1 Supplementary Figure Legends:

2 **Figure S1** Location of 3 sampling villages selected in this study

3 **Figure S2** Stoves used in this study: a) Heated Kang b) Traditional coal stove c) Semi-gasifier stove

4 **Figure S3** Profiles of VOCs emitted from heating and cooking activities
Table S1 Solid fuel and stoves used in this study

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Heating</th>
<th>Cooking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel type</td>
<td>Wood</td>
<td>Wood and residue</td>
</tr>
<tr>
<td>Stove type</td>
<td>Heated Kang</td>
<td>Semi-gasifier stove</td>
</tr>
<tr>
<td>Fuel used</td>
<td>Firewood</td>
<td>Firewood</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Firewood-HK</td>
<td>Firewood-SG</td>
</tr>
<tr>
<td>Sample No.</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fuel type</td>
<td>Coal</td>
<td>Coal</td>
</tr>
<tr>
<td>Stove type</td>
<td>Traditional coal stove</td>
<td>Semi-gasifier stove</td>
</tr>
<tr>
<td>Fuel used</td>
<td>Anthracite</td>
<td>Honeycomb</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Anthracite-CS</td>
<td>Honeycomb-CS</td>
</tr>
<tr>
<td>Sample No.</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
### Table S2: Profiles of VOCs measured in solid fuel burning in this study (μg/kg)

