for the conditions of this study, and do not affect model predictions.

The molar fractions of NO$_3^-$ and NH$_4^+$ in the particle phase (i.e., ε(NO$_3^-$) and ε(NH$_4^+$)) measured in this study are compared with those measured during the CalNex, SENEX and SOAS campaigns. Figure 4 shows the measured ε(NO$_3^-$) and ε(NH$_4^+$) values as a function of their ISORROPIA-predicted particle pH for the various field studies. For each field study, only a subset of the data is chosen for this comparison (1 \leq W_i \leq 4 μg m$^{-3}$ and 15°C \leq temperature \leq 25°C) to reduce the effects of variability of W_i and temperature on gas-particle partitioning for comparison with the calculated S (or sigmoidal) curves, which are calculated based on W_i = 2.5 μg m$^{-3}$ and temperature = 20°C. The S curves for HNO$_3$-NO$_3^-$ and NH$_3$-NH$_4^+$ partitioning as a function of particle pH are also plotted as solid lines. The S curves are calculated based on the solubility and dissociation of NO$_3^-$ and NH$_4^+$ species in water:

$$\varepsilon(\text{NO}_3^-) = \frac{H_{\text{NO}_3}^{\text{RT}}W_i \times 0.987 \times 10^{-14}}{Y_{\text{H}^+}Y_{\text{NO}_3^-}^{10^{-pH}} + H_{\text{NO}_3}^{\text{RT}}W_i \times 0.987 \times 10^{-14}}$$

(2)

$$\varepsilon(\text{NH}_4^+) = \frac{Y_{\text{H}^+}10^{-pH}H_{\text{NH}_3}^{\text{RT}}W_i \times 0.987 \times 10^{-14}}{1 + Y_{\text{H}^+}10^{-pH}H_{\text{NH}_3}^{\text{RT}}W_i \times 0.987 \times 10^{-14}}$$

(3)

where $H_{\text{NO}_3}^{\text{RT}}$ and $H_{\text{NH}_3}^{\text{RT}}$ (mole2 kg$^{-2}$ atm$^{-1}$) are equilibrium constants and are the products of the Henry’s law constant and the dissociation constant of HNO$_3$ and NH$_3$, respectively, R is the gas constant (8.314 m3 Pa K$^{-1}$ mol$^{-1}$), T is temperature (K), and γ_i’s are activity coefficients. $H_{\text{NO}_3}^{\text{RT}}$ and $H_{\text{NH}_3}^{\text{RT}}$ values at 20°C are calculated using equations found in Clegg and Brimblecombe (1990) and Clegg et al. (1998), respectively. Activity coefficients predicted by ISORROPIA-II are $Y_{\text{H}^+}=0.28, Y_{\text{H}^+}=1$ and $Y_{\text{NH}_3}=1$. Derivations of the analytically calculated S curves for ε(NO$_3^-$) and ε(NH$_4^+$) in equations 2 and 3 can be found in Guo et al. (2017a). As shown in Fig. 4, the measured ε(NO$_3^-$) and ε(NH$_4^+$) values for the four field studies all generally converged on the calculated S curves. The higher particle pH values in this study and the CalNex
campaign relative to those for the SENEX and SOAS campaigns resulted in less NH \textsubscript{3} and more HNO \textsubscript{3} partitioned to the particle phase, as predicted by these simple analytical expressions. A similar analysis will be performed for the organic acids in section 3.5.

3.4. WSOC and water-soluble organic acids

The time series and average diurnal profiles of WSOC \textsubscript{g} and WSOC \textsubscript{p} are shown in Fig. S10. The average WSOC \textsubscript{g} mass concentration (3.6 ± 2.7 µgC m-3) is roughly four times higher than that of WSOC \textsubscript{p} (1.0 ± 0.6 µgC m-3). The diurnal profile of WSOC \textsubscript{p} is somewhat flat, likely due to various organic aerosol sources having different water solubility and diurnal cycles, and compensating each other throughout the day (Xu et al., 2015b; Xu et al., 2017). In contrast, WSOC \textsubscript{g} displayed strong diurnal variations. WSOC \textsubscript{g} increased at 07:30, which coincided with the sharp increase in solar irradiance (Fig. S3). WSOC \textsubscript{g} decreased at 21:30, approximately 2 hours after sunset. Also shown in Fig. S10 are the time series and average diurnal profile of the mass fraction of total WSOC in the particle phase, i.e., \(F_{\text{p}} = \frac{\text{WSOC}_{\text{p}}}{(\text{WSOC}_{\text{p}} + \text{WSOC}_{\text{g}})} \). The peak \(F_{\text{p}} \) coincided with the minima of WSOC \textsubscript{g} at 07:30.

The average WSOC \textsubscript{g} and WSOC \textsubscript{p} (3.6 ± 2.7 µgC m-3 and 1.0 ± 0.6 µgC m-3) are slightly lower than those measured during the SOAS campaign (SOAS WSOC \textsubscript{g} = 4.9 µgC m-3 and WSOC \textsubscript{p} = 1.7 µgC m-3) (Xu et al., 2017). While the diurnal profiles of WSOC \textsubscript{p} in both studies are flat, the diurnal profiles of WSOC \textsubscript{g} measured in the two studies are different. WSOC \textsubscript{g} measured in the SOAS study decreased at sunset, while WSOC \textsubscript{g} measured in this study decreased 2 hours after sunset. Differences in WSOC \textsubscript{g} diurnal profiles in the two studies are likely due to differences in emission sources as a result of different sampling periods (SOAS was in early summer and this study was in early fall), land use and/or land cover. The ratio of WSOC \textsubscript{p} to OC for this study was estimated at 30 %, but this comparison is imprecise because WSOC \textsubscript{p} was PM\textsubscript{1} and OC was PM\textsubscript{2.5} (refer to Fig. S11 and SI section S2).

Figure 5 shows the time series of particle- and gas-phase concentrations of formic, acetic, oxalic, malonic, succinic, glutaric and maleic acids. Their diurnal profiles are shown in Fig. 6. Gas-phase measurements of glutaric and maleic acids are not available. Gas-phase measurements of butyric, glycolic, propionic and valeric acids were also measured during the study and have
been presented in Nah et al. (2018), but will not be discussed here since their particle-phase measurements are not available.

Assuming that all the measured organic acids are completely water-soluble, 30 % of the WSOC is comprised of these organic acids (Nah et al., 2018). Formic and acetic acids are the most abundant gas-phase organic acids, with averages of 2.2 ± 1.6 and 1.9 ± 1.3 µg m⁻³, respectively. The average carbon mass fraction of WSOC comprised of formic and acetic acids are 7 and 13 %, respectively. All the gas-phase organic acids displayed strong and consistent diurnal cycles, with higher concentrations being measured during warm and sunny days. Their concentrations start to increase at sunrise (at 07:30), building to a peak between 15:30 and 19:30, then decrease overnight.

Nah et al. (2018) previously showed that the measured gas-phase organic acids during the study, including oxalic acid, likely have the same or similar sources. Poor correlations between gas-phase organic acid concentrations and those of anthropogenic pollutants (HNO₃, SO₂, CO and O₃) indicated that these organic acids are not due to anthropogenic emissions, and are likely biogenic in nature. Biogenic emissions of gas-phase organic acids and/or their BVOC precursors are elevated at high temperatures, resulting in higher organic acid concentrations during warm and sunny days. For example, isoprene, which is the dominant BVOC in Yorkville, has a somewhat similar diurnal profile as the organic acids. In addition, the concentration of isoprene is moderately correlated with those of formic and acetic acids (Fig. S10 of Nah et al., 2018), which are known products of isoprene photooxidation. Some of these gas-phase organic acids may also be formed in the particle phase during organic aerosol photochemical aging, with subsequent volatilization into the gas phase. The gas-particle partitioning of organic acids likely depends on thermodynamic conditions, which are controlled by particle pH and Wₛ and meteorological conditions as will be shown in section 3.5.

