Aerosol pH and its influencing factors in Beijing

Jing Ding2,1, Pusheng Zhao1*, Jie Su1, Qun Dong1, Xiang Du2,1, and Yufen Zhang2

1 Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
2 State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China

*Correspondence: P. S. Zhao (pszhao@ium.cn)
Abstract

The acidity or pH is an important feature of ambient aerosol. At present, the aerosol pH in the North China Plain, either seasonal variation or size-resolved characteristics, need to be further studied. In addition, it is also worthy of discussion about what factors have a greater impact on pH and how these factors affect pH. In view of these, the hourly water-soluble ions (SO$_4^{2-}$, NO$_3^-$, Cl$^-$, NH$_4^+$, Na$^+$, K$^+$, Mg$^{2+}$, and Ca$^{2+}$) of PM$_{2.5}$ and trace gases (HCl, HNO$_3$, HNO$_2$, SO$_2$, and NH$_3$) were online measured by a MARGA system in four seasons during 2016 and 2017 in Beijing. Furthermore, the size-resolved aerosol was also sampled by a MOUDI sampler and analyzed for the chemical compositions of different sizes. On the basis of these data, the particle hydronium ion concentration per volume air (H$_{air}^+$), aerosol liquid water content (ALWC), and PM$_{2.5}$ pH were calculated by using ISORROPIA-II. Moreover, the sensitivities of H$_{air}^+$, ALWC, aerosol pH to all the main influencing factors were discussed. In Beijing, the PM$_{2.5}$ pH over four seasons showed moderately acid. The PM$_{2.5}$ acidity in NCP was both driven by aerosol composition and particle water. The sensitivity analysis revealed that SO$_4^{2-}$, T, NH$_4^T$, and RH (only in summer) are crucial factors affecting the PM$_{2.5}$ pH. The SO$_4^{2-}$ had a key role for aerosol acidity, especially in winter and spring. The impact of NO$_3^-$ on PM$_{2.5}$ pH was different in four seasons. Although NH$_3$ in the NCP was abundant, the PM$_{2.5}$ pH was far from neutral, which mainly attributed to the limited ALWC. Elevated Ca$^{2+}$ concentration could increase the aerosol pH because of the buffering capacity of Ca$^{2+}$ to the acid species and the weak water solubility of CaSO$_4$. The sensitivity analysis also implied that decreasing NO$_3^T$ could reduce the ε(NH$_4^+$) effectively. In contrast, the nitrate response to NH$_4^T$ control was highly nonlinear. According to the size-resolved results, the pH for coarse mode, which was near or even higher than 7, was much higher than that for fine mode. It must be noted that the aerosol pH in coarse mode showed a marked decrease when under heavily polluted condition.

Key words: Aerosol pH, ISORROPIA-II, Influencing factors, Beijing
1. Introduction

Acidity or pH, which drives many processes related to particle composition, gas-aerosol partitioning and aerosol secondary formation, is an important aerosol property (Jang et al., 2002; Eddingsaas et al., 2010; Surratt et al., 2010). The aerosol acidity has a significant effect on the aerosol secondary formation through the gas-aerosol partitioning of semi-volatile and volatile species (Pathak et al., 2011a; Guo et al., 2016). Recent studies have shown that aerosol acidity could promote the generation of secondary organic aerosol by affecting the aerosol acid-catalyzed reactions (Rengarajan et al., 2011). Moreover, metals can become soluble by acid dissociation under lower aerosol pH (Shi et al., 2011; Meskhidze et al., 2003) or by forming a ligand with organic species, such as oxalate at higher pH (Schwertmann et al., 1991). In addition, higher aerosol acidity can lower the acidification buffer capacity and affects the formation of acid rain. The investigation of aerosol acidity is conducive to better understand the important role of aerosols in acid deposition and atmospheric chemical reactions.

The hygroscopic components in the aerosols include water-soluble inorganic ions and part of organic acid (Peng, 2001; Wang et al., 2017). The deliquescence relative humidity (DRH) for the mixed-salt is lower than that of any single component (Seinfeld and Pandis, 2016), hence the ambient aerosols are generally droplets containing liquid water. The aerosol pH actually is the pH of the aerosol liquid water. The aerosol acidity is frequently estimated by the charge balance of measurable cations and anions. A net negative balance correlated with an acidic aerosol and vice versa (Zhang et al., 2007; Pathak et al., 2011b; Zhao et al., 2017). Generally, a larger value of the ion balance implies a stronger acidity or stronger alkaline. Nevertheless, an ion balance or other similar proxies fail to represent the true aerosol pH because they cannot predict H^+ concentration in the liquid phase accurately (Guo et al., 2015; Hennigan et al., 2015), which could be calculated by hydrogen ion concentration per volume air (H_{air}^+) and the aerosol liquid water content (ALWC).

