

- 1 Aerosol acidity in a megacity with high ambient temperature and
- 2 relative humidity of Central China: temporal variation, determining

3 factors and pollution transition effect

- Mingming Zheng ^{1,2,3}, Shaofei Kong ^{2*}, Jianguo Bao ^{1*}, Ke Xu ³, Shurui Zheng ², Guowei Yang ², 4 Jihong Quan³, Lianxin Yuan³, Nan Chen³, Yiping Tian³, Huang Zheng^{1,2}, Jian Wu^{1,2}, Dantong 5 Liu⁴, Delong Zhao⁵, Qin Yan⁶, Tianliang Zhao⁶, Shihua Qi¹ 6 7 1. Department of Environmental Science and Technology, School of Environmental Studies, China University of 8 Geosciences (Wuhan), 430074, Wuhan, China 9 2. Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences 10 (Wuhan), 430074, Wuhan, China 11 3. Hubei Environment Monitoring Center, Wuhan, 430072, China 12 4. School of Earth, Atmospheric & Environmental Sciences, University of Manchester, UK 13 5. Beijing Weather Modification Office, Beijing 100089, China 14 6. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, 15 Nanjing University of Information Science and Technology, Nanjing 210044, China
- 16 Correspondence to: Shaofei Kong (kongshaofei@cug.edu.cn) or Jianguo Bao
- 17 (bjianguo888@126.com)

18 Abstract: Aerosol acidity affects the chemical transformation of aerosols and subsequent haze 19 formation. High resolution (1-h) observation of water-soluble inorganic ions in fine particles, 20 gaseous pollutants, and meteorological parameters was conducted from September 2015 to August 21 2016 at Wuhan, a megacity of Central China with high relative humidity and ambient temperature, 22 compared with north Chinese cities. By adopting thermodynamic model ISOROPPIA-II, the 23 aerosol acidity for different time scales, pollution episodes, and air mass directions was calculated. 24 Aerosols in Wuhan were moderate acidic, with pH averaged as 3.30 ± 0.49 . The aerosol acidity was 25 higher in July (pH as 2.64 ± 0.31), September (pH as 2.75 ± 0.30) and August (pH as 2.79 ± 0.29), 26 and lower in January (pH as 3.77 ± 0.28) and March (pH as 3.70 ± 0.16). It decreased with the air pollution increasing, with the pH values of 3.07 ± 0.45 , 3.63 ± 0.27 and 3.84 ± 0.22 for clean, 27 transition and polluted episodes, respectively. The air masses in Wuhan transported from North 28 29 China exhibited higher aerosol acidity, with pH averaged as 3.17-3.22. The unique environmental 30 and meteorological conditions (high humidity, annual averaged RH as 0.74 ± 0.13) lead to excess ammonium (on average of $6.06 \pm 4.51 \ \mu g \ m^{-3}$) and abundant aerosol water content (AWC, on 31 32 average of $71.0 \pm 82.8 \ \mu g \ m^{-3}$) in Wuhan, which can explain the lower PM_{2.5} acidity in Wuhan than 33 other megacities of China. At lower AWC level (less than ~15 µg m⁻³), the particle pH showed a 34 decreasing trend with AWC increased. When the AWC continuous increased from \sim 15 to \sim 380 µg 35 m³, there was an obvious increase of particle pH. Then no significant growth of pH was found when 36 AWC was higher than \sim 380 µg m⁻³. With atmospheric RH increasing, the aerosol pH exhibited 37 decreasing trend firstly and then increased, with the turning point RH as about 0.48. There was a logarithmic growth of aerosol pH with total NH_x ($NH_3 + NH_4^+$) increasing. From the fitted 38 39 logarithmic curve, the aerosol pH of Wuhan was at the range of pH rapid growth stage with NH_x 40 increasing, indicating that the control of ammonia emission in Wuhan could be an effective way to 41 reduce the aerosol pH and further mitigate air pollution. This paper firstly obtained the aerosol acidity properties at a megacity under abundant ammonium and high humidity with high time-42 43 resolution, which is an important supplementary for the current aerosol acidity research around the 44 world.

45 Keywords: water-soluble inorganic ions; aerosol acidity; high time-resolution; pollution episodes;

46 aerosol water content; excess ammonium

47 1 Introduction

Aerosol acidity is one of the key factors affecting the organic (Jang et al., 2002; Surratt et al., 48 2007; Cao and Jang, 2010; Pathak et al., 2011) and inorganic secondary aerosol formation 49 50 (Underwood et al., 2001; Manktelow et al., 2010; Wang et al., 2016a), by gas-aerosol partitioning (Grassian, 2001; Keene et al., 2004), acid-catalyzed heterogeneous reaction (Jang et al., 2002; 51 52 Nemitz et al., 2004; Xu et al., 2015a) and migration of redox minerals and metals (Meskhidze et al., 53 2003), etc. Acidic aerosols have the capability to reduce atmospheric visibility (Watson, 2002), disturb atmospheric radiative balance (Crumeyrolle et al., 2008), threaten human health and 54 deteriorate ecosystems (Schindler, 1988; Larssen et al., 2006; Johnson et al., 2008). Recently, 55 aerosol acidity has raised wide attention and controversy in view of its vital role in haze formation 56 57 of China (Liu et al., 2017; Tian et al., 2018; Zhou et al., 2018).

58 The aerosol acidity exhibited spatiotemporal discrepancy, owing to the diversities of source 59 emission and meteorological conditions. Currently, the research of aerosol acidity in China is 60 becoming a hotspot, with studies mainly concentrated in northern cities like Beijing (He et al., 2012; 61 Yang et al., 2015; Cheng et al., 2016; Wang et al., 2016a), eastern coastal cities like Shanghai 62 (Pathak et al., 2009), southern coastal cities including Guangzhou (Huang et al., 2011) and 63 Hongkong (Pathak et al., 2003; Pathak et al., 2004a; Yao et al., 2006; Yao et al., 2007), and western cities of Chongqing (He et al., 2012) and Lanzhou (Pathak et al., 2009). One study has been 64 65 conducted at a background mountainous site (Zhou et al., 2012). In general, aerosol acidity in China was lower than those in Europe (Bougiatioti et al., 2016) and United States (Weber et al., 2016). He 66 et al. (2012) indicated that the aerosol acidity in North China was lower than that in the south. Even 67 68 in the same city, the aerosol acidity was different. He et al. (2012) observed that fine particles (PM2.5) 69 in Beijing was strong acidic with pH ranging in 0-3; Liu et al. (2017) calculated the pH value of 70 $PM_{2.5}$ in Beijing as about 4.2; Wang et al. (2016a) indicated that $PM_{2.5}$ in Beijing was completely neutralized with pH as about 7. One of the key factors for these diversities is that these studies were 71 done at a given period with different pollution levels. Liu et al. (2017) found that along with the 72 pollution levels increased, the aerosol pH values decreased for a typical haze formation processes 73 74 in Beijing. Former researchers highlighted the importance to obtain the aerosol acidity under 75 different time scales and different pollution episodes, which is important to better identify the formation mechanism of air pollution at a certain region. Till now, few studies were reported to 76

analyze the aerosol acidity for a long-time period, owing to the absence of online high-resolution
dataset for gaseous pollutants and ionic components synchronously. It may limit the understanding
of how the aerosol acidity affects the atmospheric chemistry, in view of a pollution transition event,
monthly variation and diversities for different air mass trajectories.

The molar ratio of cations to anions is always used to estimate aerosol acid-alkaline property qualitatively (Yao et al., 2006; Hennigan et al., 2015; Wang et al., 2016a), depending on the selected ionic species (He et al., 2012). Thermodynamic models such as ISORROPIA (Nenes et al., 1998; Fountoukis and Nenes, 2007), E-AIM (Carslaw et al., 1995; Clegg et al., 1998; Friese and Ebel, 2010) and SCAPE (Meng et al., 1995) were developed and widely adopted to calculate aerosols acidity quantitatively, with outputs of pH, [H⁺] and aerosol water content (AWC), though inherent imperfect existed for these models (Wang et al., 2018).

88 AWC exerts a driving role in the variation of aerosol acidity (Liu et al., 2017). Zhou et al. 89 (2012) indicated high water content can cause HSO_4^- dissociating to form free H⁺ when RH > 0.65. 90 In addition, AWC serves as a medium for aqueous phase reaction of SO₂ oxidation (Pilinis et al., 91 1989; Ervens et al., 2011; Cheng et al., 2016), which can also lead to the increase of aerosol acidity 92 (Seinfeld et al., 2006). However, high water content of aerosols in return may dilute the hydrogen 93 ion concentrations and increase pH value. Guo et al. (2015) showed that the diurnal variation of pH was mainly driven by AWC dilution. It was observed that the temporal trends of particle pH were 94 95 in accordance with AWC rather than H⁺, and the aerosol acidity added with the decrease of AWC in Beijing, despite the decreasing of H⁺ (Liu et al., 2017). AWC was not only closely associated with 96 97 atmospheric relative humidity (RH) and temperature (Temp) (Guo et al., 2015), but also well 98 correlated with secondary inorganic salt (Cheng et al., 2016) which will again assimilate more water 99 because of hygroscopicity (Engelhart et al., 2011; Bian et al., 2014). So is there an inflection point 100 of AWC between the promoting role through the aqueous phase formation and the inhibition role 101 by the dilution effect on the acidic inorganic ions under a specific circumstance? Till now, as obvious studies are always conducted in a limited season or pollution episodes (Zhou et al., 2012; Bian et 102 al., 2014; Guo et al., 2015; Cheng et al., 2016; Wang et al., 2016a; Liu et al., 2017; Wang et al., 103 104 2018), no studies have listed observed evidence directly to answer this question.