The measured particle-phase water-soluble organic acids contributed on average 6 % to the HR-ToF-AMS-measured organic aerosol mass concentration. The average carbon mass fraction of WSOC⁺ comprised of these organic acids is 4 %. Previous studies have shown that particle-phase organic acids found in rural environments are oxidation products of gas-phase aliphatic monocarboxylic acids, which are formed in the photochemical oxidation of biogenic unsaturated fatty acids and other BVOC precursors (Kawamura and Gagosian, 1987; Kawamura and Ikushima,
These particle-phase organic acids can also be produced during the multiphase photochemical aging of ambient organic aerosols (Ervens et al., 2004; Lim et al., 2005; Sorooshian et al., 2007; Sorooshian et al., 2010).

Oxalate is the most abundant measured particle-phase water-soluble organic acid anion (contributing on average 26 % to the total particle-phase organic acid mass concentration), with mass concentrations ranging from 0.01 to 0.34 µg m$^{-3}$ and an average of 0.07 ± 0.05 µg m$^{-3}$. Acetate (average of 0.06 ± 0.03 µg m$^{-3}$) and formate (average of 0.05 ± 0.03 µg m$^{-3}$) are the second and third most abundant measured particle-phase water-soluble organic acid anions, respectively. Particle-phase formate, acetate and maleate showed weak diurnal variations, and may be due, in part, to various emission sources having different diurnal cycles and compensating each other throughout the day. Particle-phase oxalate, malonate and succinate peaked in the mid- to late afternoon, while glutarate generally peaked in the mid-morning. This suggests that while the production of these organic acids is photochemically-driven, they may have different BVOC precursors and/or different photochemical production pathways. In addition, since oxalic (C$_2$), malonic (C$_3$), succinic (C$_4$) and glutaric (C$_5$) acids belong to the same homologous series of organic diacids, it is possible that the photochemical aging of particle-phase glutaric acid resulted in the formation of its successive homologues via the cleavage of C-C bonds. Hence, organic aerosol photochemical aging may also have contributed to the diurnal profiles of particle-phase oxalate, malonate, succinate and glutarate.

3.5. Gas-particle partitioning of organic acids

The online and simultaneous measurements of gas- and particle-phase organic acid mass concentrations provided the opportunity to study gas-particle partitioning behavior of semi-volatile organic compounds with respect to particle pH, as is more commonly done with semi-volatile inorganic species (see section 3.3). Since formic, acetic and oxalic acids are the three most abundant measured organic acids present in the gas and particle phases, we focus on the gas-particle partitioning behaviors of these three organic acids. The average molar fractions (± 1 standard deviation) of formic, acetic and oxalic acid in the particle phase (i.e., €(HCOO$^-$), €(CH$_3$CO$_2^-$) and €(C$_2$O$_4^{2-}$)) are 3.6 ± 3.6 %, 5.8 ± 5.0 % and 73.7 ± 9.8 %, respectively. The uncertainties of these ratios for formic, acetic and oxalic acids are 16, 16 and 17 %, respectively,
which are obtained from the propagation of their SF$_4$-CIMS and PILS-HPIC measurements.

3.5.1. Oxalic acid

To investigate the factors affecting oxalic acid gas-particle partitioning, the equation for the S curve describing the dependence of oxalic acid gas-particle partitioning (i.e., ε($\text{C}_2\text{O}_4^{2-}$) = $\text{C}_2\text{O}_4^{2-}/(\text{C}_2\text{H}_4\text{O}_4 + \text{C}_2\text{O}_4^{2-})$) on particle pH is derived. As shown in SI section S3, the analytically calculated S curve for ε($\text{C}_2\text{O}_4^{2-}$) can be simplified to:

$$\varepsilon(\text{C}_2\text{O}_4^{2-}) \equiv \frac{H_{\text{C}_2\text{H}_4\text{O}_4}}{\gamma_{\text{H}^+}\gamma_{\text{C}_2\text{H}_4\text{O}_4}^{10^-\text{pH}+K_{a1}}} \times 10^{-14}$$

where $H_{\text{C}_2\text{H}_4\text{O}_4}$ (mole L$^{-1}$ atm$^{-1}$) is the Henry’s law constant for oxalic acid, K_{a1} (mole L$^{-1}$) is the first acid dissociation constant for oxalic acid, R is the gas constant (8.314 m3 Pa K$^{-1}$ mol$^{-1}$), T is temperature (K), and γ_i’s are activity coefficients. We used the web version of AIOMFAC (www.aiomfac.caltech.edu) (Zuend et al., 2008; Zuend et al., 2011; Zuend et al., 2012) to compute an average $\gamma_{\text{C}_2\text{H}_4\text{O}_4}$ value of 0.0492. Since AIOMFAC does not predict $\gamma_{\text{H}^+}\gamma_{\text{C}_2\text{H}_4\text{O}_4}^{10^-\text{pH}+K_{a1}}$, we assumed that $\gamma_{\text{H}^+}\gamma_{\text{C}_2\text{H}_4\text{O}_4}^{10^-\text{pH}+K_{a1}} = \gamma_{\text{H}^+}\gamma_{\text{NO}_2}^{10^-\text{pH}}$, and used the ISORROPIA-predicted $\gamma_{\text{H}^+}\gamma_{\text{NO}_2}^{10^-\text{pH}}$ value of 0.07. We used the average of $H_{\text{C}_2\text{H}_4\text{O}_4}$ values provided by Clegg et al. (1996), Compernolle and Muller (2014) and Saxena and Hildemann (1996) (6.11×10^9 mole L$^{-1}$ atm$^{-1}$ at 25 °C), and accounted for the effect of temperature using equation 19 in Sander (2015). Although K_{a1} also depends on temperature, we used the K_{a1} value at 25 °C (5.62×10^{-2} mole L$^{-1}$, (Haynes, 2014)) for all the oxalic acid S curve calculations since equations that compute K_{a1} values for pure aqueous oxalic acid solutions at different temperatures are not available in the literature. In addition, the temperatures observed in this study were close to 25 °C (study-average temperature = 23.4 ± 4.0 °C).

Different S curves for ε($\text{C}_2\text{O}_4^{2-}$) are calculated using 1-hour average values obtained from the diurnal profiles of temperature and W_i (specifically at 00:30, 06:30 and 12:30). The shape of the S curve changes with the time of day due to the diurnal variations of temperature and W_i (Fig S12 and SI section S3). The S curves for ε($\text{C}_2\text{O}_4^{2-}$) are very different from those of other acids,
such as $\varepsilon(\text{NO}_3^-)$ (shown in Fig. 4b). From the S curves for $\varepsilon(\text{C}_2\text{O}_4^{2-})$, which are calculated using conditions in this study, some molar fraction of oxalic acid is always expected to be present in the particle phase, even at low particle pH (i.e., the S curve does not go to zero at low pH). In contrast, HNO_3 is expected to be present primarily in the gas phase at low particle pH (i.e., pH < 1) under similar temperature and W_i conditions. This is due primarily to differences in the Henry’s law constants for the two acids. H_{HNO_3} (2.57 x 104 mole L$^{-1}$ atm$^{-1}$) at 23.4 °C is three orders of magnitude smaller than $H_{\text{C}_2\text{H}_4\text{O}_4}$ (7.27 x 108 mole L$^{-1}$ atm$^{-1}$) (Clegg and Brimblecombe, 1990; Sander, 2015). This means that some undissociated form of oxalate can be found in the particle phase at any pH, and the molar fraction of this form increases with particle W_i (see Fig. S12). Oxalic acid’s very high Henry’s law constant combined with the W_i conditions in this study ensures that some fraction of the organic acid will be in the particle phase regardless the particle pH.

Figure 7 compares the measured $\varepsilon(\text{C}_2\text{O}_4^{2-})$ vs. ISORROPIA-predicted PM_1 pH to the analytically calculated S curves(s). The S curve is calculated based on the average temperature and W_i from 13 September to 6 October (23.4 ± 4.0 °C and 1.6 ± 1.7 µg m$^{-3}$, respectively). We also calculated the “upper” and “lower” bounds of this S curve based on one standard deviation from the average temperature and average W_i. Temperature = 27.4 °C and $W_i = 0.5$ µg m$^{-3}$ are used for calculations of the “lower” bound, while temperature = 19.4 °C and $W_i = 3.3$ µg m$^{-3}$ are used for calculations of the “upper” bound. For the ambient data, a range in W_i (0.5 to 4 µg m$^{-3}$) and temperature (15 to 31 °C) is chosen to be close to the analytical calculation. As shown in Fig. 7, the measured $\varepsilon(\text{C}_2\text{O}_4^{2-})$ generally converged around the S curve calculated using the average temperature and W_i values. Although there is some scatter, the measured ratios are mostly within the “upper” and “lower” bounds of the S curve.