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Wood heating</th>
<th></th>
<th>Residue heating</th>
<th></th>
<th>Coal heating</th>
<th></th>
<th>Cooking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Heated Kang</td>
<td>semi-gasifier stove</td>
<td>Heated Kang</td>
<td>Traditional coal stove</td>
<td>semi-gasifier stove</td>
<td>Old fashioned stove</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Firewood</td>
<td>Branch</td>
<td>Firewood</td>
<td>Branch</td>
<td>Anthracite</td>
<td>Honeycomb</td>
<td>Branch</td>
</tr>
<tr>
<td>1</td>
<td>Ethane</td>
<td>13.6</td>
<td>7.6</td>
<td>0.1</td>
<td>0.0</td>
<td>13.7</td>
<td>40.4</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>Propane</td>
<td>166.9</td>
<td>102.4</td>
<td>106.5</td>
<td>63.6</td>
<td>139.3</td>
<td>64.1</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>Isobutane</td>
<td>32.6</td>
<td>8.9</td>
<td>24.5</td>
<td>18.2</td>
<td>9.6</td>
<td>12.2</td>
<td>1.7</td>
</tr>
<tr>
<td>4</td>
<td>n-Butane</td>
<td>31.0</td>
<td>21.2</td>
<td>55.3</td>
<td>25.7</td>
<td>22.9</td>
<td>21.6</td>
<td>7.4</td>
</tr>
<tr>
<td>5</td>
<td>iso-Pentane</td>
<td>359.7</td>
<td>252.7</td>
<td>111.4</td>
<td>177.7</td>
<td>344.3</td>
<td>137.4</td>
<td>5.0</td>
</tr>
<tr>
<td>6</td>
<td>n-Pentane</td>
<td>12.1</td>
<td>12.5</td>
<td>49.1</td>
<td>27.6</td>
<td>8.4</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>7</td>
<td>2,2-Dimethylbutane</td>
<td>0.1</td>
<td>0.1</td>
<td>1.2</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>Cyclopentane</td>
<td>5.5</td>
<td>3.4</td>
<td>2.1</td>
<td>6.5</td>
<td>4.4</td>
<td>1.6</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>2,3-Dimethylbutane</td>
<td>17.6</td>
<td>16.6</td>
<td>21.2</td>
<td>22.7</td>
<td>21.3</td>
<td>6.1</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>2-Methylpentane</td>
<td>17.1</td>
<td>40.8</td>
<td>28.5</td>
<td>34.5</td>
<td>14.4</td>
<td>18.4</td>
<td>1.0</td>
</tr>
<tr>
<td>11</td>
<td>3-Methylpentane</td>
<td>0.9</td>
<td>0.9</td>
<td>8.6</td>
<td>1.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>12</td>
<td>n-Hexane</td>
<td>5.1</td>
<td>5.9</td>
<td>23.3</td>
<td>13.8</td>
<td>9.3</td>
<td>1.4</td>
<td>0.6</td>
</tr>
<tr>
<td>13</td>
<td>Methylcyclopentane</td>
<td>1.2</td>
<td>1.5</td>
<td>6.2</td>
<td>3.0</td>
<td>0.7</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>14</td>
<td>2,4-Dimethylpentane</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.8</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>Cyclohexane</td>
<td>1.3</td>
<td>1.1</td>
<td>0.5</td>
<td>1.1</td>
<td>0.7</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>16</td>
<td>2-Methylhexane</td>
<td>11.4</td>
<td>16.4</td>
<td>4.7</td>
<td>12.4</td>
<td>1.2</td>
<td>30.4</td>
<td>0.2</td>
</tr>
<tr>
<td>17</td>
<td>2,3-Dimethylpentane</td>
<td>0.6</td>
<td>0.7</td>
<td>3.5</td>
<td>0.2</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>18</td>
<td>3-Methylhexane</td>
<td>1.8</td>
<td>1.3</td>
<td>6.8</td>
<td>3.4</td>
<td>1.1</td>
<td>1.2</td>
<td>0.1</td>
</tr>
<tr>
<td>19</td>
<td>2,2,4-Trimethylpentane</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>1.8</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>n-Heptane</td>
<td>6.2</td>
<td>6.8</td>
<td>20.5</td>
<td>11.1</td>
<td>6.5</td>
<td>22.0</td>
<td>0.3</td>
</tr>
<tr>
<td>21</td>
<td>Methylcyclohexane</td>
<td>0.6</td>
<td>0.9</td>
<td>4.5</td>
<td>3.0</td>
<td>0.2</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>22</td>
<td>2,3,4-Trimethylpentane</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>23</td>