Except for AWC, ammonia and ammonium were also regarded as determining factors on aerosol acidity (Liu et al., 2017), which were the main species to neutralize acid (Sun and Wexler,

107 1998; Wang et al., 2015). The ammonium-to-sulfate ratio was used to describe the ammonium-rich 108 or ammonium-poor conditions (Pathak et al., 2004a; Huang et al., 2011; Kumar and Sunder Raman, 109 2016), with the ratio higher than 1.5 implying an ammonia rich atmosphere (Kumar and Sunder 110 Raman, 2016). Pathak (2004) indicated that pH increased with increasing ammonium-to-sulfate ratio. The correlation of NH_4^+ with SO_4^{2-} and NO_3^- also can be used to judge the ammonia rich or 111 poor status (Kumar and Sunder Raman, 2016). Recently, Liu et al. (2017) concluded that the excess 112 113 ammonia resulted in the pH increasing by logarithm growth form in north China. Under ammoniarich air, positive correlation between excess NH_4^+ and NO_3^- was found (Pathak et al., 2009). 114 Therefore, for the regions with abundant agricultural activities which are the main emission sources 115 116 for ammonia, the relationship of ammonia, aerosol acidity and air pollution needs a clear illustration. 117 Wuhan and its surrounding cities (WSC) belong to the key regions in the State Council's Action 118 Plan on Prevention and Control of Atmospheric Pollution (Figure 1a). WSC has become the most 119 polluted region with high PM2.5 concentrations except for the regions of Beijing-Tianjin-Hebei (Qi 120 et al., 2017; Gao et al., 2018), Yangtze River Delta (Shen et al., 2015; Chen et al., 2017) and Sichuan 121 Basin (Wang et al., 2017a; Ning et al., 2018) (Figure 1b). Meanwhile, as WSC is located in the 122 center of China, the air masses from other different polluted regions all can impact the aerosol 123 concentrations and compositions. At the west of WSC, there locates JiangHan Plain (JHP) which is a key food-cotton base of China. The WSC and surrounding JHP hold high ammonium emission 124 125 intensity (Huang et al., 2012; Xu et al., 2015b; Wang et al., 2018). At the northeast and northwest of WSC, there locates TongBai Mountain and DaBie Mountain (Figure 1c), which directly decided 126 the transportation routes of air masses in cold period from North China Plain when the north winds 127 128 dominated (Figure 1b). Wuhan belongs to subtropical monsoon climate, and owns hundreds of lakes 129 (Figure 1d), which lead to its higher ambient temperature and atmospheric relative humidity (RH). 130 The unique geographical, emission and meteorological conditions implied that the aerosol acidity 131 and its role in air pollution transition should be quite different from other regions, especially for the 132 recently studied cities in North China. Meanwhile, the high RH (annual mean 0.74, in this research, all the $PM_{2.5}$ compositions and meteorological data for rainy day were excluded), temperature 133 134 (annual mean 292.2K) and serious air pollution in Wuhan provide an ideal site to identify how the RH, AWC and precursor gases affect aerosol acidity. 135

136 Therefore, based on one-year continuous observation of hourly water-soluble inorganic ions in

- PM_{2.5} and precursor gases from September 2015 to August 2016, PM_{2.5} acidity was calculated by thermodynamic model ISOROPPIA- II. The variation of acidity in different months, pollution episodes and for different air mass transportation directions were discussed and possible reasons were investigated. The results are urgently and helpful to understand the relationship of chemical composition-aerosol acidity-air pollution in different time scales and to enrich the formation mechanism of serious air pollution out of North China Plain.
- 143 2 Method and modeling

144 2.1 Sampling and instrumentation

The observation site (30.53° E, 114.36° N) located in the city center (Figure 1d). It is about 20 145 m above ground and surrounded by commercial/residential mixed area with no obvious industrial 146 sources. Water-soluble ions (WSI) including SO42-, NO3-, Cl-, NH4+, Na+, K+, Ca2+ and Mg2+ in 147 PM_{2.5} and atmospheric NH₃, HCl, HNO₃, and HNO₂ were synchronously measured by an online ion 148 149 chromatography analyzer with one-hour resolution by Marga ADI 2080 (Monitor for Aerosols and 150 Gases in Ambient Air). The detailed description of the equipment can be found in previous studies 151 (Rumsey et al., 2014). One-year continuous monitoring was done from September 2015 to August 152 2016, except data missing due to equipment maintain in February. Concurrently, hourly PM2.5, O2, 153 SO₂, NO₂, and O₃ were observed by automatic on-line monitoring instrument, with the methods of β-ray, ultraviolet fluorescence, chemiluminescence and ultraviolet absorption, respectively. The 154 155 synchronous meteorological data including relative humidity (RH) and temperature (Temp) were obtained from local meteorological observatory. Ionic equivalent ratio was employed to a 156 preliminary qualitative estimation of the particle neutralization and acidity. The ratio of total cations 157 158 and anions were calculated as following (Zhang et al., 2007; Tanner et al., 2009; Hennigan et al., 159 2015):

160 $Cation / Anion = (NH_4^+ + 2*Ca^{2+} + Na^+ + 2*Mg^{2+} + K^+) / (2*SO_4^{2-} + NO_3^- + Cl^-)$ (1)

161 2.2 Fine particle acidity calculation

Thermodynamic model ISOROPPIA- II (http://nenes.eas.gatech.edu/ISORROPIA) was employed to calculate in-situ aerosol acidity. It can predict which species exist in the gas or aerosol phase and can calculate their concentrations at chemical equilibrium status, including H⁺, water content and aerosol pH, with the inputs of SO₄²⁻, NO₃⁻, NH₄⁺, Cl⁻, K⁺, Ca²⁺, Na⁺, and Mg²⁺, as well

- 166 as temperature and relative humidity. In this study, the forward mode with metastable state was
- adopted as its better performance (Fountoukis and Nenes, 2007; Guo et al., 2015; Hennigan et al.,
- 168 2015; Guo et al., 2016; Weber et al., 2016). Well correlations between the predicted and observation
- 169 data were found in Figure 2.

170 2.3 Trajectory clustering

Backward trajectory analysis by HYSPLIT model (Version 4) was used to explore the influence of air masses originated from different directions on the aerosol acidity of Wuhan. 72 h backward trajectories were calculated for 4 times each day (00:00, 06:00, 12:00 and 18:00), with the starting height at 200 m above ground. The input meteorological data was in 6-h hourly resolution acquired from NOAA/ARL. The trajectories were clustered by the clustering analysis procedure provided in the HYSPLIT user's guide.

177 3 Results and discussions

178 3.1 General characteristic of WSI in Wuhan

As listed in Table 1, the annual average mass concentration of PM_{2.5} in Wuhan was 63.4 ± 35.2 µg m⁻³, exceeding the annual average secondary standard of China Ambient Air Quality ($35 \mu g m^{-3}$) ³). PM_{2.5} showed the maximum concentration in winter ($92.6 \pm 45.6 \mu g m^{-3}$) and the minimum value in summer ($37.3 \pm 12.0 \mu g m^{-3}$), which was consistent with former researches. Total WSI concentrations accounted for 70% of PM_{2.5} mass concentration on average, also higher in winter and lower in summer.

185 The dominated ions were SO₄², NO₃ and NH₄⁺ (SNA), with a proportion up to 91-93% and 55-73% in total ions and PM2.5, respectively. The ratios of SNA to PM2.5 in Wuhan were higher than 186 187 those in urban sites of Beijing (28%) (Zheng et al., 2005), Chongqing (30%) (He et al., 2012), 188 Shanghai (36%) and Guangzhou (27%) (Yang et al., 2011). The high relative humidity in Wuhan 189 (annual average as 0.74) may be one of the key factors. SO_4^{2-} production can increase along with RH increasing due to the aerosol hygroscopicity and aqueous phase oxidation (Wang et al., 2016a). 190 The SNA concentrations were highest in winter $(61.1 \pm 35.1 \ \mu g \ m^{-3})$ and lowest in summer $(24.6 \pm$ 191 12.7 μ g m⁻³), then followed by spring (43.4 ± 21.0 μ g m⁻³) and fall (32.4 ± 14.2 μ g m⁻³). It was 192 193 different from the results in North China Plain (NCP), Sichuan Basin (SB), Yangtze River Delta and Pearl River Delta (Fu et al., 2016), where the lowest SNA proportions were found in spring or fall. 194 195 The meteorological condition and precursor emissions, can explain the seasonal variation pattern

(Fu et al., 2016). Although there was higher sulfate formation rate in summer in Wuhan, the SO₂ in
summer was low to 4.7 μg m⁻³ (Table 2). The low SNA concentrations in summer were mainly
related to the lower nitrate and ammonium formation rate (Table 2) and high atmospheric boundary
layer height (Figure 4a).

 NO_3 concentrations exhibited the highest concentration in winter (25.3 µg m⁻³) and the lowest 200 in summer (5.6 µg m⁻³), with winter/summer ratio of 4.5. SO₄²⁻ concentrations also exhibited the 201 same seasonal variation. Lower sulfate concentration in summer was contrary to previous studies 202 (Tai et al., 2010; Yang et al., 2011; Hand et al., 2012), which indicated that strong atmospheric 203 204 oxidation (higher O₃ concentration in summer), higher temperature and relative humidity were beneficial to sulfate formation from SO2. While in this study with lower precursor concentration 205 and higher boundary layer height, relatively low concentrations of sulfate and nitrate in summer 206 207 were found in Wuhan.

208 The averaged NH₄⁺ mass concentration was 10.4 μ g m⁻³, higher than those in Beijing (7.4 μ g 209 m⁻³) (He et al., 2012), Chongqing (7.9 μg m⁻³) (He et al., 2012), Guangzhou (5.2 μg m⁻³) (Lai et al., 2016), Shanghai (6.0 μg m⁻³) (Wang et al., 2016b), Tianjin (6.9 μg m⁻³) (Shi et al., 2017) and Xi['] an 210 211 $(7.6 \,\mu g \,m^{-3})$ (Wang et al., 2014). NH₄⁺ exhibited higher concentrations in winter $(15.4 \pm 8.9 \,\mu g \,m^{-3})$ 212 and lower concentrations in summer $(6.81 \pm 3.42 \ \mu g \ m^{-3})$ in Wuhan. The reason may be that under high temperature and strong solar insolation in summer, ammonium preferred to exist in the form 213 214 of gas phase due to the thermal equilibrium. Strong correlation was found between NO3 and NH4⁺ 215 $(R^2 = 0.94, p < 0.05)$, as well as SO₄²⁻ and NH₄⁺ (R² = 0.92, p < 0.05), implying that (NH₄)₂SO₄ and NH₄NO₃ could be the main existing forms in PM_{2.5} of Wuhan, similar to former cities (Han et al., 216 217 2016).