Since the measured $\varepsilon(\text{C}_2\text{O}_4^{2-})$ are in general agreement with the analytically calculated S curve (Fig. 7), we can use the S curve to understand qualitatively how high NH$_3$ events at the site affect oxalic acid gas-particle partitioning. Here we define high NH$_3$ events as periods where the NH$_3$ concentration was higher than 13.3 ppb (which is the average NH$_3$ concentration + 1 standard deviation). As discussed in section 3.3, the PM_1 pH during high NH$_3$ events is 2.5 ± 0.6, which is slightly higher than the average PM_1 pH of 2.2 ± 0.6. Based on the S curve calculated using the
average temperature and W_i values, $\varepsilon(C_2O_4^{2-})$ increases from 81% to 89% when particle pH increases from 2.2 to 2.5. While this result indicates that high NH$_3$ concentrations can raise the particle pH sufficiently such that it can promote gas-to-particle partitioning of oxalic acid, this is not always the case. Specifically, increasing the particle pH from 2 (or lower) to 1 will not result in a significant increase in $\varepsilon(C_2O_4^{2-})$. Therefore, whether or not particle pH, and consequently oxalic acid gas-particle partitioning, is sensitive to NH$_3$ concentration depends strongly on particle pH values.

We also examined how well the analytically calculated S curve for $\varepsilon(C_2O_4^{2-})$ captures diurnal variations of the measured $\varepsilon(C_2O_4^{2-})$. The ambient data is divided into two 12 hour sets (08:00 to 19:59 and 20:00 to 07:59) based on the diurnal profile of solar irradiance. Two S curves and their corresponding “upper” and “lower” bounds are calculated based on the average temperature and W_i of the two data sets, and are subsequently compared to the ambient data. As shown in Fig. S13, the measured $\varepsilon(C_2O_4^{2-})$ in both data sets are generally consistent with predicted values.

A number of inferences can be drawn from the overall good agreement between the predicted and measured molar fractions of oxalic acid in the particle phase in Figs. 7 and S13. Our assumptions regarding the activity coefficients, Henry’s law constant and acid dissociation constants used in the S curve calculations of $\varepsilon(C_2O_4^{2-})$ are reasonable for the conditions of this study (or are at least self-consistent). Analytically calculated S curves are a simple way of exploring how the gas-particle partitioning of semi-volatile inorganic and organic compounds in the atmosphere are affected by the compound’s physicochemical properties (e.g., Henry’s law constants and acid dissociation constants), temperature, W_i and pH. Overall, these results indicate that particle-phase oxalate is in equilibrium with gas-phase oxalic acid, and that particle pH can influence particle-phase oxalate concentrations. It also showed that particle-phase oxalate can be found over a broad pH range, and that the presence of oxalate does not necessarily provide insights of the particle pH. Because of its high Henry’s law constant, particle-phase oxalate can be found in aerosols even at extremely low pH values (i.e., the flat region in Fig. 7), although our data cannot be used to test this since ambient particle pH values in this study are too high.

3.5.2 Formic and acetic acids
Similar comparisons between the predicted and measured ε(HCOO$^-$) and ε(CH$_3$CO$_2^-$) can also be made. Derivation of the equations for S curves describing the dependence of formic and acetic acid gas-particle partitioning (i.e., ε(HCOO$^-$) = HCOO$^-$ / (HCOOH + HCOO$^-$) and ε(CH$_3$CO$_2^-$) = CH$_3$CO$_2^-$ / (CH$_3$CO$_2$H + CH$_3$CO$_2$), respectively) on particle pH are similar to that of HNO$_3$ since they are monoprotic acids:

\[
\varepsilon(\text{HCOO}^-) = \frac{H_{\text{HCOOH}}W_t\left(\frac{H^+ \cdot \text{HCOO}^-}{\text{HCOOH}}\right)}{Y_{H^+} \cdot Y_{\text{HCOOH}}^{-10^{-pH}+H_{\text{HCOOH}}W_t\left(\frac{H^+ \cdot \text{HCOO}^-}{\text{HCOOH}}\right) \times 0.987 \times 10^{-14}}}
\]

\[
\varepsilon(\text{CH}_3\text{CO}_2^-) = \frac{H_{\text{CH}_3\text{CO}_2}W_t\left(\frac{H^+ \cdot \text{CH}_3\text{CO}_2^-}{\text{CH}_3\text{CO}_2}\right)}{Y_{H^+} \cdot Y_{\text{CH}_3\text{CO}_2}^{-10^{-pH}+H_{\text{CH}_3\text{CO}_2}W_t\left(\frac{H^+ \cdot \text{CH}_3\text{CO}_2^-}{\text{CH}_3\text{CO}_2}\right) \times 0.987 \times 10^{-14}}}
\]

where H_{HCOOH} and $H_{\text{CH}_3\text{CO}_2}$ (mole L$^{-1}$ atm$^{-1}$) are the Henry’s law constants for formic and acetic acid, K_{a1}'s (mole L$^{-1}$) are the first acid dissociation constants, R is the gas constant (8.314 m3 Pa K$^{-1}$ mol$^{-1}$), T is temperature (K), and Y's are activity coefficients. We used the web version of AIOMFAC (www.aiomfac.caltech.edu) (Zuend et al., 2008; Zuend et al., 2011; Zuend et al., 2012) to compute average Y_{HCOOH} and $Y_{\text{CH}_3\text{CO}_2}$ values of 0.334 and 2.150, respectively. Similar to the case of oxalic acid, we assumed that $Y_{H^+} \cdot Y_{\text{HCOO}^-} = Y_{H^+} \cdot Y_{\text{CH}_3\text{CO}_2^-} = Y_{H^+} \cdot Y_{\text{NO}_3^-}$, and used the ISORROPIA-predicted $Y_{H^+} \cdot Y_{\text{NO}_3^-}$ value of 0.07. Temperature-dependent H_{HCOOH} and $H_{\text{CH}_3\text{CO}_2}$ values are obtained from Sander (2015) using the same methodology employed to determine temperature-dependent $H_{\text{H}_2\text{SO}_4}$ values. We used K_{a1} values at 25 °C (1.78 x 10$^{-4}$ mole L$^{-1}$ for formic acid, and 1.75 x 10$^{-3}$ mole L$^{-1}$ for acetic acid (Haynes, 2014)) for the S curve calculations.

S curves for ε(HCOO$^-$) and ε(CH$_3$CO$_2^-$) calculated based on temperature = 23.4 °C and W_t = 1.6 µg m$^{-3}$ can be seen in Fig. 8. Practically no formic or acetic acids are predicted to partition to the particle phase (relative to oxalic acid) for the range of PM$_2.5$ pH calculated in this study. This is due to significant differences in the Henry’s law constants and acid dissociation constants for the three organic acids. H_{HCOOH} and $H_{\text{CH}_3\text{CO}_2}$ (9540 and 5370 mole L$^{-1}$ atm$^{-1}$, respectively) at 23.4 °C are substantially smaller than $H_{\text{H}_2\text{SO}_4}$ (7.27 x 104 mole L$^{-1}$ atm$^{-1}$) (Sander, 2015). The K_{a1} values for formic and acetic acids (1.78 x 10$^{-4}$ and 1.75 x 10$^{-3}$ mole L$^{-1}$, respectively) are also considerably smaller than the K_{a1} value for oxalic acid (5.62 x 10$^{-2}$ mole L$^{-1}$) (Haynes, 2014). Note
that H_{HNO_3} is between that of $H_{\text{C}_2\text{H}_5\text{O}_4}$ and those of H_{HCOOH} and $H_{\text{CH}_3\text{CO}_2\text{H}}$ (compare Fig. 4b with Figs. 7 and 8).