<td>2-Methylheptane</td>
<td>0.3</td>
<td>0.2</td>
<td>0.6</td>
<td>0.3</td>
<td>1.4</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>24</td>
<td>3-Methylheptane</td>
<td>0.1</td>
<td>0.2</td>
<td>1.8</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>n-Octane</td>
<td>3.4</td>
<td>3.6</td>
<td>11.9</td>
<td>4.6</td>
<td>9.9</td>
<td>5.9</td>
<td>0.2</td>
</tr>
<tr>
<td>26</td>
<td>n-Nonane</td>
<td>3.1</td>
<td>2.7</td>
<td>11.5</td>
<td>4.9</td>
<td>4.9</td>
<td>7.9</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Substance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>27</td>
<td>n-Decane</td>
<td>3.4</td>
<td>2.3</td>
<td>20.8</td>
<td>12.2</td>
<td>1.6</td>
<td>11.9</td>
<td>0.2</td>
</tr>
<tr>
<td>28</td>
<td>Undecane</td>
<td>4.6</td>
<td>2.3</td>
<td>32.1</td>
<td>59.0</td>
<td>3.5</td>
<td>2.1</td>
<td>0.8</td>
</tr>
<tr>
<td>29</td>
<td>Dodecane</td>
<td>11.2</td>
<td>5.3</td>
<td>157.6</td>
<td>119.2</td>
<td>15.0</td>
<td>20.3</td>
<td>13.3</td>
</tr>
<tr>
<td>30</td>
<td>Ethylene</td>
<td>3.3</td>
<td>0.0</td>
<td>2.3</td>
<td>0.5</td>
<td>4.3</td>
<td>2.3</td>
<td>0.3</td>
</tr>
<tr>
<td>31</td>
<td>Propylene</td>
<td>294.6</td>
<td>191.5</td>
<td>164.2</td>
<td>57.0</td>
<td>275.7</td>
<td>16.9</td>
<td>0.3</td>
</tr>
<tr>
<td>32</td>
<td>1-Butene</td>
<td>47.4</td>
<td>34.1</td>
<td>22.7</td>
<td>18.5</td>
<td>44.7</td>
<td>3.5</td>
<td>0.6</td>
</tr>
<tr>
<td>33</td>
<td>trans-2-Butene</td>
<td>25.6</td>
<td>14.1</td>
<td>7.3</td>
<td>5.3</td>
<td>12.9</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>34</td>
<td>cis-2-Butene</td>
<td>20.4</td>
<td>11.4</td>
<td>7.4</td>
<td>5.4</td>
<td>9.4</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>35</td>
<td>Isoprene</td>
<td>19.6</td>
<td>20.1</td>
<td>13.0</td>
<td>20.7</td>
<td>14.8</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>36</td>
<td>1-Pentene</td>
<td>13.5</td>
<td>15.2</td>
<td>18.4</td>
<td>4.4</td>
<td>5.0</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>37</td>
<td>trans-2-Pentene</td>
<td>13.8</td>
<td>11.0</td>
<td>5.2</td>
<td>3.3</td>
<td>8.2</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>38</td>
<td>cis-2-Pentene</td>
<td>7.5</td>
<td>6.6</td>
<td>2.4</td>
<td>2.0</td>
<td>4.8</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>39</td>
<td>1-Hexene</td>
<td>11.7</td>
<td>17.5</td>
<td>16.5</td>
<td>11.3</td>
<td>25.6</td>
<td>2.9</td>
<td>0.3</td>
</tr>
<tr>
<td>40</td>
<td>1,3-Butadiene</td>
<td>58.1</td>
<td>44.2</td>
<td>33.7</td>
<td>23.9</td>
<td>29.2</td>
<td>66.2</td>
<td>0.3</td>
</tr>
<tr>
<td>41</td>
<td>Benzene</td>
<td>166.1</td>
<td>193.3</td>
<td>419.0</td>
<td>408.9</td>
<td>141.5</td>
<td>71.1</td>
<td>3.4</td>
</tr>
<tr>
<td>42</td>
<td>Toluene</td>
<td>105.3</td>
<td>109.3</td>
<td>280.1</td>
<td>126.0</td>
<td>104.1</td>
<td>86.5</td>
<td>2.4</td>
</tr>
<tr>
<td>43</td>
<td>Ethylbenzene</td>
<td>17.5</td>
<td>19.1</td>
<td>41.8</td>
<td>35.0</td>
<td>12.5</td>
<td>22.3</td>
<td>0.6</td>
</tr>
<tr>
<td>44</td>
<td>m-Xylene</td>
<td>16.7</td>
<td>13.9</td>
<td>63.0</td>
<td>29.5</td>
<td>10.9</td>
<td>23.7</td>
<td>0.5</td>
</tr>
<tr>
<td>45</td>
<td>p-Xylene</td>
<td>16.7</td>
<td>13.9</td>
<td>63.0</td>
<td>29.5</td>
<td>11.5</td>
<td>23.7</td>
<td>0.5</td>
</tr>
<tr>
<td>46</td>
<td>Styrene</td>
<td>23.4</td>
<td>25.3</td>
<td>33.7</td>
<td>40.7</td>
<td>9.4</td>
<td>36.4</td>
<td>0.5</td>
</tr>
<tr>
<td>47</td>
<td>o-Xylene</td>
<td>12.5</td>
<td>10.1</td>
<td>35.3</td>
<td>24.8</td>
<td>8.5</td>
<td>19.6</td>
<td>0.4</td>
</tr>
<tr>