218 Other species including K⁺, Ca²⁺, Na⁺, Mg²⁺, and Cl⁻ constituted a minor fraction, totally accounting for 7-9% of total ions. The Cl⁻ concentration was higher, and subsequently followed by 219 K⁺, Ca²⁺, Na⁺, and Mg²⁺. Higher Cl⁻ concentrations were measured in winter (2.87±1.25 μg m⁻³), 220 approximately two or three times than those in other seasons. The Na⁺/Cl⁻ ratio in winter (0.09) was 221 obviously lower than that of seawater (0.557) (Hegde et al., 2016), reflecting the dominance of other 222 sources for Cl⁻ instead of sea salt. The weak correlation ($R^2 = 0.20$, p < 0.05) between Cl⁻ and Na⁺ 223 verified this. Furthermore, Cl⁻ was positively (p < 0.05) correlated with NO₃⁻ ($R^2 = 0.78$), SO₄²⁻ (R^2 224 = 0.55), NH_4^+ ($R^2 = 0.71$) and K^+ ($R^2 = 0.59$), which were mainly derived from anthropogenic 225

226 emissions. Therefore, Cl was inferred to be associated with regional transport of domestic coal and 227 biofuel combustion emission for heating from North China (Yin et al., 2014). The dominated north wind in Wuhan at winter favored it (Figure 4). 228 229 K⁺ in Wuhan was not abundant compared with those in Shanghai (Wang et al., 2016b), Beijing (Han et al., 2016) and coastal areas (Yin et al., 2014). It was moderately correlated with NO_3 ($R^2 =$ 230 0.64, p < 0.05), SO₄²⁻ (R² = 0.62, p < 0.05), NH₄⁺ (R² = 0.63, p < 0.05) and Cl⁻ (R² = 0.59, p < 0.05), 231 indicating homology source of them. The highest K⁺ in winter of Wuhan can be related to the wood 232 burning (Fourtziou et al., 2017) for domestic heating in NCP (Zhang et al., 2017; Zhu et al., 2017). 233 234 High intensity discharge of K⁺ from fireworks and crackers in Spring Festival periods could not be ignored, which usually occurred in January or February (Kong et al., 2015). 235 Ca²⁺ was commonly derived from soil or crustal dust and construction activities (Hegde et al., 236 2016). Ca²⁺ in Wuhan showed slightly higher value in winter and spring than those in summer and 237 fall, similar to previous studies (Zhao et al., 2010; He et al., 2012). Ca²⁺ was only significantly 238 correlated with Mg^{2+} ($R^2 = 0.80$, p < 0.05). Different from Beijing (Han et al., 2016) and Xi' an 239 (Wang et al., 2014), no correlations for Ca²⁺-NO₃, Ca²⁺-SO₄²⁻, Mg²⁺-NO₃ and Mg²⁺-SO₄²⁻ were 240 241 found in Wuhan, indicating different atmospheric chemical processes between northern and central 242 Chinese cities. In north China, the mineral dust fraction of PM2.5 was higher (Tao et al., 2017), and was involved in atmospheric processes by internally mixing with secondary aerosols (Cheng et al., 243 244 2016; Wang et al., 2017b).

245 3.2 Aerosol acidity in Wuhan

Figure 3a shows the daily variation of PM_{2.5} aerosol acidity in Wuhan. The daily pH values 246 247 ranged between 2.21 - 4.19, with an average of 3.30, indicating moderate acidic in Wuhan. The 248 lowest pH value occurred in summer, averaged as about 2.84. The pH values in winter were higher 249 as about 3.71. The AWC in autumn, winter, spring, and summer were 66.9, 118.5, 66.5 and 36.2 µg 250 m^{3} , respectively, which can explain the seasonal variation of pH values primarily. There is a double 251 effect of AWC on aerosol pH, including the enhancement of bisulfate dissociation to form free H⁺ through the hydrolysis process and dilution effects of proton concentrations in droplets (Pathak et 252 253 al., 2004a; Zhou et al., 2012). At higher RH, the dilution effect on the molarity of acidic species was more important than H⁺ releasing from bisulfate (Pathak et al., 2004a). Previous studies showed that 254 255 aerosol pH varied in consistency with AWC (Liu et al., 2017). From September to January, the

aerosol pH gradually increased from 2.75 to 3.77 (Figure 5) along with the increasing of AWC,
which buffered the aerosol acidity. From May to August, when AWC decreased from 80.8 to 32.4
µg m⁻³, the pH decreased 0.65 units from 3.44 to 2.79. The H⁺ concentrations generally exhibited
an opposite variation of pH value except for November when more H⁺ did not result in lower pH
value (3.53) because of higher AWC (151.7 µg m⁻³).
The ratios of cations to anions were also listed in Figure 3(c). It could be found that there was
no obvious relationship between pH and cations/anions ratios. The annual mean cations/anions ratio

no obvious relationship between pH and cations/anions ratios. The annual mean cations/anions ratio
was near unity (1.10), reflecting completely neutralized, which was not in accordance with the
prediction by thermodynamic models. It might be resulted from the negligence in considering the
particle liquid water and dissociation state of individual ion (Guo et al., 2015). Thus, ionic molar
ratios could not be the proxy for discussing aerosol acidity.

Table 3 compared the aerosol acidity of Wuhan with other cities. Aerosols mostly exhibited acidic around the world. Particle pH in Wuhan was higher than most of the other cities. As discussed above, the specific climate, geography, and emissions may explain it. Besides, aerosol acidity was dynamically changing. The particle pH increased in last decade of Beijing as Table 3 shown, which might be due to the increase of atmospheric NH₃ and decreasing of SO₂ (Meng et al., 2011; Liu et al., 2013). Detailed discussion about the key impacting factors on aerosol acidity is listed below.

273 3.3 Key driving factors for aerosol acidity variation

274 As mentioned above, AWC exerted an important role in aerosol acidity variation. Figure 6a 275 exhibited the relationship between pH with AWC. From the fitting curve, the particle pH firstly showed a decreasing trend with AWC increased under much lower AWC level (less than about 15 276 277 μ g m⁻³). Then, with the AWC increasing from ~15 to ~380 μ g m⁻³, the dilution effect on aerosol 278 acidity gradually dominated, which offset or even surpass the liquid-phase reaction and formation 279 of secondary inorganic ions, causing the obvious and quick increase of particle pH. The SNA contents exhibited its peak value when the AWC increased to about 380 µg m⁻³, then with the AWC 280 281 increasing, SNA contents decreased (Figure 6d). When AWC > 380 μ g m⁻³, along with the increasing of AWC, a slowly increasing and gradually no significant growth of pH was found. 282 283 It was favored by the SNA-RH correlation coefficient variations with RH increasing (Figure 7b)

- and relationship of AWC-RH (Figure 7c), SNA-AWC (Figure 7d) and pH-RH (Figure 7e). Lower
- 285 RH corresponded to lower AWC (Figure 7c). Under lower RH (< 0.48) and AWC ($< 15 \mu g m^{-3}$)

286 values, the AWC dilution effect on aerosol acidity was negligible, and the dry particle quickly 287 deliquesced and release H⁺, resulting in the decrease of pH. The weaker or even negative correlation 288 coefficient of SNA with RH was found when RH varied in 0.48- 0.75, accompanied with AWC and 289 pH quick increasing, which reflected that the dominated role of dilution effects of AWC. As discussed above, SNA content reached its peak values when the AWC increased to about 380 µg m⁻ 290 291 ³, with corresponding RH as about 0.75-0.90, reflecting active liquid phase reaction, and resulting in buffering effect on pH increase. That might be the reason for the pH slowly growth when AWC 292 was at \sim 380 µg m⁻³. Then when RH was higher than 0.95, with the corresponding AWC was greater 293 294 than 380 µg m⁻³, obviously negative correlation between RH and SNA was obtained ($R^2=0.59$, p < 0.05), and it implied the dominated role of buffering effect of AWC, which lead to the continuously 295 296 increasing of pH and gradually slowdown.

297 AWC is closely related to atmosphere temperature and relative humidity (RH) (Bian et al., 298 2014). High RH can facilitate the production of secondary inorganic salt, which will again assimilate 299 more water because of hygroscopicity (Engelhart et al., 2011; Bian et al., 2014). However, in this 300 study the RH was higher in July, August and September, while corresponding AWC were nearly 301 the lowest (Figure 5), which may be resulted from the higher water evaporation from aerosol 302 (Bougiatioti et al., 2016) due to the high temperature in summer period. It could be seen there was an exponential relationship between AWC and RH ($R^2 = 0.71$, p < 0.05) (Figure 6c). The correlation 303 304 coefficient of atmospheric RH and fine particle pH in Wuhan was 0.39 (p < 0.05) by polynomial 305 fitting (Figure 6e), showing that pH decreased with RH when RH was less than about ~0.48, and 306 then pH increased with RH increasing when RH was higher than about 0.48. Atmospheric 307 temperature can also pose impacts on AWC and pH (Figure 6f). Generally, lower temperature was 308 corresponded to the higher AWC and pH values. When the temperature was higher than about 303 K (about 30 °C), the AWC was all less than \sim 380 µg m⁻³, and particles were more acidic. Figure 6e 309 310 also showed that there were no obvious relations between SNA/PM2.5 ratio with pH. It illustrated 311 that the particle acidity or pH could be affected by other components except for inorganics, such as organics whose role in aerosol acidity can not be ignored (Wang et al., 2018). 312

Except for the AWC, RH and temperature, the excess ammonia or ammonium was also proved
to affect aerosol acidity (Liu et al., 2017). Different from southeastern US (Weber et al., 2016)
where the aerosols usually presented strong acid, the higher pH in this study was also likely related

316 with abundant ammonia and ammonium. As discussed above, the ammonium in Wuhan was at a

317 higher level in China.