As shown in Fig. 8, higher than expected levels of formate and acetate are observed in the particle phase. This has also been reported in previous studies (Liu et al., 2012). Laboratory tests showed that the disagreement cannot be explained by positive biases in the particle-phase formate and acetate PILS-HPIC measurements resulting from less than 100% gas removal by the carbon denuder. The measured denuder efficiency for formic acid was $\geq 99.97\%$ (SI section S4). The possibility that formic and acetic acid dimers in the aqueous phase (Schrier et al., 1964; Gilson et al., 1997; Chen et al., 2008) may result in higher than predicted molar fractions of formate and acetate in the particle phase was explored, but also could not explain the observed gas-particle partitioning of these acids (SI section S5). The disagreement could be due to incorrect Henry’s law constants for formic and acetic acids. However, the Henry’s law constants for formic and acetic acid would have to be $\sim 10^4$ times and $\sim 3 \times 10^5$ times larger than their literature values, respectively, in order for their S curves to match our measured molar fractions of formic and acetic acid in the particle phase. In addition, formic and acetic acids may not be internally mixed with most of the other PM$_1$ aerosol components (e.g., SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, $C_2O_4^{2-}$), and thus are not associated with acidic aerosols, as assumed above. They may instead be associated with aerosols largely composed of non-volatile cations and have a pH closer to neutral. More research is needed to explain this disagreement.

4. Summary

Gas- and particle-phase measurements were conducted in Yorkville, Georgia (a rural field site) during fall 2016. The goal of the field study was to understand how NH$_3$ affects particle acidity, and consequently SOA formation through the gas-particle partitioning of semi-volatile inorganic and organic compounds. Since it is a rural site surrounded by forest, agricultural land and CAFOs, this study provided an opportunity for ambient observations in an area impacted by high local emissions of BVOCs and NH$_3$.

NH$_3$ concentrations measured by the NH$_3$-CIMS ranged from 0.7 to 39.0 ppb (average 8.1 \pm 5.2 ppb), which were substantially higher than typical levels in the southeastern U.S.. PM$_1$ inorganic chemical composition, gas-phase HNO$_3$ and NH$_3$ concentrations, temperature and RH
were used as model inputs in the ISORROPIA-II thermodynamic model to calculate PM$_1$ pH and W_i. PM$_1$ pH ranged from 0.9 to 3.8, with an average pH of 2.2 ± 0.6. The measured and predicted HNO$_3$-NO$_3^-$ and NH$_3$-NH$_4^+$ gas-particle partitioning ratios were in good agreement. The measured gas-phase organic acids were estimated to contribute 30 % of the overall WSOC$_g$ on a carbon mass basis, whereas measured particle-phase organic acids comprised 6 % of the total organic aerosol mass concentration and 4 % of the overall WSOC$_p$ on a carbon mass basis. Formic and acetic acids were the most abundant gas-phase organic acids, with averages of 2.2 ± 1.6 and $1.9 \pm 1.3 \, \mu g \, m^{-3}$, respectively. Oxalate was the most abundant particle-phase water-soluble organic acid anion, with an average of $0.07 \pm 0.05 \, \mu g \, m^{-3}$. Measured oxalic acid gas-particle partitioning ratios generally agreed with analytical predictions, which were based on oxalic acid’s physicochemical properties (specifically, its Henry’s law constants, acid dissociation constants and activity coefficients), temperature, W_i and particle pH. The partitioning of oxalic acid to the particle phase is highly sensitive to temperature and W_i. In contrast, the partitioning of formic and acetic acids to the particle phase were higher than predicted for reasons currently unknown.

Although past air regulations have resulted in decreased sulfate, nitrate and ammonium aerosol mass concentrations across the U.S., our study suggests that the current limited regulation of NH$_3$ emissions may result in some increase in the organic aerosol mass concentration due to increased gas-to-particle partitioning of some organic acids. However, in this study, the effect was small since the organic acids comprised a small fraction of the overall organic aerosol mass.

5. Acknowledgements

The authors thank Eric Edgerton (Atmospheric Research and Analysis, Inc.) for providing SEARCH network measurements and meteorological data.

6. Funding

This publication was developed under U.S. Environmental Protection Agency (EPA) STAR Grant R835882 awarded to Georgia Institute of Technology. It has not been formally reviewed by the EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the EPA. EPA does not endorse any products or commercial services mentioned in this publication.
7. Competing financial interests

The authors declare no competing financial interests.

8. Data availability

Data can be accessed by request (rweber@eas.gatech.edu).

9. References

Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise fine particle pH sufficiently to yield nitrogen oxide-dominated sulfate production, Scientific Reports, 7, 10.1038/s41598-017-11704-0, 2017c.

of atmospheric ammonia (NH3) from IASI satellite observations, Atmos. Chem. Phys., 14, 2905-2922, 10.5194/acp-14-2905-2014, 2014.

Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C., Olson, K., Koss, A., Goldstein, A. H., Hering, S. V.,

Figure 1: Measurements by the NH$_3$-CIMS during the second half of the study. (a) Time series of NH$_3$ concentration. The data is displayed as 1-hour averages. (b) Diurnal profiles of NH$_3$ concentration (mean and median) and temperature. Error bars shown are the standard errors. Dates and times displayed are local time. All the concentrations represent averages in 1-hour intervals.
and the standard errors are plotted as error bars. (c) Average NH$_3$ concentration normalized to wind speed (i.e., NH$_3$ concentration (ppb) x wind speed (m s$^{-1}$)) in each 10 degrees bin (red line). The average normalized NH$_3$ concentration is shown as a grey line.