<td>48</td>
<td>Isopropylbenzene</td>
<td>0.8</td>
<td>0.8</td>
<td>1.9</td>
<td>0.7</td>
<td>0.4</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>49</td>
<td>n-Propylbenzene</td>
<td>1.8</td>
<td>1.4</td>
<td>2.6</td>
<td>2.0</td>
<td>0.2</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>m-Ethyltoluene</td>
<td>3.3</td>
<td>1.4</td>
<td>7.2</td>
<td>4.9</td>
<td>0.9</td>
<td>4.7</td>
<td>0.1</td>
</tr>
<tr>
<td>51</td>
<td>p-Ethyltoluene</td>
<td>3.0</td>
<td>1.4</td>
<td>7.6</td>
<td>4.5</td>
<td>0.6</td>
<td>2.6</td>
<td>0.0</td>
</tr>
<tr>
<td>52</td>
<td>1,3,5-Trimethylbenzene</td>
<td>2.0</td>
<td>1.2</td>
<td>4.9</td>
<td>3.4</td>
<td>0.8</td>
<td>3.3</td>
<td>0.1</td>
</tr>
<tr>
<td>53</td>
<td>o-Ethyltoluene</td>
<td>2.3</td>
<td>1.4</td>
<td>8.3</td>
<td>5.4</td>
<td>1.0</td>
<td>5.5</td>
<td>0.1</td>
</tr>
<tr>
<td>54</td>
<td>1,2,4-Trimethylbenzene</td>
<td>5.0</td>
<td>2.6</td>
<td>20.0</td>
<td>15.4</td>
<td>2.5</td>
<td>12.9</td>
<td>0.2</td>
</tr>
<tr>
<td>55</td>
<td>1,2,3-Trimethylbenzene</td>
<td>1.4</td>
<td>0.7</td>
<td>10.5</td>
<td>9.6</td>
<td>0.8</td>
<td>2.9</td>
<td>0.2</td>
</tr>
<tr>
<td>56</td>
<td>m-Diethylbenzene</td>
<td>0.4</td>
<td>0.3</td>
<td>4.5</td>
<td>13.6</td>
<td>0.2</td>
<td>1.3</td>
<td>0.1</td>
</tr>
<tr>
<td>57</td>
<td>p-Dimethylbenzene</td>
<td>0.0</td>
<td>0.1</td>
<td>3.3</td>
<td>2.8</td>
<td>0.3</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>58</td>
<td>4-Ethyltoluene</td>
<td>6.6</td>
<td>4.2</td>
<td>27.3</td>
<td>13.1</td>
<td>3.4</td>
<td>12.9</td>
<td>0.5</td>
</tr>
<tr>
<td>59</td>
<td>Naphthalene</td>
<td>19.2</td>
<td>10.5</td>
<td>107.7</td>
<td>145.6</td>
<td>7.5</td>
<td>23.3</td>
<td>2.9</td>
</tr>
<tr>
<td>60</td>
<td>Acrolein</td>
<td>170.7</td>
<td>109.7</td>
<td>50.5</td>
<td>116.8</td>
<td>95.9</td>
<td>93.8</td>
<td>0.6</td>
</tr>
<tr>
<td>61</td>
<td>Acetone</td>
<td>351.8</td>
<td>247.2</td>
<td>167.0</td>
<td>254.4</td>
<td>385.4</td>
<td>248.6</td>
<td>2.0</td>
</tr>
<tr>
<td>62</td>
<td>Methyl ethyl ketone</td>
<td>180.2</td>
<td>152.4</td>
<td>32.0</td>
<td>78.6</td>
<td>193.5</td>
<td>152.3</td>
<td>2.8</td>
</tr>
<tr>
<td>63</td>
<td>Methyl Isobutyl Ketone</td>
<td>1.2</td>
<td>1.4</td>
<td>0.5</td>
<td>0.3</td>
<td>0.0</td>
<td>4.3</td>
<td>0.1</td>
</tr>
<tr>
<td>64</td>
<td>Methyl butyl ketone</td>
<td>8.3</td>
<td>5.9</td>
<td>8.8</td>
<td>2.6</td>
<td>4.3</td>
<td>26.2</td>
<td>0.5</td>
</tr>
<tr>
<td>65</td>
<td>Ethanol</td>
<td>0.0</td>
<td>0.0</td>
<td>7.3</td>
<td>103.0</td>
<td>18.6</td>
<td>91.7</td>
<td>6.0</td>
</tr>
<tr>
<td>66</td>
<td>Isopropyl Alcohol</td>
<td>0.7</td>
<td>0.5</td>
<td>1.5</td>
<td>1.9</td>
<td>1.7</td>
<td>7.2</td>
<td>0.3</td>
</tr>
<tr>
<td>67</td>
<td>Methyl tert-butyl ether</td>
<td>1.6</td>
<td>1.1</td>
<td>2.8</td>
<td>4.4</td>
<td>2.6</td>
<td>10.8</td>
<td>0.9</td>
</tr>
<tr>
<td>68</td>
<td>Ethyl Acetate</td>
<td>3.0</td>
<td>2.5</td>
<td>6.4</td>
<td>9.1</td>
<td>3.9</td>
<td>15.1</td>
<td>1.7</td>
</tr>
<tr>
<td>69</td>
<td>Methyl Methacrylate</td>
<td>2.2</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>70</td>
<td>Freon-12</td>
<td>1.4</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>3.1</td>
<td>0.0</td>
</tr>
<tr>
<td>71</td>
<td>Chloromethane</td>
<td>6.6</td>
<td>9.8</td>
<td>8.5</td>
<td>11.0</td>
<td>43.9</td>
<td>99.7</td>
<td>0.0</td>
</tr>
<tr>
<td>72</td>
<td>Freon-114</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>0.6</td>
<td>0.3</td>
<td>1.3</td>
<td>0.1</td>
</tr>
<tr>
<td>73</td>
<td>Vinyl chloride</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.9</td>