Ammonium was the primary basic species to neutralize acid (Seinfeld and Pandis, 2006) and it preferred to neutralize sulfate first, then reacted with nitrate when redundant, owing to the higher salting out efficiency of SO_4^{2-} than NO_3^{-} (Pathak et al., 2004a). A critical molar ratio of NH_4^+ to SO_4^{2-} was suggested as 1.5, implying SO_4^{2-} was completely neutralized and NO_3^{-} was stabilized by NH_4^+ (Pathak et al., 2004b; Huang et al., 2011). When the NH_4^+/SO_4^{2-} ratio was higher than 1.5, it indicated an ammonia rich atmosphere, and the excess NH_4^+ could be calculated as:

324
$$excess NH_4^+ = \left(\frac{[NH_4^+]}{[SO_4^{2-}]} - 1.5\right) * [SO_4^{2-}]$$
 (2)

In Figure 7a, the molar ratio of NH4⁺ to SO4²⁻ in Wuhan mainly varied from 2:1 to 6:1, indicating 325 that SO₄² was completely neutralized and mainly presented in the form of (NH₄)₂SO₄. Along with 326 the increase of NH4⁺/SO4²⁻ ratio, NO3⁻ production increased, and it preponderated SO4²⁻ formation 327 The correlation coefficient between NH_4^+/SO_4^{2-} and NO_3^-/SO_4^{2-} in Wuhan was 0.85. In adequate 328 329 ammonium condition, excess NH_4^+ was well correlated with NO_3^- ($R^2 = 0.95$) (Figure 7b), which 330 was in consistency with previous studies (Pathak et al., 2009). The correlation of NH4⁺ with SO4²⁻ 331 and NO₃⁻ can also be used to judge the rich or poor status of NH₄⁺, which was not obvious in poor NH₄⁺ condition (Kumar and Sunder Raman, 2016). In Wuhan, the positive significant correlation 332 333 between NH_4^+ vs SO_4^{2-} and NH_4^+ vs NO_3^- verified the NH_4^+ rich conditions. The excess ammonium may be in the form of NH₄Cl, with the high correlation between NH₄⁺ and Cl⁻ ($R^2 = 0.71$). 334

Figure 8a showed the relationship between ammonium neutralized pH (with no excess NH4⁺ 335 336 case) and pH variation (\triangle pH, difference between the presence and absence of excess NH₄⁺). The 337 distinct negative correlation implied that higher aerosol acidity would be more susceptible by excess 338 NH_4^+ . Based on current excess NH_4^+ concentrations, simulating NH_4^+ decreased by 0.5, 1, 1.5, 2, 2.5 times of excess NH4⁺, and increased by 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 339 35, 40, 45 and 50 times of excess NH4⁺. The predicted corresponding pH showed logarithmic growth 340 with total NH_x ($NH_3 + NH_4^+$), implying that the pH increase insensitive gradually with NH_x 341 342 increasing.

343 The NH_x concentrations of Wuhan were in the range of $2.27 - 48.3 \,\mu g \, m^{-3}$, averaged as 19.2 μg 344 m⁻³, which still located in the range for the rapid growth stage of pH (Figure 8b). It was verified by

the positive relationship between \triangle pH and the excess NH₄⁺ (R² = 0.45, p < 0.05). However, it was 345 346 different from the curve in Beijing which performed a logarithmic relationship (Liu et al., 2017). The same excess NH4⁺ concentrations in Beijing and Wuhan exhibited different stage of pH change, 347 348 and higher excess NH4⁺ was afforded in Wuhan than Beijing for reaching the inflection point when the excess NH₄⁺ increasing held little influence on pH change. Thus, it again confirmed that the 349 350 aerosol acidity in Wuhan of Central China was impacted more by excess NH4⁺ than that of Beijing in North China. Wang et al. (2016a) indicated that the increase of pH value will promote precursor 351 solubility and increase aqueous reaction rates, which will accelerate the formation of secondary 352 inorganic salts and aggravate air pollution, resulting in more severe haze. Therefore, it should be 353 354 emphasized that if the excess NH₄⁺ in Wuhan was not controlled, the aerosol pH value will increase, 355 which would worsen the air quality.

356 3.4 Aerosol acidity transition from clean to polluted periods

357 The visibility less than 5 km, 5-10 km and higher than 10 km were defined as polluted period, 358 transition and clean period, respectively. The averaged visibility in Wuhan for the three episodes 359 were 3.78 ± 0.96 km, 7.56 ± 1.59 km and 17.7 ± 5.71 km, with averaged PM_{2.5} concentrations as 360 136.4, 85.0 and 45.9 μ g m⁻³, respectively. The average pH value at the clean stage was 3.07 \pm 0.45, 361 accompanied with low AWC ($33.2 \pm 42.9 \ \mu g \ m^3$), low excess NH₄⁺ ($3.70 \pm 2.15 \ \mu g \ m^3$), high temperature (296.1 \pm 8.02 K) and relative low RH (0.70 \pm 0.12). The averaged pH value at transition 362 363 period was 3.63 \pm 0.27, and the AWC, excess NH₄⁺, temperature, and RH were 115.1 \pm 79.4 μ g m⁻ $^3,\,9.04\pm3.67~\mu g$ m $^3,\,286.2\pm6.45$ K and $0.80\pm0.12,$ respectively. From clean to transition and 364 polluted periods, the aerosol pH values gradually increased with the increasing of AWC, excess 365 366 NH₄⁺, RH and the decreasing of temperature (Figure 9). From transition to polluted periods, the 367 aerosol pH value increased by 0.21 units, which was less than that from the clean to transition 368 periods (by 0.56 units). However, the increasing amounts of AWC from the transition to polluted 369 periods were higher than those from the clean to transition periods. It further verified that the effect 370 of AWC on aerosol acidity was not linear as mentioned above.

The O₃ concentrations were the lowest in polluted periods, indicating weak photochemical activity (Wang et al., 2016a). Moreover, accompanied with high RH, aqueous reaction was the dominated atmospheric reaction in polluted periods, resulting in the increasing of SOR (sulfur oxidation rate), NOR (nitrogen oxidation rate) and AOR (ammonia conversion rate). High pH can

- further accelerate the SOR, NOR and AOR rate. During the transition processes, no significant
 correlations were found between mineral components (Ca²⁺, Mg²⁺, K⁺, and Na⁺) and pH, implying
- 377 the impact of mineral components on aerosol acidity was negligible in Wuhan.
- 378 A conceptual schematic was proposed as Figure 10 shown, along with the air quality worsened from clean to transition and to polluted situation, the fraction of second inorganic salts in PM_{2.5}, 379 380 AWC, excess NH4⁺ and the pH of fine particles all added. Excess NH4⁺ and SNA formation showed steady growth from clean-transition-polluted. However, the AWC increase was more significant at 381 higher polluted periods and the temperature decreasing was more obvious at lower polluted periods. 382 383 The aerosol pH increasing unit from clean to transition episodes were larger than that for the pollution transformation from the transition to polluted episodes. The conceptual model 384 385 comprehensively explained the role of ambient RH and temperature on the formation of SNA and 386 AWC calculating, and furthermore the pH variation during different pollution periods.

387 3.5 Aerosol acidity for different origination of air masses

388 In the study period, there were four main directions for the air masses transported to Wuhan, 389 namely northeast (C1), northwest (C2), south (C3) and west (C4), with the proportion of 24%, 16%, 390 57% and 4%, respectively (Figure 11). The aerosol acidity for C1 and C2 air masses were higher 391 than those of C3 and C4, and associated with lower values of AWC and excess NH_4^+ . The RH in southern China was always higher than those in northern China for each season (Figure 4b). Air 392 393 masses from northwest mainly in winter were usually dry and saturated with small amounts of water, 394 resulting in low pH of aerosols. More moisture air from south mainly in summer elevated aerosol 395 pH value. Although there were minor air masses from the west to Wuhan, the pH for C4 was higher, 396 which may be resulted from the higher AWC for C4 (Figure 11) with higher RH (Figure 4b). The 397 amounts of excess NH₄⁺ was in the order as $C4 > C3 > C2 \approx C1$, and interestingly, the pH value 398 exhibited the similar rule, which further reflected the effect of excess NH_4^+ on aerosol acidity in 399 Central China. Cluster analysis in this section highlighted that the current conclusions drawn from 400 the research on aerosol acidity and its role in a typical haze formation event in North China could be not suitable for that in Wuhan, which needs a further detailed and comprehensive study, along 401 402 with more chemical components investigated.

- 403 4. Conclusion
- 404 This study observed the hourly water-soluble inorganic ions from September 2015 to August

2016 in Wuhan. Thermodynamic model ISOROPPIA- II was used to calculate the aerosol acidity.
The seasonal and monthly aerosol acidity variation and its role in air pollution transition were
discussed, and the possible impacting factors were identified.

408 The mass fraction of SNA in total water-soluble inorganic ions and PM2.5 were 92% and 64% on average, respectively. Moderate acidic of fine particles in Wuhan was found, with the average of 409 410 pH as 3.30. The aerosol acidity was higher in July, August and September and lower in January and March. The higher RH (averaged as 0.74 ± 0.13), excess ammonium (averaged as $6.06 \pm 4.51 \ \mu g$ 411 m⁻³) and abundant aerosol water content (averaged as $71.0 \pm 82.8 \ \mu g \ m^{-3}$) were the key reasons for 412 413 the lower aerosol acidity in Wuhan compared with other cities. At much lower AWC level (about lower than 15 μ g m⁻³), the particle pH showed a decreasing trend with AWC increased. Along with 414 415 the AWC continuous increasing (> \sim 15 µg m⁻³), a logarithmic correlation was found between AWC 416 and aerosol pH. When AWC was higher than about $380 \,\mu g \, m^{-3}$, along with the further increasing of 417 AWC, a slowly increasing and gradually no obvious growth of pH was found. pH firstly decreased 418 with atmospheric RH increasing at lower RH values and then increased with RH increasing, with 419 the turning point of RH as about 0.48. Lower temperature was corresponded with higher AWC and pH, and when the temperature was higher than 303 K (about 30 °C), more acidic aerosols were 420 421 found.