Figure 2: (a) Time series and (b) diurnal profiles of non-refractory PM$_1$ species measured by the AMS. Error bars shown in panel (b) are the standard errors. Dates and times displayed are local time.
Figure 3: (a) Time series and (b) diurnal profiles of ISORROPIA-predicted PM1 pH and W_i. The diurnal profiles of RH and ISORROPIA-predicted H_{atm}^+ are also shown in panel (b). Dates and times displayed are local time. All the data shown here represent averages in 1-hour intervals. Error bars shown in panel (b) are the standard errors.
Figure 4: Analytically calculated S curves of α(NH$_4^+$) and α(NO$_3^-$) and ambient data plotted against ISORROPIA-predicted particle pH for this study, SENEX, SOAS and CalNex. For the ambient datasets, a narrow range of W_1 (1 to 4 μg m$^{-3}$) and temperature (15 to 25 °C) are selected to be close to the analytical calculation input (i.e., $W_1 = 2.5$ μg m$^{-3}$ and temperature = 20 °C). Similar to Guo et al. (2017a), $\gamma_{NH_4^+} = 1$ and $\gamma_{H^+NO_3^-} = \sqrt{\gamma_{H^+} \gamma_{NO_3^-}} = 0.28$ are used for the analytically calculated S curves.
Figure 5: Particle- and gas-phase measurements of (a) formic, (b) acetic, (c) oxalic, (d) malonic, (e) succinic, (f) glutaric, and (g) maleic acids. Particle-phase measurements are shown on the left y axes, while gas-phase measurements are shown on the right y axes. Dates and times displayed are local time. Gas-phase measurements of glutaric and maleic acids are not available.
Figure 6: Diurnal profiles of particle- and gas-phase (a) formic, (b) acetic, (c) oxalic, (d) malonic, (e) succinic, (f) glutaric, and (g) maleic acids. Particle-phase measurements are shown on the left y axes, while gas-phase measurements are shown on the right y axes. All the data shown here represent averages in 1-hour intervals. Error bars shown are the standard errors.
Figure 7: Analytically calculated S curve of $e(C_2O_4^{2-})$ and ambient data from 13 September to 6 October 2016 plotted against ISORROPIA-predicted particle pH. For the ambient data, a range in W_i (0.5 to 4 μg m$^{-3}$) and temperature (15 to 31 °C) are chosen to be close to the analytically calculated outputs. For the analytically calculated S curves, we used $\gamma_{C_2H_4O_4} = 0.0492$ (AIOMFAC predicted). We also assumed that $\gamma_{H^+NO_2^-} = \gamma_{H^+NO_2^-}$, and used the ISORROPIA-predicted $\gamma_{H^+NO_2^-} = 0.265$. The black line is the S curve calculated using the selected time period’s average temperature (23.4 ± 4.0 °C) and W_i (1.6 ± 1.7 μg m$^{-3}$). The grey lines are S curves calculated using one standard deviation from the average temperature and W_i (i.e., temperature = 27.4 °C and $W_i = 0.5$ μg m$^{-3}$ for dotted grey line, temperature = 19.4 °C and $W_i = 3.3$ μg m$^{-3}$ for solid grey line).
Figure 8: Analytically calculated S curves of ε(HCOO$^-$) and ε(CH$_3$CO$_2^-$) (solid black lines) and ambient data from 13 September to 6 October 2016 plotted against ISORROPIA-predicted particle pH (shown in panels (a) and (b), respectively). For the ambient data, a narrow range in W_i (0.5 to 4 µg m$^{-3}$) and RH (20 to 90 %) is chosen to be close to the analytically calculated outputs. For the analytically calculated S curves, we used $\gamma_{HCOOH} = 0.334$ and $\gamma_{CH_3COOH} = 2.150$ (AIOMFAC predicted). We also assumed that $\gamma_{H^+HCOO^-} = \gamma_{H^+CH_3COO^-} = \gamma_{H^+NO_3^-}$, and used the ISORROPIA-predicted $\gamma_{H^+NO_3^-} = \sqrt{\gamma_{H^+HCOO^-} \gamma_{H^+CH_3COO^-}} = 0.265$. The black lines are S curves calculated using the selected time period’s average temperature (23.4 ± 4.0 °C) and W_i (1.6 ± 1.7 µg m$^{-3}$). The grey lines are S curves calculated using one standard deviation from the average temperature and W_i (i.e., temperature = 27.4 °C and $W_i = 0.5$ µg m$^{-3}$ for dotted grey line, temperature = 19.4 °C and $W_i = 3.3$ µg m$^{-3}$ for solid grey line).
<table>
<thead>
<tr>
<th>Campaign</th>
<th>CalNex</th>
<th>SOAS</th>
<th>SENEX</th>
<th>This study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Ground</td>
<td>Ground</td>
<td>Aircraft</td>
<td>Ground</td>
</tr>
<tr>
<td>PM cut size</td>
<td>PM₁</td>
<td>PM₂⁺</td>
<td>PM₁ & PM₂⁺</td>
<td>PM₁</td>
</tr>
<tr>
<td>Year</td>
<td>2010</td>
<td>2013</td>
<td>2013</td>
<td>2016</td>
</tr>
<tr>
<td>Season</td>
<td>(Early Summer)</td>
<td>Summer</td>
<td>Summer</td>
<td>Fall</td>
</tr>
<tr>
<td>Region/Location</td>
<td>SW US</td>
<td>SE US</td>
<td>SE US</td>
<td>SE US</td>
</tr>
<tr>
<td>SO₂⁻, µg m⁻³</td>
<td>2.86 ± 1.70</td>
<td>1.88 ± 0.69</td>
<td>1.73 ± 1.21</td>
<td>2.05 ± 0.80</td>
</tr>
<tr>
<td>NOₓ⁻, µg m⁻³</td>
<td>3.58 ± 3.65</td>
<td>3.74 ± 1.53</td>
<td>0.08 ± 0.08</td>
<td>0.28 ± 0.09</td>
</tr>
<tr>
<td>HNO₃⁻, µg m⁻³</td>
<td>6.65 ± 7.03</td>
<td>4.45 ± 3.59</td>
<td>0.36 ± 0.14</td>
<td>1.35 ± 0.66</td>
</tr>
<tr>
<td>ε(NO₃⁻)</td>
<td>39 ± 16%</td>
<td>51 ± 18%</td>
<td>22 ± 16%</td>
<td>18 ± 6%</td>
</tr>
<tr>
<td>Total NOₓ⁻, µg m⁻³</td>
<td>10.22 ± 9.74</td>
<td>8.19 ± 3.89</td>
<td>0.45 ± 0.26</td>
<td>1.63 ± 0.70</td>
</tr>
<tr>
<td>NH₄⁺, µg m⁻³</td>
<td>2.06 ± 1.67</td>
<td>1.79 ± 0.65</td>
<td>0.46 ± 0.34</td>
<td>1.06 ± 0.25</td>
</tr>
<tr>
<td>NH₃, µg m⁻³</td>
<td>1.37 ± 0.90</td>
<td>1.75 ± 0.61</td>
<td>0.39 ± 0.25</td>
<td>0.12 ± 0.19</td>
</tr>
<tr>
<td>ε(NH₃)</td>
<td>55 ± 25%</td>
<td>71 ± 19%</td>
<td>50 ± 25%</td>
<td>92 ± 71%</td>
</tr>
<tr>
<td>Total NH₄⁺, µg m⁻³</td>
<td>3.44 ± 1.81</td>
<td>2.54 ± 0.89</td>
<td>0.78 ± 0.50</td>
<td>1.17 ± 0.81</td>
</tr>
<tr>
<td>Na⁺, µg m⁻³</td>
<td>\</td>
<td>0.77 ± 0.39</td>
<td>0.03 ± 0.07</td>
<td>\</td>
</tr>
<tr>
<td>Cl⁻, µg m⁻³</td>
<td>\</td>
<td>0.64 ± 0.48</td>
<td>0.02 ± 0.03</td>
<td>\</td>
</tr>
<tr>
<td>RH, %</td>
<td>79 ± 17</td>
<td>87 ± 9</td>
<td>74 ± 16</td>
<td>72 ± 9</td>
</tr>
<tr>
<td>T, °C</td>
<td>25 ± 3</td>
<td>66 ± 3</td>
<td>22 ± 3</td>
<td>24 ± 4</td>
</tr>
<tr>
<td>W, µm³</td>
<td>13.9 ± 18.1</td>
<td>29.8 ± 20.7</td>
<td>5.1 ± 3.8</td>
<td>3.2 ± 2.8</td>
</tr>
<tr>
<td>pH</td>
<td>1.9 ± 0.5</td>
<td>2.7 ± 0.3</td>
<td>0.9 ± 0.6</td>
<td>1.1 ± 0.4</td>
</tr>
<tr>
<td>Reference</td>
<td>(Guo et al., 2017a)</td>
<td>(Guo et al., 2015)</td>
<td>(Xu et al., 2016)</td>
<td>This study</td>
</tr>
</tbody>
</table>

*aOnly during the last week of CalNex.
*bPM₂.₅ was sampled in the first half and PM₁ sampled in the second half of the study. Various parameters were similar in both cases. Crustal components were higher, but are overall generally in low concentrations so the differences had minor effects. For example, PM₂.₅ Na⁺ was 0.06 ± 0.09 µg m⁻³ and PM₁ Na⁺ was 0.01 ± 0.01 µg m⁻³.
Characterization of Aerosol Composition, Aerosol Acidity and Organic Acid Partitioning at an Agriculture-Intensive Rural Southeastern U.S. Site

Theodora Nah,1,2 Hongyu Guo,1 Amy P. Sullivan,2 Yunle Chen,1 David J. Tanner,1 Athanasios Nenes,1,3,4,5 Armistead Russell,6 Nga Lee Ng,1,3 L. Gregory Huey1 and Rodney J. Weber1,*