<td>0.7</td>
<td>2.8</td>
<td>0.1</td>
</tr>
<tr>
<td>74</td>
<td>Bromomethane</td>
<td>3.5</td>
<td>2.3</td>
<td>5.5</td>
<td>7.2</td>
<td>6.2</td>
<td>25.3</td>
<td>1.0</td>
</tr>
<tr>
<td>75</td>
<td>Freon-11</td>
<td>2.4</td>
<td>1.7</td>
<td>5.4</td>
<td>6.7</td>
<td>4.3</td>
<td>18.9</td>
<td>0.9</td>
</tr>
<tr>
<td>76</td>
<td>1,1-Dichloroethene</td>
<td>1.7</td>
<td>1.3</td>
<td>3.2</td>
<td>4.0</td>
<td>3.9</td>
<td>15.5</td>
<td>0.6</td>
</tr>
<tr>
<td>77</td>
<td>Methylene Chloride</td>
<td>1.1</td>
<td>0.9</td>
<td>3.7</td>
<td>2.4</td>
<td>0.6</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>78</td>
<td>Freon-113</td>
<td>0.5</td>
<td>0.4</td>
<td>1.5</td>
<td>1.7</td>
<td>0.4</td>
<td>1.9</td>
<td>0.2</td>
</tr>
<tr>
<td>79</td>
<td>trans-1,2-Dichloroethene</td>
<td>0.6</td>
<td>0.6</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>3.6</td>
<td>0.1</td>
</tr>
<tr>
<td>80</td>
<td>1,1-Dichloroethene</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>81</td>
<td>cis-1,2-Dichloroethene</td>
<td>2.8</td>
<td>2.2</td>
<td>3.3</td>
<td>4.1</td>
<td>4.5</td>
<td>16.0</td>
<td>0.6</td>
</tr>
<tr>
<td>82</td>
<td>Chloroform</td>
<td>1.8</td>
<td>1.7</td>
<td>1.6</td>
<td>2.9</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>83</td>
<td>1,2-Dichloroethane</td>
<td>0.3</td>
<td>0.7</td>
<td>2.1</td>
<td>2.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>84</td>
<td>1,1,1-Trichloroethane</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>85</td>
<td>Carbon Tetrachloride</td>
<td>0.5</td>
<td>0.4</td>
<td>1.0</td>
<td>1.6</td>
<td>0.6</td>
<td>2.2</td>
<td>0.2</td>
</tr>
<tr>
<td>86</td>
<td>1,2-Dichloropropane</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>2.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Substance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>87</td>
<td>Trichloroethene</td>
<td>1.9</td>
<td>1.4</td>
<td>4.0</td>
<td>4.9</td>
<td>4.1</td>
<td>17.1</td>
<td>0.7</td>
</tr>
<tr>
<td>88</td>
<td>cis-1,3-Dichloropropene</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>89</td>
<td>1,1,2-Trichloroethane</td>
<td>8.3</td>
<td>5.9</td>
<td>8.8</td>
<td>7.9</td>
<td>4.3</td>
<td>26.2</td>
<td>0.5</td>
</tr>
<tr>
<td>90</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.5</td>
<td>1.9</td>
<td>1.3</td>
<td>1.1</td>
<td>0.5</td>
<td>2.5</td>
<td>0.1</td>
</tr>
<tr>
<td>91</td>
<td>Benzy1 Chloride</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>92</td>
<td>1,3-Dichlorobenzene</td>
<td>3.3</td>
<td>2.4</td>
<td>19.3</td>
<td>18.0</td>
<td>7.5</td>
<td>31.3</td>
<td>1.9</td>
</tr>
<tr>
<td>93</td>
<td>1,4-Dichlorobenzene</td>
<td>5.3</td>
<td>3.5</td>
<td>23.7</td>
<td>28.1</td>
<td>4.8</td>
<td>19.5</td>
<td>2.5</td>
</tr>
<tr>
<td>94</td>
<td>1,2-Dichlorobenzene</td>
<td>1.9</td>
<td>1.3</td>
<td>4.3</td>
<td>5.4</td>
<td>4.0</td>
<td>16.9</td>
<td>0.7</td>
</tr>
<tr>
<td>95</td>
<td>Acetylene</td>
<td>6.8</td>
<td>3.3</td>
<td>0.0</td>
<td>0.3</td>
<td>5.8</td>
<td>48.6</td>
<td>0.0</td>
</tr>
<tr>
<td>96</td>
<td>Carbon disulfide</td>
<td>0.5</td>
<td>0.4</td>
<td>3.0</td>
<td>2.7</td>
<td>0.7</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>97</td>
<td>Tetrahydrofuran</td>
<td>21.4</td>
<td>12.1</td>
<td>2.5</td>
<td>1.5</td>
<td>8.3</td>
<td>1.8</td>
<td>0.3</td>
</tr>
<tr>
<td>98</td>
<td>1,4-Dioxane</td>
<td>0.5</td>
<td>0.4</td>
<td>1.3</td>
<td>1.3</td>
<td>0.9</td>
<td>3.9</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Table S3  Coefficient of divergence among VOCs profiles emitted from solid fuel burning