There also was a logarithmic growth of particle pH with total NH_x ($NH_3 + NH_4^+$) increasing. 422 423 Aerosol in Wuhan belonged to the stage of pH rapid growth with ammonia or ammonium increasing. 424 It can be predicted that fine particles pH in Wuhan will continuously increase if the ammonia or ammonium was not controlled effectively, and the increasing extent will be more obvious than that 425 426 in northern China. Aerosol acidity gradually decreased from clean to transition and to polluted 427 periods. Air masses originated from northeast and northwest directions with lower AWC and excess 428 NH4⁺ contributed to the higher acidic aerosol of Wuhan, while air masses from south and west regions exhibited lower aerosol acidity, with more AWC and excess $\mathrm{NH_4^+}$ carried. 429

This paper firstly analyzed the aerosol pH values with a one-year high time resolution dataset at a megacity with specific location, meteorological and environmental conditions of Central China, which is meaningful for understanding the aerosol acidity and its dominated impacting factors. It also highlights the importance of controlling ammonia in Wuhan in aggravating air pollution, which is helpful for other megacities surrounded by abundant agricultural activities in the world.

- 435 Acknowledgement. This work was finically supported by the Key Program of Ministry of Science
- 436 and Technology of the People's Republic of China (2016YFA0602002, 2017YFC0212602). The
- 437 research was also supported by the Key project of technical innovation for the Science and
- 438 Technology of Hubei Province (2017ACA089), Research Program of Environmental Protection of
- 439 Hubei Province in 2017 and Fundamental Research Funds for the Central Universities, China
- 440 University of Geosciences, Wuhan.

441 Data availability

442 The data can be accessed on request to the Shaofei Kong (kongshaofei@cug.edu.cn).

443 References:

- 444 Bian, Y. X., Zhao, C. S., Ma, N., Chen, J., and Xu, W. Y.: A study of aerosol liquid water content based
- 445 on hygroscopicity measurements at high relative humidity in the North China Plain, Atmos. Chem.
- 446 Phys., 14, 6417-6426, doi:10.5194/acp-14-6417-2014, 2014.
- 447 Bougiatioti, A., Nikolaou, P., Stavroulas, I., Kouvarakis, G., Weber, R., Nenes, A., Kanakidou, M., and
- 448 Mihalopoulos, N.: Particle water and pH in the eastern Mediterranean: source variability and
- 449 implications for nutrient availability, Atmos. Chem. Phys., 16, 4579-4591, doi:10.5194/acp-16-
- 450 4579-2016, 2016.
- 451 Cao, G., and Jang, M.: An SOA Model for Toluene Oxidation in the Presence of Inorganic Aerosols,
- 452 Environ. Sci. Technol., 44, 727-733, doi:10.1021/es901682r, 2010.
- 453 Carslaw, K. S., Clegg, S. L., and Brimblecombe, P.: A Thermodynamic Model of the System HCl-
- 454 HNO₃-H₂SO₄-H₂O, Including Solubilities of HBr, from <200 to 328 K, J. Phys. Chem., 99, 11557-
- 455 11574, doi:10.1021/j100029a039, 1995.
- 456 Chen, P., Wang, T., Dong, M., Kasoar, M., Han, Y., Xie, M., Li, S., Zhuang, B., Li, M., and Huang, T.:
- 457 Characterization of major natural and anthropogenic source profiles for size-fractionated PM in
- 458 Yangtze River Delta, Sci. Total Environ., 598, 135-145, doi:10.1016/j.scitotenv.2017.04.106, 2017.
- 459 Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael,
- 460 G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during
- 461 haze events in China, Sci. Adv., 2, doi:10.1126/sciadv.1601530, 2016.
- 462 Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic Model of the System
- 463 H⁺-NH₄⁺-SO₄²⁻-NO₃⁻-H₂O at Tropospheric Temperatures, J. Phys. Chem., 102, 2137-2154,
 464 doi:10.1021/jp973042r, 1998.
- 465 Crumeyrolle, S., Gomes, L., Tulet, P., Matsuki, A., Schwarzenboeck, A., and Crahan, K.: Increase of
- 466 the aerosol hygroscopicity by cloud processing in a mesoscale convective system: a case study from
- 467 the AMMA campaign, Atmos. Chem. Phys., 8, 6907-6924, doi:10.5194/acp-8-6907-2008, 2008.
- 468 Engelhart, G. J., Hildebrandt, L., Kostenidou, E., Mihalopoulos, N., Donahue, N. M., and Pandis, S.
- 469 N.: Water content of aged aerosol, Atmos. Chem. Phys., 11, 911-920, doi:10.5194/acp-11-911-2011,
 470 2011.
- 471 Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and
- 472 aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos. Chem. Phys.,

- 473 11, 11069-11102, doi:10.5194/acp-11-11069-2011, 2011.
- 474 Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic
- 475 equilibrium model for K⁺-Ca²⁺-Mg²⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂O aerosols, Atmos. Chem. Phys.,
- 476 7, 4639-4659, doi:10.5194/acp-7-4639-2007, 2007.
- 477 Fourtziou, L., Liakakou, E., Stavroulas, I., Theodosi, C., Zarmpas, P., Psiloglou, B., Sciare, J., Maggos,
- 478 T., Bairachtari, K., Bougiatioti, A., Gerasopoulos, E., Sarda-Estève, R., Bonnaire, N., and
- 479 Mihalopoulos, N.: Multi-tracer approach to characterize domestic wood burning in Athens (Greece)
- 480 during wintertime, Atmos. Environ., 148, 89-101, doi:10.1016/j.atmosenv.2016.10.011, 2017.
- 481 Friese, E., and Ebel, A.: Temperature Dependent Thermodynamic Model of the System
- 482 H⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂O, J. Phys. Chem., 114, 11595-11631, doi:10.1021/jp101041j,
 483 2010.
- 484 Fu, X., Wang, S., Chang, X., Cai, S., Xing, J., and Hao, J.: Modeling analysis of secondary inorganic
- 485 aerosols over China: pollution characteristics, and meteorological and dust impacts, Sci. Rep., 6,
- 486 35992, doi:10.1038/srep35992, 2016.
- 487 Gao, J., Wang, K., Wang, Y., Liu, S., Zhu, C., Hao, J., Liu, H., Hua, S., and Tian, H.: Temporal-spatial
- 488 characteristics and source apportionment of PM_{2.5} as well as its associated chemical species in the
- 489 Beijing-Tianjin-Hebei region of China, Environ. Pollut., 233, 714-724,
 490 doi:10.1016/j.envpol.2017.10.123, 2018.
- 491 Grassian, V. H.: Heterogeneous uptake and reaction of nitrogen oxides and volatile organic compounds492 on the surface of atmospheric particles including oxides, carbonates, soot and mineral dust:
- 493 Implications for the chemical balance of the troposphere, Int. Rev. in Phys. Chem., 20, 467-548,
- 494 doi:10.1080/01442350110051968, 2001.
- 495 Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite Jr, J. R., Carlton, A. G., Lee, S. H.,
- 496 Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Fine-particle water and pH in the southeastern
- 497 United States, Atmos. Chem. Phys., 15, 5211-5228, doi:10.5194/acp-15-5211-2015, 2015.
- 498 Guo, H., Sullivan, A. P., Campuzano-Jost, P., Schroder, J. C., Lopez-Hilfiker, F. D., Dibb, J. E.,
- 499 Jimenez, J. L., Thornton, J. A., Brown, S. S., Nenes, A., and Weber, R. J.: Fine particle pH and the
- 500 partitioning of nitric acid during winter in the northeastern United States, J. Geophys. Res., 121,
- 501 10,355-310,376, doi:10.1002/2016JD025311, 2016.
- 502 Johnson, A.H., Moyer, A., Bedison, J., L. Richter, S., and Andersen Willig, S.: Seven decades of

- 503 calcium depletion in organic horizons of adirondack forest soils, Soil Sci. Soc. Am. J., 72: 1824-
- 504 1830, doi: 10.2136/sssaj2006.0407, 2008.
- 505 Han, X., Guo, Q., Liu, C., Fu, P., Strauss, H., Yang, J., Hu, J., Wei, L., Ren, H., Peters, M., Wei, R.,
- 506 and Tian, L.: Using stable isotopes to trace sources and formation processes of sulfate aerosols from
- 507 Beijing, China, Sci. Rep., 6, 29958, doi: 10.1038/srep29958, 2016.
- 508 Hand, J. L., Schichtel, B. A., Malm, W. C., and Pitchford, M. L.: Particulate sulfate ion concentration
- 509 and SO₂ emission trends in the United States from the early 1990s through 2010, Atmos. Chem.
- 510 Phys., 12, 10353-10365, doi:10.5194/acp-12-10353-2012, 2012.
- 511 He, K., Zhao, Q., Ma, Y., Duan, F., Yang, F., Shi, Z., and Chen, G.: Spatial and seasonal variability of
- 512 PM_{2.5} acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols,
- 513 Atmos. Chem. Phys., 12, 1377-1395, doi:10.5194/acp-12-1377-2012, 2012.
- 514 Hegde, P., Kawamura, K., Joshi, H., and Naja, M.: Organic and inorganic components of aerosols over
- 515 the central Himalayas: winter and summer variations in stable carbon and nitrogen isotopic
- 516 composition, Environ. Sci. Pollut. Res., 23, 6102-6118, doi:10.1007/s11356-015-5530-3, 2016.
- 517 Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical evaluation of proxy
- 518 methods used to estimate the acidity of atmospheric particles, Atmos. Chem. Phys., 15, 2775-2790,
- 519 doi:10.5194/acp-15-2775-2015, 2015.
- 520 Huang, X., Qiu, R., Chan, C. K., and Ravi Kant, P.: Evidence of high PM_{2.5} strong acidity in ammonia-
- 521 rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol
- ammonium at [NH4⁺]/[SO4²⁻] = 1.5, Atmos. Res., 99, 488-495, doi:10.1016/j.atmosres.2010.11.021,
 2011.
- Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., and Zhang, H.: A high-resolution
 ammonia emission inventory in China, Global Biogeochem. Cy., 26, GB1030,
 doi:10.1029/2011GB004161, 2012.
- 527 Huang, X., Liu, Z., Zhang, J., Wen, T., Ji, D., and Wang, Y.: Seasonal variation and secondary
- 528 formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in

Beijing, Atmos. Res., 168, 70-79, doi:10.1016/j.atmosres.2015.08.021, 2016.