1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
2Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
3School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
4ICE-HT, Foundation for Research and Technology, Hellas, 26504 Patras, Greece
5IERSD, National Observatory of Athens, P. Penteli, 15236, Athens, Greece
6School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
*Now at School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
Figure S1: Map of the Yorkville field site (marked by the red diamond) and its surrounding areas (from Google Maps). Locations of nearby cattle-grazing pastures (north-west direction) and poultry CAFOs (south-east direction) are marked by the blue and white circles, respectively.
Figure S2: Time series and diurnal profiles of (a and b) O$_3$, (c and d) NO, (e and f) NO$_2$, (g and h) CO, (i and j) HNO$_3$, and (k and l) SO$_2$. Dates and times displayed are local time. All the concentrations represent averages in 1-hour intervals and the standard errors are plotted as error bars. O$_3$, NO, NO$_2$ and CO measurements were provided by the SEARCH network. HNO$_3$ and SO$_2$ were measured by the SF$_6$-CIMS.
Figure S3: Time series and diurnal profiles of (a and b) RH, (c and d) temperature, and (e and f) solar irradiance. Dates and times displayed are local time. In panels b, d and f, the lines within the shaded area represent the average values. The upper and lower boundaries of the shaded areas mark one standard deviation. RH, temperature and solar irradiance measurements were provided by the SEARCH network.
Figure S4: (a) Time series of NH$_3$ concentrations measured by the NH$_3$-CIMS and denuder-based instrument operated by the SEARCH network. (b) Comparison of NH$_3$ concentrations measured by the NH$_3$-CIMS and denuder-based instrument. The red line is the orthogonal distance regression fit to the data. All the data are displayed as 1-hour averages.
Figure S5: Monthly-averaged NH₃ concentrations at the Yorkville SEARCH monitoring site for 2011 to 2016. These measurements were made using the denuder-based instrument operated by the SEARCH network. Concentrations measured during this study (mid-August to mid-October 2016) are shown in blue.
Figure S6: Aerosol (panels a to d) SO$_4^{2-}$, (panels e to h) NO$_3^-$, and (i) NH$_4^+$ comparisons between HR-ToF-AMS, PILS-IC, PILS-HPIC and filters for the entire field study. CDCE values were applied to the raw HR-ToF-AMS data to obtain the mass concentrations shown here (see main text for details). For comparisons between the HR-ToF-AMS, PILS-IC and PILS-HPIC data (panels c, d, g and h), the measurements are averaged over 1 hour intervals. For comparisons with filter data (panels a, b, e, f and i), the HR-ToF-AMS, PILS-IC and PILS-HPIC data are averaged over 24 hour intervals. Orthogonal regression fits are shown. Uncertainties in the fits are 1 standard deviation.
Figure S7: Diurnal profiles of the total nitrate functionality contributed by organic and inorganic nitrates (NO$_3$$_{\text{meas}}$), and the nitrate functionality solely from organic nitrates (NO$_3$$_{\text{org}}$) and inorganic nitrates (NO$_3$$_{\text{inorg}}$). NO$_3$$_{\text{org}}$ and NO$_3$$_{\text{inorg}}$ are estimated using the NO’/NO$_2^+$ ratio method as described by Farmer et al. (2010) and Xu et al. (2015). Similar to Xu et al. (2015), we used a R$_{\text{ON}}$ (defined here as the NO’/NO$_2^+$ ratio for organic nitrates) value of 10 to calculate NO$_3$$_{\text{org}}$ and NO$_3$$_{\text{inorg}}$. All the data shown here represent averages in 1-hour intervals. Error bars shown are the standard errors.
Figure S8: Comparison of predicted PM$_1$ pH values determined using NH$_3$-CIMS and SEARCH network's NH$_3$ measurements as ISORROPIA-II model inputs. The other model inputs are the same. The linear fit is obtained by orthogonal distance regression.
Figure S9: Comparisons of predicted and measured (a) NH$_3$, (b) HNO$_3$, (c) NH$_4^+$, (d) NO$_3^-$, (e) ε(NH$_4^+$), and (f) ε(NO$_3^-$). Orthogonal regression fits are shown. Uncertainties in the fits are 1 standard deviation.
Figure S10: (a) Time series and (b) diurnal profiles of WSOC\textsubscript{p}, WSOC\textsubscript{g} and \(F_p \). Dates and times displayed are local time. All the data shown here represent averages in 1-hour intervals. Error bars shown in panel (b) are the standard errors. \(F_p = \frac{\text{WSOC}_p}{(\text{WSOC}_p + \text{WSOC}_g)} \).
Figure S11: (a) Time series of HR-ToF-AMS organics, WSOC_p and OC. (b) Linear regression correlation between WSOC_p and OC. (c) Linear regression correlation between HR-ToF-AMS organics and OC. All the data shown here represent averages in 1-hour intervals. Note that OC measurements are PM_{2.5}, while WSOC_p and HR-ToF-AMS organics measurements are PM₁. Linear fits are obtained by orthogonal distance regression.
Figure S12: (a) Analytically calculated S curves of $e(C_2O_4^{2-})$ at different times of the day: 00:30, 06:30 and 12:30. These S curves are calculated using values obtained from (b) the diurnal profiles of temperature and W_i. The set of 1-hour average temperatures and W_i at diurnal hours 00:30, 06:30 and 12:30 is used to calculate each S curve shown in panel (a). Similar to Fig. 7, we used $\gamma_{C_2H_2O_4} = 0.0492$ (AIOMFAC predicted) and assumed that $Y_{H^+NO_2} = \sqrt{Y_{H^+}Y_{NO_2}} = \sqrt{Y_{H^+}Y_{C_2H_2O_4}} = 0.265$ (ISORROPIA-II predicted) to generate these S curves.
Figure S13: Analytically calculated S curve of $\kappa(C_2O_4^2-)$ and ambient data from 13 September to 6 October 2016 plotted against ISORROPIA-predicted particle pH. For the ambient data, a narrow range in W_i (0.5 to 4 µg m$^{-3}$) and RH (20 to 90 %) is chosen to be close to the analytically calculated outputs. We divided the ambient data into two sets: panel (a) 08:00 to 19:59, and panel (b) 20:00 to 07:59. For both analytically calculated S curves, we used $\gamma_{C_2H_2O_5} = 0.0492$ (AIOMFAC predicted). We also assumed that $\gamma_{H^+}\gamma_{C_2H_2O_5} = \gamma_{H^+}\gamma_{NO_3^-}$, and used the ISORROPIA-predicted $\gamma_{H^+}\gamma_{NO_3^-} = \sqrt{\gamma_{H^+}\gamma_{NO_3^-}} = 0.265$. In panel (a), we used the average temperature and W_i (25.7 ± 3.8 °C and 1.1 ± 1.1 µg m$^{-3}$) for the data between 08:00 to 19:59 to calculate the S curve (black line). In panel (b), we used the average temperature and W_i (21.3 ± 2.8 °C and 2.1 ± 2.0 µg m$^{-3}$) for the data between 20:00 to 07:59 to calculate the S curve (black line). Grey lines in both panels are S curves calculated using one standard deviation from the average temperature and W_i for the two datasets. In panel (a), the dotted grey line is the S curve calculated using 29.5 °C and 0.5 µg m$^{-3}$.
while the solid grey line is the S curve calculated using 21.9 °C and 2.2 µg m⁻³. In panel (b), the dotted grey line is the S curve calculated using 24.1 °C and 0.5 µg m⁻³ while the solid grey line is the S curve calculated using 18.5 °C and 4.1 µg m⁻³.
Table S1: List of gas-phase acids measured by SF$_6$-CIMS, and their measurement uncertainties and detection limits.

<table>
<thead>
<tr>
<th>Acid</th>
<th>Measurement uncertainty (%)</th>
<th>Detection limits (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric acid</td>
<td>13</td>
<td>0.20</td>
</tr>
<tr>
<td>Formic acid</td>
<td>12</td>
<td>0.03</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>12</td>
<td>0.06</td>
</tr>
<tr>
<td>Oxalic acid</td>
<td>14</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>Butyric acid</td>
<td>14</td>
<td>0.03</td>
</tr>
<tr>
<td>Glycolic acid</td>
<td>22</td>
<td>2×10^{-3}</td>
</tr>
<tr>
<td>Propionic acid</td>
<td>14</td>
<td>6×10^{-3}</td>
</tr>
<tr>
<td>Valeric acid</td>
<td>22</td>
<td>0.01</td>
</tr>
<tr>
<td>Malonic acid</td>
<td>25</td>
<td>7×10^{-4}</td>
</tr>
<tr>
<td>Succinic acid</td>
<td>25</td>
<td>3×10^{-3}</td>
</tr>
</tbody>
</table>

aDetection limits are approximated from 3 times the standard deviation values (3σ) of the ion signals measured during background mode. Shown here are the average detection limits of the organic acids for 2.5 min integration periods which corresponds to the length of a background measurement at a 0.04 s duty cycle for each mass.
S1. SF$_{p}$-CIMS calibration of gas-phase HNO$_3$ and organic acids

Detailed descriptions of post-field laboratory calibrations of HNO$_3$, oxalic, butyric, glycolic, propionic, valeric, malonic and succinic acids can be found in Nah et al. (2018). The response of the CIMS acid signals were measured relative to the sensitivity of 34SO$_2$ in these calibration measurements.