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewood-HK</td>
<td>0</td>
<td>0.23</td>
<td>0.55</td>
<td>0.53</td>
<td>0.70</td>
<td>0.71</td>
<td>0.81</td>
<td>0.85</td>
<td>0.63</td>
<td>0.57</td>
<td>0.57</td>
<td>0.54</td>
</tr>
<tr>
<td>Branch-HK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68</td>
<td>0.81</td>
<td>0.81</td>
<td>0.67</td>
<td>0.63</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>Firewood-SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68</td>
<td>0.61</td>
<td>0.66</td>
<td>0.67</td>
<td>0.63</td>
<td>0.57</td>
<td>0.54</td>
</tr>
<tr>
<td>Branch-SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68</td>
<td>0.61</td>
<td>0.66</td>
<td>0.67</td>
<td>0.63</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>Corn straw-HK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.70</td>
<td>0.68</td>
<td>0.80</td>
<td>0.72</td>
<td>0.75</td>
<td>0.75</td>
<td>0.67</td>
</tr>
<tr>
<td>Wheat straw-HK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.71</td>
<td>0.68</td>
<td>0.80</td>
<td>0.67</td>
<td>0.67</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>Anthracite-CS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.81</td>
<td>0.79</td>
<td>0.86</td>
<td>0.72</td>
<td>0.75</td>
<td>0.77</td>
<td>0.84</td>
</tr>
<tr>
<td>Honeycomb-CS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td>0.83</td>
<td>0.90</td>
<td>0.71</td>
<td>0.75</td>
<td>0.84</td>
<td>0.46</td>
</tr>
<tr>
<td>Anthracite-SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td>0.83</td>
<td>0.90</td>
<td>0.66</td>
<td>0.67</td>
<td>0.72</td>
<td>0.80</td>
</tr>
<tr>
<td>Bitumite-SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td>0.83</td>
<td>0.90</td>
<td>0.67</td>
<td>0.67</td>
<td>0.72</td>
<td>0.80</td>
</tr>
<tr>
<td>Branch-TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td>0.83</td>
<td>0.90</td>
<td>0.67</td>
<td>0.67</td>
<td>0.72</td>
<td>0.80</td>
</tr>
<tr>
<td>Corn hub-TS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td>0.83</td>
<td>0.90</td>
<td>0.67</td>
<td>0.67</td>
<td>0.72</td>
<td>0.80</td>
</tr>
</tbody>
</table>