- 530 Jang, M., Czoschke, N. M., Lee, S., and Kamens, R. M.: Heterogeneous Atmospheric Aerosol
 531 Production by Acid-Catalyzed Particle-Phase Reactions, Science, 298, 814-817,
- 532 doi:10.1126/science.1075798, 2002.

529

- 533 Keene, W. C., Pszenny, A. A. P., Maben, J. R., Stevenson, E., and Wall, A.: Closure evaluation of size-
- resolved aerosol pH in the New England coastal atmosphere during summer, J. Geophys. Res., 109,
- 535 D23307, doi:10.1029/2004JD004801, 2004.
- 536 Kong, S. F., Li, L., Li, X. X., Yin, Y., Chen, K., Liu, D. T., Yuan, L., Zhang, Y. J., Shan, Y. P., and Ji,
- 537 Y. Q.: The impacts of firework burning at the Chinese Spring Festival on air quality: insights of
- 538 tracers, source evolution and aging processes, Atmos. Chem. Phys., 15, 2167-2184,
- 539 doi:10.5194/acp-15-2167-2015, 2015.
- 540 Kumar, S., and Sunder Raman, R.: Inorganic ions in ambient fine particles over a National Park in
- 541 central India: Seasonality, dependencies between SO_4^{2-} , NO_3^{-} , and NH_4^+ , and neutralization of
- 542 aerosol acidity, Atmos. Environ., 143, 152-163, doi:10.1016/j.atmosenv.2016.08.037, 2016.
- 543 Lai, S., Zhao, Y., Ding, A., Zhang, Y., Song, T., Zheng, J., Ho, K. F., Lee, S.-c., and Zhong, L.:
- 544 Characterization of PM_{2.5} and the major chemical components during a 1-year campaign in rural
- 545 Guangzhou, Southern China, Atmos. Res., 167, 208-215, doi:10.1016/j.atmosres.2015.08.007, 2016.
- 546 Larssen, T., Lydersen, E., Tang, D., He, Y., Gao, J., Liu, H., Duan, L., Seip, H. M., Vogt, R. D., Mulder,
- 547 J., Shao, M., Wang, Y., Shang, H., Zhang, X., Solberg, S., Aas, W., Okland, T., Eilertsen, O., Angell,
- 548 V., Li, Q., Zhao, D., Xiang, R., Xiao, J., and Luo, J.: Acid Rain in China, Environ. Sci. Technol., 40,
- 549 418-425, doi:10.1021/es0626133, 2006.
- 550 Lin, C.Q., Liu, G., Lau, A.K.H., Li, Y., Li, C.C., Fung, J.C.H., Lao, X.Q.: High-resolution satellite
- remote sensing of provincial PM_{2.5} trends in China from 2001 to 2015, Atmos. Environ., 180, 110-
- 552 116, doi:10.1016/j.atmosenv.2018.02.045, 2018.
- 553 Liu, M., Song, Y., Zhou, T., Xu, Z., Yan, C., Zheng, M., Wu, Z., Hu, M., Wu, Y., and Zhu, T.: Fine
- particle pH during severe haze episodes in northern China, Geophys.Res.Lett., 44, 5213-5221,
- 555 doi:10.1002/2017GL073210, 2017.
- 556 Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W., Goulding, K.,
- 557 Christie, P., Fangmeier, A., and Zhang, F.: Enhanced nitrogen deposition over China, Nature, 494,
- 558 459-462, doi:10.1038/nature11917, 2013.
- 559 Manktelow, P. T., Carslaw, K. S., Mann, G. W., and Spracklen, D. V.: The impact of dust on sulfate
- sol aerosol, CN and CCN during an East Asian dust storm, Atmos. Chem. Phys., 10, 365-382,
- 561 doi:10.5194/acp-10-365-2010, 2010.
- 562 Meng, Z., Seinfeld, J. H., Saxena, P., and Kim, Y. P.: Atmospheric Gas-Aerosol Equilibrium: IV.

- 563 Thermodynamics of Carbonates, Aerosol Sci. Tech., 23, 131-154,
- 564 doi:10.1080/02786829508965300, 1995.
- 565 Meng, Z. Y., Lin, W. L., Jiang, X. M., Yan, P., Wang, Y., Zhang, Y. M., Jia, X. F., and Yu, X. L.:
- 566 Characteristics of atmospheric ammonia over Beijing, China, Atmos. Chem. Phys., 11, 6139-6151,
- 567 doi:10.5194/acp-11-6139-2011, 2011.
- 568 Meskhidze, N., Chameides, W. L., Nenes, A., and Chen, G.: Iron mobilization in mineral dust: Can
- 569 anthropogenic SO₂ emissions affect ocean productivity?, Geophys.Res.Lett., 30, 2085,
- 570 doi:10.1029/2003GL018035, 2003.
- 571 Nemitz, E., Sutton, M. A., Wyers, G. P., and Jongejan, P. A. C.: Gas-particle interactions above a Dutch
- 572 heathland: I. Surface exchange fluxes of NH₃, SO₂, HNO₃ and HCl, Atmos. Chem. Phys., 4, 989-
- 573 1005, doi:10.5194/acp-4-989-2004, 2004.
- 574 Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A New Thermodynamic Equilibrium Model
- 575 for Multiphase Multicomponent Inorganic Aerosols, Aquat. Geochem., 4, 123-152,
- 576 doi:10.1023/a:1009604003981, 1998.
- 577 Ning, G., Wang, S., Ma, M., Ni, C., Shang, Z., Wang, J., and Li, J.: Characteristics of air pollution in
- 578 different zones of Sichuan Basin, China, Sci. Total Environ., 612, 975-984,
- 579 doi:10.1016/j.scitotenv.2017.08.205, 2018.
- 580 Pathak, R. K., Yao, X., Lau, A. K. H., and Chan, C. K.: Acidity and concentrations of ionic species of
- 581 PM_{2.5} in Hong Kong, Atmos. Environ., 37, 1113-1124, doi:10.1016/S1352-2310(02)00958-5, 2003.
- 582 Pathak, R. K., Louie, P. K. K., and Chan, C. K.: Characteristics of aerosol acidity in Hong Kong,
- 583 Atmos. Environ., 38, 2965-2974, doi:10.1016/j.atmosenv.2004.02.044, 2004a.
- 584 Pathak, R. K., Yao, X., and Chan, C. K.: Sampling Artifacts of Acidity and Ionic Species in PM_{2.5},
- 585 Environ. Sci. Technol., 38, 254-259, doi:10.1021/es0342244, 2004b.
- 586 Pathak, R. K., Wu, W. S., and Wang, T.: Summertime PM_{2.5} ionic species in four major cities of China:
- 587 nitrate formation in an ammonia-deficient atmosphere, Atmos. Chem. Phys., 9, 1711-1722,
- 588 doi:10.5194/acp-9-1711-2009, 2009.
- 589 Pathak, R. K., Wang, T., Ho, K. F., and Lee, S. C.: Characteristics of summertime PM_{2.5} organic and
- 590 elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic
- 591 carbon (WSOC), Atmos. Environ., 45, 318-325, doi:10.1016/j.atmosenv.2010.10.021, 2011.
- 592 Pilinis, C., Seinfeld, J. H., and Grosjean, D.: Water content of atmospheric aerosols, Atmos. Environ.,

- 593 23, 1601-1606, doi:10.1016/0004-6981(89)90419-8, 1989.
- 594 Qi, J., Zheng, B., Li, M., Yu, F., Chen, C., Liu, F., Zhou, X., Yuan, J., Zhang, Q., and He, K.: A high-
- 595 resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China,
- 596 Atmos. Environ., 170, 156-168, doi:10.1016/j.atmosenv.2017.09.039, 2017.
- 597 Rumsey, I. C., Cowen, K. A., Walker, J. T., Kelly, T. J., Hanft, E. A., Mishoe, K., Rogers, C., Proost,
- 598 R., Beachley, G. M., Lear, G., Frelink, T., and Otjes, R. P.: An assessment of the performance of the
- 599 Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble
- 600 compounds, Atmos. Chem. Phys., 14, 5639-5658, doi:10.5194/acp-14-5639-2014, 2014.
- 601 Schindler, D. W.: Effects of Acid Rain on Freshwater Ecosystems, Science, 239, 149-157,
- 602 doi:10.1126/science.239.4836.149, 1988.
- 603 Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate
- 604 change, Third ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2016.
- 605 Shen, X. J., Sun, J. Y., Zhang, X. Y., Zhang, Y. M., Zhang, L., Che, H. C., Ma, Q. L., Yu, X. M., Yue,
- 606 Y., and Zhang, Y. W.: Characterization of submicron aerosols and effect on visibility during a severe
- 607 haze-fog episode in Yangtze River Delta, China, Atmos. Environ., 120, 307-316,
- 608 doi:10.1016/j.atmosenv.2015.09.011, 2015.
- 609 Shi, G., Xu, J., Peng, X., Xiao, Z., Chen, K., Tian, Y., Guan, X., Feng, Y., Yu, H., Nenes, A., and
- 610 Russell, A. G.: pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic
- 611 Aerosol, Environ. Sci. Technol., 51, 4289-4296, doi:10.1021/acs.est.6b05736, 2017.
- 612 Sun, Q., and Wexler, A. S.: Modeling urban and regional aerosols-condensation and evaporation near
- 613 acid neutrality, Atmos. Environ., 32, 3527-3531, doi:10.1016/S1352-2310(98)00059-4, 1998.
- 614 Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., Edney, E. O., and
- 615 Seinfeld, J. H.: Effect of Acidity on Secondary Organic Aerosol Formation from Isoprene, Environ.
- 616 Sci. Technol., 41, 5363-5369, doi:10.1021/es0704176, 2007.
- 617 Tai, A. P. K., Mickley, L. J., and Jacob, D. J.: Correlations between fine particulate matter (PM_{2.5}) and
- 618 meteorological variables in the United States: Implications for the sensitivity of PM_{2.5} to climate
- 619 change, Atmos. Environ., 44, 3976-3984, doi:10.1016/j.atmosenv.2010.06.060, 2010.
- 620 Tanner, R. L., Olszyna, K. J., Edgerton, E. S., Knipping, E., and Shaw, S. L.: Searching for evidence
- 621 of acid-catalyzed enhancement of secondary organic aerosol formation using ambient aerosol data,
- 622 Atmos. Environ., 43, 3440-3444, doi:10.1016/j.atmosenv.2009.03.045, 2009.