The HNO$_3$ calibration source was a permeation tube (KIN-TEK) whose emission rate was measured using UV optical absorption (Neuman et al., 2003). Solid or liquid samples of oxalic (Sigma Aldrich, ≥ 99 %), butyric (Sigma Aldrich, ≥ 99 %), glycolic (Sigma Aldrich, 99 %), propionic (Sigma Aldrich, ≥ 99.5 %), valeric (Sigma Aldrich, ≥ 99 %), malonic (Sigma Aldrich, ≥ 99.5 %) and succinic (Sigma Aldrich, 99 %) acids were used in calibration measurements. The acid sample was placed in a glass impinger, which was immersed in a water bath at a fixed temperature to provide a constant vapor pressure. For oxalic, butyric, glycolic, propionic and valeric acids, the water bath temperature was set to 0 °C. For malonic and succinic acids, the water bath temperature was set to 40 °C in order to generate large enough gas phase concentrations for calibration. 6 to 10 mL min$^{-1}$ of nitrogen gas (N$_2$) was passed over the organic acid in the glass impinger. This organic acid air stream was diluted with different N$_2$ flows (1 to 5 L min$^{-1}$) to obtain different mixing ratios of the organic acid. We calculated the mixing ratios based on the acid’s emission rate from the impinger or the acid’s vapor pressure. Emission rates of gas-phase oxalic, malonic and succinic acids from the impinger were measured by scrubbing the output of the impinger in deionized water, followed by ion chromatography analysis. We measured the vapor pressures of butyric and propionic acids at 0 °C using a capacitance manometer (MKS Instruments). We estimated the vapor pressures of glycolic and valeric acids at 0 °C using their literature vapor pressures at 25 °C and enthalpies of vaporization (Daubert and Danner, 1989; Lide, 1995; Acree and Chickos, 2010).

S2. WSOC$_p$ and OC

We estimated the water-soluble fraction of OC by comparing the WSOC$_p$ and OC measurements. The time series of organics, WSOC$_p$ and OC are shown in Fig. S11a. As shown in Fig. S11b, WSOC$_p$ is moderately correlated with OC at the site. The orthogonal distance regression fit suggests that 30 % of the OC is water-soluble (estimated measurement uncertainty of 19 %),
which is significantly smaller than the fraction (61 %) measured during the SOAS study (Xu et al., 2017). This difference may be due, in part, to the WSOCp/OC ratio for this study being underestimated. WSOCp are PM1 measurements while OC are PM2.5 measurements. This is in contrast to the SOAS study where both WSOCp and OC are PM2.5 measurements. PM1 organics mass concentration is highly correlated with OC and has an orthogonal distance regression slope of 1.94 (Fig. S9c), which is similar to the value (1.92) reported for the SOAS study (Xu et al., 2017).

S3. C2H2O4- C2O42- partitioning

Here, we show the detailed derivation of equation (4) in that paper. Equilibrium between gaseous C2H2O4 and particle-phase C2O42- involves the dissolution of C2H2O4 into the aqueous phase (assuming particles are liquids), followed by dissociation of the dissolved C2H2O4:

\[C_2H_2O_4(g) \leftrightarrow C_2H_2O_4(aq) \]
\[C_2H_2O_4(aq) \leftrightarrow C_2H_2O_4^{+}(aq) + H^+(aq) \]
\[C_2H_2O_4^{+}(aq) \leftrightarrow C_2H_2O_4^{2-}(aq) + H^+(aq) \]

for which the reaction equilibriums are expressed as follows:

\[H_{C_2H_2O_4} = \frac{y_{C_2H_2O_4}[C_2H_2O_4]}{p_{C_2H_2O_4}} \] (1)
\[K_{a1} = \frac{x_{C_2H_2O_4^{+}}[C_2H_2O_4]}{y_{C_2H_2O_4}[C_2H_2O_4]} \] (2)
\[K_{a2} = \frac{x_{C_2H_2O_4^{2-}}[C_2H_2O_4]}{y_{C_2H_2O_4}[C_2H_2O_4]} \] (3)

where \(H_{C_2H_2O_4} \) (mole L\(^{-1}\) atm\(^{-1}\)) is the Henry’s law constant for oxalic acid, \(K_{a1} \) and \(K_{a2} \) (mole L\(^{-1}\)) are the first and second acid dissociation constants for oxalic acid, \(p_{C_2H_2O_4} \) (atm) is the partial pressure of oxalic acid in the atmosphere, and \(y_i \)'s are activity coefficients. In equations (1) to (3), [x] represents aqueous concentrations (mole L\(^{-1}\)).

The total dissolved C2H2O4 or particle-phase oxalate (C2O4\(^{2-}\)) can be expressed as:

\[[C_2H_2O_4^{2-}] = [C_2H_2O_4] + [C_2H_2O_4^{+}] + [C_2H_2O_4^{2-}] \] (4)
Using equations (1) to (3), \([C_2O_7^2] \) can be expressed as:

\[
[C_2O_7^2] = H_{C_2H_6O_4}P_{C_2H_6O_4} \left(\frac{1}{Y_{C_2H_6O_4}} + \frac{K_{a1}}{Y_{H^+}Y_{C_2H_6O_4}[H^+] + K_{a1}K_{a2}} \right) \tag{5}
\]

The ideal gas law gives:

\[
\varepsilon(C_2O_7^2) = \frac{P_{C_2H_6O_4}}{RT} \tag{6}
\]

where \(R \) is the gas constant, \(T \) is temperature, and \(\varepsilon(x)\) represents concentration per volume of air (mole m\(^{-3}\)). The particle-phase fraction of oxalate can then be expressed as:

\[
\varepsilon(C_2O_7^2) = \frac{[C_2O_7^2]_t}{[C_2O_7^2]_s + [C_2O_7^2]_t} = \frac{[C_2H_6O_4]_t}{[C_2H_6O_4]_s + [C_2H_6O_4]_t} \tag{7}
\]

where \([C_2H_6O_4]_t\) is the particle liquid water content associated with inorganic species (\(\mu\)g m\(^{-3}\); mass per volume of air). Note that the particle liquid water content associated with organic species is not considered in this case, but it can be included. Alternatively, the measured particle water can be used.

By putting equations (5) and (6) into equation (7), \(\varepsilon(C_2O_7^2)\) can be expressed as:

\[
\varepsilon(C_2O_7^2) = \frac{H_{C_2H_6O_4}P_{C_2H_6O_4}W_t}{1 + H_{C_2H_6O_4}P_{C_2H_6O_4}W_t} \left(\frac{1}{Y_{C_2H_6O_4} + K_{a1}Y_{H^+}Y_{C_2H_6O_4}[H^+] + K_{a1}K_{a2}} \right) \tag{8}
\]

At 298 K, \(K_{a1} = 5.62 \times 10^{-2}\) mole L\(^{-1}\) and \(K_{a2} = 1.55 \times 10^{4}\) mole L\(^{-1}\) (Haynes, 2014). Assuming that \(Y_{H^+} = 1\), \(K_{a1}K_{a2} \ll Y_{H^+}Y_{C_2H_6O_4}[H^+]^2\) for the conditions of our study. Hence, equation (8) can be simplified to:

\[
\varepsilon(C_2O_7^2) \approx \frac{H_{C_2H_6O_4}P_{C_2H_6O_4}W_t}{Y_{H^+}Y_{C_2H_6O_4}+H_{C_2H_6O_4}P_{C_2H_6O_4}W_t} \left(\frac{1}{Y_{C_2H_6O_4} + K_{a1}} \right) \tag{9}
\]

After accounting for the SI units and substituting \([H^+] = 10^{-pH}\), equation (9) becomes:
Note that 0.987×10^{-14} comes from using $R = 8.314 \text{ m}^3 \text{ Pa K}^{-1} \text{ mol}^{-1}$, and hence needing to convert 1 atm to 1 Pa and 1 L to 1 µg. We used the average of $H_{C_2H_2O_4}$ values provided by Clegg et al. (1996), Compernolle and Muller (2014) and Saxena and Hildemann (1996) (6.11 x 10^8 mole L^{-1} atm^{-1} at 25 °C), and accounted for the effect of temperature using equation 19 in Sander (2015).

Although K_{a1} also depends on temperature, the K_{a1} value at 25 °C (5.62 x 10^{-2}, (Haynes, 2014)) is used for all the oxalic acid S curve calculations in this paper since equations that determine temperature-dependent K_{a1} values are not available. In addition, the temperatures observed in this study are close to 25 °C.