\[
\text{CD}_{jk} = \sqrt{\frac{1}{p} \sum_{i=1}^{p} \left( \frac{x_{ij} - x_{ik}}{x_{ij} + x_{ik}} \right)^2}
\]

where, \(x_{ij}\) represents the average concentration for a chemical component \(i\) at site \(j\), \(j\) and \(k\) represent two sampling sites, and \(p\) is the number of chemical components.
**Table S4** Industrial analysis results of solid fuel used in this study

<table>
<thead>
<tr>
<th>Fuel type</th>
<th>Moisture, %</th>
<th>Ash, %</th>
<th>Volatile Matters, VM%</th>
<th>Fixed Carbon, %</th>
<th>Calorific value, MJ·kg⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewood</td>
<td>4.39</td>
<td>2.15</td>
<td>82.96</td>
<td>10.51</td>
<td>19.03</td>
</tr>
<tr>
<td>Branch</td>
<td>4.37</td>
<td>2.72</td>
<td>79.66</td>
<td>13.25</td>
<td>17.92</td>
</tr>
<tr>
<td>Wheat straw</td>
<td>4.39</td>
<td>8.90</td>
<td>67.36</td>
<td>19.32</td>
<td>18.52</td>
</tr>
<tr>
<td>Maize straw</td>
<td>6.10</td>
<td>4.70</td>
<td>76.00</td>
<td>13.20</td>
<td>17.73</td>
</tr>
<tr>
<td>Corn cob</td>
<td>4.87</td>
<td>5.93</td>
<td>71.95</td>
<td>17.25</td>
<td>17.72</td>
</tr>
<tr>
<td>Anthracite</td>
<td>0.88</td>
<td>9.72</td>
<td>6.12</td>
<td>83.28</td>
<td>29.68</td>
</tr>
<tr>
<td>Honeycomb briquette</td>
<td>3.00</td>
<td>32.34</td>
<td>4.99</td>
<td>59.67</td>
<td>20.37</td>
</tr>
<tr>
<td>Bitumite</td>
<td>7.98</td>
<td>7.98</td>
<td>33.20</td>
<td>50.84</td>
<td>22.02</td>
</tr>
</tbody>
</table>