- 623 Tao, J., Zhang, L., Cao, J., and Zhang, R.: A review of current knowledge concerning PM2.5 chemical
- 624 composition, aerosol optical properties and their relationships across China, Atmos. Chem. Phys.,
- 625 17, 9485-9518, doi:10.5194/acp-17-9485-2017, 2017.
- 626 Tian, S., Pan, Y., and Wang, Y.: Ion balance and acidity of size-segregated particles during haze
- 627 episodes in urban Beijing, Atmos. Res., 201, 159-167, doi:10.1016/j.atmosres.2017.10.016, 2018.
- 628 Underwood, G. M., Song, C. H., Phadnis, M., Carmichael, G. R., and Grassian, V. H.: Heterogeneous
- 629 reactions of NO₂ and HNO₃ on oxides and mineral dust: A combined laboratory and modeling study,
- 630 J. Geophys. Res., 106, 18055-18066, doi:10.1029/2000JD900552, 2001.
- 631 Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S.,
- 632 Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G.,
- 633 Wang, J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M.,
- 634 Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F.,
- 635 Rosenfeld, D., Liss, P. S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation
- 636 from London Fog to Chinese haze, P. Natl. Acad. Sci., 113, 13630-13635,
- 637 doi:10.1073/pnas.1616540113, 2016a.
- 638 Wang, G. H., Cheng, C. L., Huang, Y., Tao, J., Ren, Y. Q., Wu, F., Meng, J. J., Li, J. J., Cheng, Y. T.,
- 639 Cao, J. J., Liu, S. X., Zhang, T., Zhang, R., and Chen, Y. B.: Evolution of aerosol chemistry in Xi'an,
- 640 inland China, during the dust storm period of 2013 Part 1: Sources, chemical forms and formation
- 641 mechanisms of nitrate and sulfate, Atmos. Chem. Phys., 14, 11571-11585, doi:10.5194/acp-14-
- 642 11571-2014, 2014.
- 643 Wang, G., Zhang, F., Peng, J., Duan, L., Ji, Y., Marrero-Ortiz, W., Wang, J., Li, J., Wu, C., Cao, C., Wang,
- 644 Y., Zheng, J., Secrest, J., Li, Y., Wang, Y., Li, H., Li, N., and Zhang, R.: Particle acidity and sulfate
- 645 production during severe haze events in China cannot be reliably inferred by assuming a mixture of
- 646 inorganic salts, Atmos. Chem. Phys. Discuss.,1-23, doi:10.5194/acp-2018-185, 2018.
- 647 Wang, H., Shi, G., Tian, M., Zhang, L., Chen, Y., Yang, F., and Cao, X.: Aerosol optical properties and
- 648 chemical composition apportionment in Sichuan Basin, China, Sci. Total Environ., 577, 245-257,
- 649 doi:10.1016/j.scitotenv.2016.10.173, 2017a.
- 650 Wang, H., Zhang, D., Zhang, Y., Zhai, L., Yin, B., Zhou, F., Geng, Y., Pan, J., Luo, J., Gu, B., and Liu,
- 651 H.: Ammonia emissions from paddy fields are underestimated in China, Environ. Pollut., 235, 482-
- 652 488, doi:10.1016/j.envpol.2017.12.103, 2018.

- 653 Wang, H. L., Qiao, L. P., Lou, S. R., Zhou, M., Ding, A. J., Huang, H. Y., Chen, J. M., Wang, Q., Tao,
- 654 S. K., Chen, C. H., Li, L., and Huang, C.: Chemical composition of PM_{2.5} and meteorological impact
- 655 among three years in urban Shanghai, China, J. Clean. Prod., 112, 1302-1311,
- 656 doi:10.1016/j.jclepro.2015.04.099, 2016b.
- 657 Wang, S., Nan, J., Shi, C., Fu, Q., Gao, S., Wang, D., Cui, H., Saiz-Lopez, A., and Zhou, B.:
- 658 Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China,
- 659 Sci. Rep., 5, 15842, doi: 10.1038/srep15842, 2015.
- 660 Wang, Z., Pan, X., Uno, I., Li, J., Wang, Z., Chen, X., Fu, P., Yang, T., Kobayashi, H., Shimizu, A.,
- 661 Sugimoto, N., and Yamamoto, S.: Significant impacts of heterogeneous reactions on the chemical
- 662 composition and mixing state of dust particles: A case study during dust events over northern China,
- 663 Atmos. Environ., 159, 83-91, doi:10.1016/j.atmosenv.2017.03.044, 2017b.
- 664 Watson, J. G.: Visibility: Science and Regulation, J. Air Waste Manage., 52, 628-713,
 665 doi:10.1080/10473289.2002.10470813, 2002.
- 666 Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity despite declining
- atmospheric sulfate concentrations over the past 15 years, Nat. Geosci., 9, 282-285,
 doi:10.1038/ngeo2665, 2016.
- 669 Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-
- 670 VanWertz, G., Kreisberg, N. M., Knote, C., Olson, K., Koss, A., Goldstein, A. H., Hering, S. V., de
- 671 Gouw, J., Baumann, K., Lee, S.-H., Nenes, A., Weber, R. J., and Ng, N. L.: Effects of anthropogenic
- emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States,
- 673 P.Natl.Acad.Sci., 112, 37-42, doi:10.1073/pnas.1417609112, 2015a.
- 674 Xu, P., Zhang, Y., Gong, W., Hou, X., Kroeze, C., Gao, W., and Luan, S.: An inventory of the emission
- 675 of ammonia from agricultural fertilizer application in China for 2010 and its high-resolution spatial
- 676 distribution, Atmos. Environ., 115, 141-148, doi:10.1016/j.atmosenv.2015.05.020, 2015b.
- 677 Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., Chen, G., and Zhao, Q.: Characteristics
- 678 of PM_{2.5} speciation in representative megacities and across China, Atmos. Chem. Phys., 11, 5207-
- 679 5219, doi:10.5194/acp-11-5207-2011, 2011.
- 680 Yang, Y., Zhou, R., Wu, J., Yu, Y., Ma, Z., Zhang, L., and Di, Y. a.: Seasonal variations and size
- 681 distributions of water-soluble ions in atmospheric aerosols in Beijing, 2012, J. Environ. Sci., 34,
- 682 197-205, doi:10.1016/j.jes.2015.01.025, 2015.

- 683 Yao, X., Yan Ling, T., Fang, M., and Chan, C. K.: Comparison of thermodynamic predictions for in
- 684 situ pH in PM_{2.5}, Atmos. Environ., 40, 2835-2844, doi:10.1016/j.atmosenv.2006.01.006, 2006.
- 685 Yao, X., Ling, T. Y., Fang, M., and Chan, C. K.: Size dependence of in situ pH in submicron
- 686 atmospheric particles in Hong Kong, Atmos. Environ., 41, 382-393,
- 687 doi:10.1016/j.atmosenv.2006.07.037, 2007.
- 688 Yin, L., Niu, Z., Chen, X., Chen, J., Zhang, F., and Xu, L.: Characteristics of water-soluble inorganic
- ions in PM_{2.5} and PM_{2.5-10} in the coastal urban agglomeration along the Western Taiwan Strait
- 690 Region, China, Environ. Sci. Pollut. R., 21, 5141-5156, doi:10.1007/s11356-013-2134-7, 2014.
- 691 Zhang, Q., Jimenez, J. L., Worsnop, D. R., and Canagaratna, M.: A Case Study of Urban Particle
- 692 Acidity and Its Influence on Secondary Organic Aerosol, Environ. Sci. Technol., 41, 3213-3219,
- 693 doi:10.1021/es061812j, 2007.
- 694 Zhang, Z., Gao, J., Zhang, L., Wang, H., Tao, J., Qiu, X., Chai, F., Li, Y., and Wang, S.: Observations
- 695 of biomass burning tracers in PM_{2.5} at two megacities in North China during 2014 APEC summit,
- 696 Atmos. Environ., 169, 54-64, doi:10.1016/j.atmosenv.2017.09.011, 2017.
- 697 Zhao, Q., He, K., Rahn, K. A., Ma, Y., Jia, Y., Yang, F., Duan, F., Lei, Y., G, C., Cheng, Y., H, L., and
- 698 Wang, S.: Dust storms come to Central and Southwestern China, too: implications from a major
- dust event in Chongqing, Atmos. Chem. Phys., 10, 2615-2630, doi:10.5194/acp-10-2615-2010,
 2010.
- 701 Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L., Kiang, C. S., Zhang, Y., and Cass, G. R.: Seasonal
- trends in PM_{2.5} source contributions in Beijing, China, Atmos. Environ., 39, 3967-3976,
- 703 doi:10.1016/j.atmosenv.2005.03.036, 2005.
- 704 Zhou, M., Zhang, Y., Han, Y., Wu, J., Du, X., Xu, H., Feng, Y., and Han, S.: Spatial and temporal
- 705 characteristics of PM2.5 acidity during autumn in marine and coastal area of Bohai Sea, China, based
- 706 on two-site contrast, Atmos. Res., 202, 196-204, doi:10.1016/j.atmosres.2017.11.014, 2018.
- 707 Zhou, Y., Xue, L., Wang, T., Gao, X., Wang, Z., Wang, X., Zhang, J., Zhang, Q., and Wang, W.:
- 708 Characterization of aerosol acidity at a high mountain site in central eastern China, Atmos. Environ.,
- 709 51, 11-20, doi:10.1016/j.atmosenv.2012.01.061, 2012.
- 710 Zhu, C.S., Cao, J.J., Tsai, C.J., Zhang, Z.S., and Tao, J.: Biomass burning tracers in rural and urban
- vita ultrafine particles in Xi'an, China, Atmos. Pollut. Res., 8, 614-618, doi:10.1016/j.apr.2016.12.011,
- 712 2017.

