Interactive comment on “Using CALIOP to constrain blowing snow emissions of sea salt aerosols over Arctic and Antarctic sea ice” by Jiayue Huang et al.

Anonymous Referee #1

Received and published: 18 June 2018

This paper describes atmospheric cycles of sea-salt aerosols in polar regions using model and remote sensing measurement (CALIOP). Authors applied and improve the model, GEOS-chem., to simulate spatial distribution and origins of sea-salt aerosols on basis of various parameters such as salinity of surface snow. They derived an interesting conclusion that sea-salt aerosols in the winter were involved in blowing snow rather than frost flowers on sea-ice. On the whole, the topic of the manuscript is relevant and suitable for the scope of the “Atmospheric Chemistry and Physics. The topics and results deserve to be made available to the scientific community and to be exploited in terms of atmospheric aerosols and ice core community in polar regions. Therefore, this study adds very useful information to our knowledge on the sea-salt cycles involved in blowing snow in polar regions. From this reason, I support publication of this work in ACP. However, the current version contains obvious weaknesses, therefore I recommend a major revision. Details are shown as follows.

1. Size distributions of sea-salt aerosols In the GEOS-Chem. Model, spatial distributions of the concentrations of sea-salt aerosols were calculated on assumption of dry deposition velocity and emission from some origins (e.g., open water, frost flowers, and snow). Sea-salt aerosols were distributed from ultrafine to coarse modes in the polar regions during winter – spring (e.g., Hara et al., ACP, 2011).


What is procedure to calculate and treat size distributions and concentrations of sea-salt aerosols? What are the initial size distributions of particles immediately after emission from sea-ice and ocean? I think that these parameters are probably as same as those in your previous work (Huang and Jaegle, ACP, 2017). If so, add short explanation about processing of aerosol size distribution in the model for readers. If not, details should be mentioned.

2. Dry deposition velocity In this study, aerosol dry deposition velocity was fixed to 0.03 cm s-1, corresponding to that of particles with size of ca. 2um in diameter. As shown by Rhodes et al. (2017) and Hara et al. (2017), sea-salt aerosols and ice particles containing sea-salts were released from snow and frost flowers on sea-ice. Then, size of sea-salt particles and ice particles containing sea-salts can be changed through sublimation and efficient dry deposition of larger sea-salt particles in the atmosphere. In general, the coarser aerosols have larger dry deposition velocity (shorter residence time). Therefore, processing of initial size distribution and modification of size distribution involved simultaneously with dry deposition and sublimation is the most important to simulate the concentrations and spatial distribution of sea-salt aerosols. Because
aerosol dry deposition velocity has size-dependence, the fixed and assumed aerosol
dry deposition velocity can result in mis-estimation. I understand that it is difficult to
input all parameters in model calculation. However, sensitivity of dry deposition on the
sea-salt concentrations should be checked. Ideally, size dependence of dry deposition
velocity is included in the model (I do not require it this time, but I hope it for progress
in the future).

salt aerosol to Greenland ice cores: a model-based study, Atmospheric Chemistry and

3. Potential frost flower (PFF) coverage PFF were estimated using air temperature
and thickness of sea-ice in the study. Actually, frost flower can be formed on new and
young sea-ice. In this study, threshold of newly formed sea-ice thickness is 10 cm. In
my experience, this value is small, because frost flower can be appeared on sea-ice
even with thickness of ca. 30cm. If the threshold was smaller, the model results can
be underestimated. What is the impact of sea-ice thickness in the model?

4. Spatial distribution (Figs. 1 and 4) Spatial distribution of aerosol extinction coeffi-
cients and model results during cold seasons were depicted in Figs. 1 and 4. These
plots provide us very interesting information to understand atmospheric sea-salt cycles
in Arctic and Antarctica. However, these periods correspond to develop sea-ice extent,
so that these distributions included also seasonal feature of sea-ice extent, which is
associated with origins of sea-salt aerosols. Seasonal and spatial variations of source
strength and origins of sea-salt aerosols should be taken into account. To exclude in-
fuences of the seasonal features, I suggest that the selected months are shown, for
example month with maximum of sea-ice extent (March in Arctic and September in
Antarctica).

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-298,
2018.

C3