Figure S12 provides a conceptual picture of how the relationship between $\varepsilon(C_2O_4^{2-})$ and particle pH can change based on the time of the day. Different S curves for $\varepsilon(C_2O_4^{2-})$ are calculated using equation (10) and 1-hour average values obtained from the diurnal profiles of temperature and W_t (specifically at 00:30, 06:30 and 12:30). The S curves are shown to differ substantially due to the diurnal variations of temperature and W_t. For example, a decrease in temperature and an increase in W_t from 00:30 to 06:30 will result in the S curve shifting to the left, which indicates that a substantially higher fraction of gas-phase oxalic acid will partition to the particle phase for a given particle pH at 06:30 compared to 00:30. Higher W_t also increases the fraction of oxalate that partitions to the particle phase due solely to solubility, as seen from the plateau regions at low pH in Fig. S12. Conversely, an increase in temperature and a decrease in W_t from 06:30 to 12:30 will result in a considerably lower fraction of gas-phase oxalic acid partitioning to the particle phase for a given particle pH at 12:30 compared to at 06:30.

S4. PILS-HPIC denuder efficiency

Post-field laboratory experiments were performed to determine if disagreements between the measured and predicted molar fractions of formic and acetic acid in the particle phase were due to positive biases in particle-phase PILS-HPIC measurements as a result of less than 100 % gas removal denuder efficiency and uptake of gases in the PILS liquid system. While experiments were done solely with formic acid, similar results are expected for acetic acid. In these
experiments, liquid formic acid (Sigma Aldrich, ≥ 99 %) was diluted with ultrapure deionized water and placed in a bubbler. A flow of 18 mL min⁻¹ of N₂ was passed through the formic acid in the bubbler. This formic acid air stream was then passed through a nafion dryer and diluted with 52 L min⁻¹ of N₂. Two experiments were performed. In the first experiment, the diluted formic acid air flow was introduced directly into the PILS, which was connected to a Metrohm 761 Compact IC (Metrohm AG). In the second experiment, the diluted formic acid air flow was passed through a 28 cm parallel plate carbon denuder (Sunset Lab) prior to introduction into the PILS-IC system.

Our experiments showed that the IC detected formate when the diluted formic acid air flow was introduced directly into the PILS-IC system. IC analysis revealed that the gas-phase formic acid concentration was ~75 µg m⁻³. However, no formate was detected above the limit of detection (0.02 µg m⁻³) when the diluted formic acid air flow was passed through the carbon denuder prior to introduction into the PILS-IC system. These measurements indicated that the carbon denuder has a ≥ 99.97 % formic acid gas removal efficiency. Hence, these experiments indicate that the carbon denuder removes the formic acid gas completely. We conclude that disagreements between the measured and predicted molar fractions of formic and acetic acid in the particle phase were not due to positive biases in particle-phase formate and acetate PILS-HPIC measurements as a result of less than 100 % gas removal denuder efficiency.

S5. Particle-phase formic and acetic acid dimers

Previous studies have shown that formic and acetic acid dimers may form in the aqueous phase (Schrier et al., 1964; Gilson et al., 1997; Chen et al., 2008). If the aforementioned acid dimers are present in aerosols, equilibrium between gas-phase formic/acetic acid (denoted as HA) and particle-phase formate/acetate (denoted as A) will differ from that predicted assuming no dimers existed, as done in the main text.

The dissolution of HA into the aqueous phase (assuming particles are liquids), followed by the formation of particle-phase dimers (denoted as ((HA)₂)) and dissociation of the dissolved HA:

\[\text{HA (g) } \leftrightarrow \text{HA (aq)} \quad H_{HA} \]

\[\text{HA (aq)} \leftrightarrow \text{(HA)₂ (aq)} \quad K_{diss} \]
\[HA (aq) \leftrightarrow A^- (aq) + H^+ (aq) \quad \]

for which the reaction equilibriums are expressed as follows:

\[H_{HA} = \gamma_{HA}[HA]/p_{HA} \]

(11)

\[K_{dil} = \frac{[\text{HA}]}{[\text{HA}]^2} \]

(12)

\[K_{a1} = \frac{y_{A^-}[\text{HA}]}{y_{HA}[\text{HA}]} \]

(13)

where \(H_{HA} \) (mole \(L^{-1} \) \(\text{atm}^{-1} \)) is the Henry’s law constant for formic or acetic acid, \(K_{dil} \) (mole \(L^{-1} \)) is the first acid dissociation constants for formic or acetic acid, \(p_{HA} \) (atm) is the partial pressure of formic or acetic acid in the atmosphere, \(K_{dil} \) (L mole\(^{-1} \)) is the dimerization constant, and \(\gamma_i \)’s are activity coefficients. In equations (11) to (13), \([x]\) represents aqueous concentrations (mole \(L^{-1} \)).

The total dissolved formate or acetate (\(A^T \)) can be expressed as:

\[[A^T] = [HA] + [A^-] + [(HA)_2] \]

(14)

Using equations (11) to (13), \([A^T]\) can be expressed as:

\[[A^T] = H_{HA}p_{HA} \left(\frac{1}{Y_HA} + \frac{K_{a1}}{Y_HA + Y_{A^-} + Y_{HA}} \right) + \frac{K_{dil}H_{HA}p_{HA}}{Y_{HA}Y_{HA}} \]

(15)

The ideal gas law gives:

\[c(\text{HA}) = \frac{p_{HA}}{RT} \]

(16)

where \(R \) is the gas constant, \(T \) is temperature, and \(c(x) \) represents concentration per volume of air (mole \(m^{-3} \)). The particle-phase fraction of formate or acetate can then be expressed as:

\[\varepsilon(A^-) = \frac{c(A^-)}{c(HA) + c(A^-)} = \frac{[A^-][W_l]}{c(HA) + [A^-][W_l]} \]

(17)

where \(W_l \) is the particle liquid water content associated with inorganic species (\(\mu g \) \(m^{-3} \); mass per volume of air). Particle liquid water content associated with organic species is not considered in this case, but it can be included. Alternatively, the measured particle water can be used.
By putting equations (15) and (16) into equation (17), and accounting for the SI units, \(\varepsilon(A^-) \) can ultimately be expressed as:

\[
\varepsilon(A^-) = \frac{c_{H^+}^{HA} c_{NO_2}^{HA} \left(\frac{1}{c_{H^+}^{HA} c_{NO_2}^{HA} + 10^{-3.7}} \right)}{1 + c_{H^+}^{HA} c_{NO_2}^{HA} \left(\frac{1}{c_{H^+}^{NO_2} c_{NO_2}^{HA} + 10^{-3.7}} \right)} \times 9.87 \times 10^{-14}
\]

(18)

At 298 K, \(K_{a1} \) values are 1.78 x 10^4 mole L\(^{-1}\) and 1.75 x 10^5 mole L\(^{-1}\) for formic and acetic acid, respectively (Haynes, 2014). \(K_{dim} \) values are 0.56 L mole\(^{-1}\) and 0.92 L mole\(^{-1}\) for formic and acetic acid, respectively (Chen et al., 2008). Temperature-dependent \(H_{HA} \) values for formic and acetic acid can be obtained from Sander (2015). \(p_{HA} \) can be calculated from the measured gas-phase formic or acetic acid concentrations (µg m\(^{-3}\)) and the ideal gas law. We used the web version of AIOMFAC (www.aiomfac.caltech.edu) (Zuend et al., 2008; Zuend et al., 2011; Zuend et al., 2012) to compute study-averaged \(\gamma_{HA} \) values of 0.334 and 2.150 for formic and acetic acid, respectively.

We assumed that \(\gamma_{H^+} \gamma_{A^-} = \gamma_{H^+} \gamma_{NO_2} = 0.07 \) for both formic and acetic acid.

Comparison of S curves generated from equation (18) and those generated from equations (5) and (6) in the main text (which assumed that no dimers existed) showed that accounting for the presence of acid dimers increased predicted \(\varepsilon(A^-) \) values by less than 1% for particle pH 0.9 to 3.8 (i.e., pH values in this study). S curves generated by equation (18) also do not match our measured molar fractions of formic and acetic acid in the particle phase. This analysis shows that the molar fractions of formic and acetic acid in the particle phase do not change substantially when the presence of particle-phase acid dimers is accounted for due to the somewhat low \(H_{HA} \) values for formic and acetic acid. Hence, disagreements between the measured and predicted molar fractions of formic and acetic acid in the particle phase are not due to the presence of particle-phase formic and acetic acid dimers.
References