	Spring	Summer	Fall	Winter	Average
PM _{2.5}	59.9±29.1	37.3±12.0	62.5±26.3	92.6±45.6	63.4±35.3
SO4 ²⁻	14.9±6.21	12.2±5.86	14.1 ± 6.30	20.4±12.1	15.2±8.24
NO ₃ -	16.9±9.71	$5.60{\pm}4.81$	$10.4{\pm}6.71$	25.3±14.7	14.2±11.7
$\mathrm{NH_4}^+$	11.6 ± 5.99	6.81±3.42	8.34±3.84	15.4±8.9	10.4 ± 6.54
Ca ²⁺	0.67 ± 0.39	0.37±0.15	0.38 ± 0.33	0.61±0.39	0.50 ± 0.35
Cl	1.62 ± 0.65	$0.94{\pm}0.41$	1.05 ± 0.66	2.87±1.25	1.56 ± 1.07
Na ⁺	0.32 ± 0.18	0.30±0.12	0.21 ± 0.07	0.27 ± 0.10	0.27±0.13
Mg^{2+}	0.07 ± 0.07	0.03 ± 0.01	0.05 ± 0.03	$0.08 {\pm} 0.06$	0.06 ± 0.05
K^+	0.86 ± 0.52	0.42 ± 0.16	0.81 ± 0.38	1.12 ± 0.47	0.80 ± 0.47
Total ions	47.0±21.8	26.7±13.0	35.3±15.9	66.0±36.1	43.0±26.5
SNA*/Total ions	0.92 ± 0.03	0.91 ± 0.05	$0.93{\pm}0.03$	$0.91 {\pm} 0.05$	$0.92{\pm}0.04$
SNA/PM _{2.5}	0.73 ± 0.16	0.67 ± 0.18	0.55±0.17	0.62 ± 0.11	0.64±0.17
Total ions/PM _{2.5}	0.80 ± 0.17	0.73 ± 0.19	$0.59{\pm}0.18$	0.69±0.11	0.70 ± 0.19
Cation/Anion	1.14 ± 0.07	1.16 ± 0.11	1.06 ± 0.06	1.02 ± 0.09	1.10 ± 0.10
(µeq/µeq)					

Table 1. Statistic of $PM_{2.5}$ and major ionic species (average \pm standard deviation, $\mu g m^{-3}$) in Wuhan from September 2015 to August 2016.

*: SNA= SO4²⁻⁺ NO3⁻⁺ NH4⁺

Table 2. Statistic of meteoro	logical parameters and	l main gaseous	pollutant conce	entrations (average
\pm standard deviation, µg m ⁻³) in Wuhan during Sep	tember 2015 to	August 2016.		

Season	Spring	Summer	Fall	Winter	Average
Temp. (K)	291.4±4.4	303.6±3.9	292.3±6.6	280.7±3.2	292.2±9.0
RH (%)	73.1±13.5	74.8 ± 9.2	75.1±11.5	$74.0{\pm}16.9$	74.3±12.9
HCl	0.74 ± 0.36	1.09 ± 0.29	$0.32{\pm}0.14$	$0.34{\pm}0.12$	0.61 ± 0.40
HNO ₂	5.11±4.05	4.24±1.77	3.48 ± 2.26	3.44 ± 2.56	4.07±2.83
HNO ₃	$2.82{\pm}1.28$	$3.19{\pm}0.71$	1.85 ± 1.0	$1.80{\pm}0.96$	2.39±1.18
NH ₃	11.0 ± 5.45	12.64±3.19	7.22±3.3	4.59 ± 2.87	8.88 ± 4.89
SO ₂	12.8±9.3	4.7±2.9	14.7 ± 8.1	14.5±12.8	11.9±9.6
NO ₂	37.6±15.1	22.9±9.9	39.5±15.8	44.9 ± 18.9	36.5±17.0
O_3^*	104.9 ± 35.5	146.6 ± 36.3	107.3 ± 67.9	35.6±29.3	100.5 ± 59.7
SOR	0.48 ± 0.15	0.63 ± 0.14	$0.42{\pm}0.17$	$0.53 {\pm} 0.20$	0.51 ± 0.18
NOR	$0.24{\pm}0.11$	0.16 ± 0.10	0.16 ± 0.09	$0.30{\pm}0.14$	0.21±0.12
AOR	$0.49{\pm}0.15$	$0.32{\pm}0.10$	$0.52{\pm}0.15$	$0.74{\pm}0.14$	0.52 ± 0.20

*: hourly average value was adopted.

RH: relative humidity.

SOR: sulfur oxidation rate, SOR = $SO_4^{2-} / (SO_4^{2-} + SO_2)$ (equivalent molar concentration)

NOR: nitrogen oxidation rate, NOR = $NO_3^- / (NO_3^- + NO_2)$ (equivalent molar concentration).

AOR: ammonia conversion rate, $AOR = NH_4^+ / (NH_4^+ + NH_3)$ (equivalent molar concentration).

Table 3. Comparison of fine particle acidity around the world

Cities	pН	Site types	Sampling period	Sample types	Model	Reference	
Hongkong ^a	-2.5~1.5	Suburban	1997-1998	Filter	E-AIM2	Yao et al., 2007	
Shanghai	-0.77±0.67	Suburban	2005.5-6	Filter	E-AIM2	Pathak et al., 2009	
Lanzhou	-0.38±0.64	Suburban	2006.6-7	Filter	E-AIM2	Pathak et al., 2009	
Guangzhou	0.61±0.71	Suburban	2004.5	Filter	E-AIM2	Pathak et al., 2009	
Beijing	-0.52±0.62	Rural	2005.6-8	Filter	E-AIM	Pathak et al., 2009	
	-1~3	Urban/rural	2005.1-2006.5	Filter	E-AIM2	He et al., 2012	
	5.4-6.2	Urban	2013.1	Filter	ISORROPIA-II	Cheng et al., 2016	
	3.0-4.9 (average 4.2)	Urban	2015.11-12;	Online	ISORROPIA-II	Liu et al., 2017	
			2016.11-12				
Chongqing	0~3	Urban/rural	2005.1-2006.5	Filter	E-AIM2	He et al., 2012	
Mount Tai	Spring: -0.32±1.38,	8, Mountain 01	2007.3-4,6-7	Online	E-AIM2	Zhou et al., 2012	
	Summer: -0.04±1.01						
Alabama (Southeastern UAS)	0.94±0.59	Forest	2013.6.1-7.15	Online	ISORROPIA-II	Guo et al., 2015	
Crete (Greece) ^b	1.25 ± 1.14	Background	2012.6-11	Online	ISORROPIA-II	Bougiatioti et al., 2016	
Egbert, On (Canada)	1~4	Rural	2012.7-9	Online	E-AIM2	Murphy et al., 2017	
Wuhan	3.30±0.49	Urban	2015.9-2016.8	Online	ISORROPIA-II	This study	
1							

^{a, b}: submicron particle

28

Figure 1 (a) Wuhan and its surrounding cities (WSC) belong to the key regions in the State Council's Action Plan on Prevention and Control of Atmospheric Pollution; (b) spatial distribution of the 15-year (2001-2015) mean PM_{2.5} concentrations at a resolution of 1 km (Lin et al., 2018) (BTH-Beijing-Tianjin-Hebei region; YRD-Yangtze River Delta region; SCB-Sichuan Basin; PRD-Pearl River Delta region; BJ-Beijing; WH-Wuhan; SH-Shanghai; CQ-Chongqing; GZ-Guangzhou); (c) the topography of North China Plain (NCP) and surroundings of Wuhan (TBM-TongBai Mountain, DBM-Dabie Mountain). The two red lines indicate the typical transportation route of air masses in autumn and winter from NCP to Wuhan; (d) the topography of Wuhan, with the Yangtze River flowing from southwest to the northeast and abundant of lakes. The sampling site locates in the city center.

Figure 2 Comparisons of observed $SO_4^{2^-}$, NO_3^- , NH_4^+ , and NH_3 with the predicted values by ISOROPPIA-II.

Figure 3 Daily variation of aerosol pH and AWC (a), RH and temperature (b), [H⁺] and cation/anion (c), PM_{2.5} concentrations and visibility (d) in Wuhan from September 2015 to August 2016.

Figure 4 Atmospheric boundary layer height (a), relative humidity (b) and wind field in different seasons of Wuhan.

Figure 5 Monthly variation of $PM_{2.5}$ concentrations (a), pH (b), AWC (c), $[H^+]$ (d), NH₃ (e), temperature (f), RH (g) in Wuhan during September 2015 to August 2016.

Figure 6 Relationship of pH with aerosol water content (AWC) (a), SNA-RH correlation coefficient with RH (b), AWC with RH (c), SNA with AWC (d), pH with RH (e), AWC with temperature (f) in Wuhan.

Figure 7 Relationship of NO_3^{-}/SO_4^{2-} with NH_4^{+}/SO_4^{2-} (a) and NO_3^{-} with excess- NH_4^{+} (b).

Figure 8 Relationship of pH changes (pH changes between presence and absence of excess NH_4^+) with ammonium neutralized pH (with no excess NH_4^+ case) (a); pH with simulated NH_x ($NH_x = NH_3 + NH_4^+$) (b), the special purple point in the logarithmic curve was the current state in Wuhan.

Figure 9 The pH, water content, excess NH_4^+ , meteorological parameters, ozone concentration, SOR (sulfur oxidation rate), NOR (nitrogen oxidation rate) and AOR (ammonia conversion rate) in different pollution episodes. The grey, orange and blue colors indicated the polluted (visibility less than 5 km), transition (visibility 5-10 km) and clean (visibility higher than 10 km) episodes, with the average $PM_{2.5}$ concentrations of 130, 80 and 42 μ g m⁻³, respectively. The white dot in the box marks the mean value. The bottom and top vertical line correspond to the 5th and 95th percentiles, respectively. The bottom, middle and top of the horizontal lines of each box represent the 25th, 50th, and 75th percentiles of the data.

Figure 10 A conceptual schematic for the variations of fine particle mass concentrations and the driving factors impacted on aerosol pH along with the pollution aggravation.

Figure 11 Backward trajectories for each cluster and corresponding pH, water content and excess NH4⁺.