*Proximate Analysis Was Conducted by the Analytical Center of Chinese Academy of Guangzhou Institute of Energy Conversion
### Table S5 Parameters in evaluation of O$_3$ contribution from solid fuel burning in Guanzhong Plain

<table>
<thead>
<tr>
<th>Box model – Atmospheric capacity parameters</th>
<th>Emission rate of OFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>300km in length a</td>
<td>1.59E9 kg f</td>
</tr>
<tr>
<td>100 km In width a</td>
<td>Coal used</td>
</tr>
<tr>
<td>516.2m in height b</td>
<td>2.50E9 kg f</td>
</tr>
<tr>
<td>Biomass fuels consumed</td>
<td></td>
</tr>
<tr>
<td>EFs of OFP</td>
<td></td>
</tr>
<tr>
<td>4.51 g·kg$^{-1}$ g</td>
<td>EFs of OFP</td>
</tr>
<tr>
<td>Heating periods</td>
<td>0.62 g·kg$^{-1}$ g</td>
</tr>
<tr>
<td>100 days i</td>
<td></td>
</tr>
<tr>
<td>Atmospheric volume of Guanzhong Plain</td>
<td></td>
</tr>
<tr>
<td>1.55E13 m$^3$ c</td>
<td></td>
</tr>
<tr>
<td>O$_3$ concentration</td>
<td></td>
</tr>
<tr>
<td>28.8 μg·m$^{-3}$ d</td>
<td>OFP emission rate</td>
</tr>
<tr>
<td>OFP emission rate</td>
<td>7.17E4 kg·day$^{-1}$ j</td>
</tr>
<tr>
<td>O$_3$ atmospheric capacity</td>
<td>OFP emission rate</td>
</tr>
<tr>
<td>4.46E5 kg e</td>
<td>1.55E4 kg·day$^{-1}$ j</td>
</tr>
<tr>
<td>Total OFP emission rate</td>
<td></td>
</tr>
<tr>
<td>8.72E4 kg·day$^{-1}$ k</td>
<td></td>
</tr>
</tbody>
</table>

a Sun, Shen et al. (2017)
b [http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/boundary layer](http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/boundary layer)
c Expressed as volume = length * width * height
d [http://www.zhb.gov.cn/hjzl/dqhj/csqgzlzyb/], average O$_3$ concentration in winter of 2013
e Expressed as Atmospheric capacity = [O$_3$] * Atmospheric volume
f Shaanxi Province Statistical Yearbook 2013
g Average OFP value of biomass fuels heating burning in this study
h Account as bitumite only, use OFP of bitumite-SG in this study
i Sun, Shen et al. (2017)
j Expressed as OFP emission rate = Total fuels consumed * EFs of OFP / Heating period (unit: kg·day$^{-1}$)
k Expressed as Total OFP emission rate = OFP emission rate (biomass) + OFP emission rate (coal)
### Table S6 Parameters in evaluation of SOA contribution from solid fuel burning in Guanzhong Plain

<table>
<thead>
<tr>
<th>Box model – Atmospheric capacity parameters</th>
<th>Emission rate of OFP</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Dimensions</strong></td>
<td><strong>Biomass fuels consumed</strong></td>
</tr>
<tr>
<td>Atmospheric volume of Guanzhong Plain</td>
<td>1.59E9 kg</td>
</tr>
<tr>
<td><strong>PM$_{2.5}$ concentration</strong></td>
<td>EFs of SOAP</td>
</tr>
<tr>
<td><strong>SOA atmospheric capacity</strong></td>
<td>Heating periods</td>
</tr>
<tr>
<td><strong>PM$_{2.5}$ concentration</strong></td>
<td></td>
</tr>
<tr>
<td><strong>SOA atmospheric capacity</strong></td>
<td>SOAP emission rate</td>
</tr>
<tr>
<td><strong>SOA atmospheric capacity</strong></td>
<td>Total OFP emission rate</td>
</tr>
</tbody>
</table>

| Dimensions | 300km in length | 100 km in width | 516.2m in height |
| PM$_{2.5}$ concentration | 142.6 μg·m$^{-3}$ | SOA fraction | 15.5% |
| SOA atmospheric capacity | 3.42E5 kg | Total OFP emission rate | 796.85 kg·day$^{-1}$ |

- a Sun et al., 2017
- b [http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/boundary_layer](http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/boundary_layer)
- c Expressed as volume = length * width * height
- e Huang et al. (2014)
- f Expressed as Atmospheric capacity = [PM$_{2.5}$] * Atmospheric volume
- g Shaanxi Province Statistical Yearbook 2013
- h Average SOAP value of biomass fuels heating burning in this study
- i Account as bitumite only, use SOAP of bitumite-SG in this study
- j Sun et al., 2017
- k Expressed as SOAP emission rate = Total fuels consumed * EFs of SOAP / Heating period (unit: kg·day$^{-1}$)
- m Expressed as Total SOAP emission rate = SOAP emission rate (biomass) + SOAP emission rate (coal)
Figure S2
Figure S3