It is critical to obtain the ALWC in calculating aerosol acidity. One way to calculate the ALWC is based upon the assumption that the volume of ALWC is equal to subtracting the volume of dry aerosol particles from that of wet particles (Guo et al., 2015; Bian et al. 2014; Engelhart et al. 2011). Under this assumption, ALWC could be calculated by the size-resolved hygroscopic growth factors ($g(D, RH)$) combining particle size distribution (PNSDs) or by the hygroscopic growth factor of
aerosol scattering coefficient ($f(RH)$) (Bian et al. 2014; Guo et al., 2015; Kuang et al., 2017a). The $g(D, RH)$, defined as the ratio of the diameter of the wet particle at a certain relative humidity to the corresponding diameter at dry conditions, can be measured by a H-TDMA (Hygroscopic Tandem Differential Mobility Analyzer) (Liu et al., 1978; Swietlicki et al., 2008; Liu et al., 2011). The $f(RH)$ can be observed by the wet & dry nephelometer system (Covert et al., 1972; Rood et al. 1985; Yan et al., 2009; Kuang et al., 2016, 2017b).

Another way to calculate the ALWC is based on the aerosol chemical components with thermodynamic models, such as ISORROPIA-II, AIM, ADDEM etc. (Nenes et al., 1998; Fountoukis and Nenes, 2007, Clegg et al., 1998, Topping et al., 2005a, b). Based on the aerosol chemical components as well as temperature and relative humidity, the aerosol thermodynamic models can output both ALWC and H_{air}^+, which offers a more precise approach to acquire aerosol pH (Pye et al., 2013). Among these thermodynamic models, ISORROPIA and ISORROPIA-II are widely used owing to its rigorous calculation and performance on computational speed. ISORROPIA simulates the gas-particle partitioning in the H_2SO_4, NH_3, HNO_3, HCl, Na^+, H_2O system, while its second version, ISORROPIA-II, adds Ca^{2+}, K^+, Mg^{2+} and the corresponding salts to the simulated particle components in thermodynamic equilibrium with water vapor and gas-phase precursors.

Comparisons were made in some studies to investigate the consistency of calculated ALWC derived from the above methods. In the North China Plain (NCP), Bian et al. (2014) found that the ALWC calculated using size-resolved hygroscopic growth factors and the PNSD agreed well with that calculated using ISORROPIA II at higher relative humidity (>60%). Relatively good consistency was also found in the study of Engelhart et al. (2011) in the USA based on the similar method. Guo et al. (2015) compared the ALWC calculated by $f(RH)$ with the total predicted water by organics and inorganics. The total predicted water was highly correlated and on average within 10% of the $f(RH)$ measured water. Though good consistencies in ALWC were found among these methods, the H_{air}^+ could only be obtained by the thermodynamic models, which had been applied to predict aerosol acidity in many studies (Nowak et al., 2006; Fountoukis et al., 2009; Weber et al., 2016; Fang et al., 2017).

The characteristics of aerosol chemical components are different among multiple size ranges.
Among inorganic ions, \(\text{SO}_4^{2-}, \text{NO}_3^{-}, \text{Cl}^{-}, \text{K}^{+}, \text{NH}_4^{+} \) mainly concentrate in fine mode except for the dust days (Meier et al., 2009; Pan et al., 2009; Tian et al., 2014), whereas \(\text{Mg}^{2+}, \text{Ca}^{2+} \) are abundant in coarse mode (Zhao et al., 2017). The aerosol acidity is affected by coupling among many variables. Therefore, it could be expected that the aerosol pH is also diverse under different particle size. The gas precursor (\(\text{NH}_3, \text{HNO}_3, \text{and HCl} \)) of main water-soluble ions, as well as ambient temperature and relative humidity, are also important factors affecting the aerosol acidity. In some countries where particle matter concentration is very low, the pH diurnal variation was mainly driven by meteorological conditions (Guo et al., 2015, 2016; Bougiatioti et al., 2016). In China, however, the annual average \(\text{PM}_{2.5} \) concentration in some megacities was ~2 times higher than the national standard value (35 \(\mu \text{g m}^{-3} \)) and the inorganic ions accounted for 40%~50% to \(\text{PM}_{2.5} \), especially in the North China Plain (Zou et al., 2018; Huang et al., 2017; Gao et al., 2018). Hence it can be expected that the aerosol composition is also a crucial factor on pH, which cannot be ignored.

The North China Plain is the region with the most severe aerosol pollution in China. Nevertheless, only a few studies have focused on aerosol pH in this region. Some studies conducted in NCP showed that the aerosol acidity was close to neutral, while in some other studies the fine particles showed moderately acidic (Cheng et al., 2016; Wang et al., 2016; Liu et al., 2017; Shi et al., 2017). These results were all significantly higher than that in the United States or Europe, where aerosols were often highly acidic with a pH lower than 3.0 (Guo et al., 2015, 2016; Bougiatioti et al., 2016; Weber et al., 2016; Young et al., 2013). The differences in aerosol pH in NCP mainly resulted from the different methods (ion balance & thermodynamic equilibrium models) or different data sets. Moreover, the variation of \(\text{PM}_{2.5} \) chemical composition in NCP in recent years also contributed to the differences in aerosol pH. The observations in previous studies exploring aerosol acidity in NCP were almost conducted before 2015. In the recent three years, the chemical composition of \(\text{PM}_{2.5} \) in Beijing has undergone tremendous changes. Nitrate has replaced sulfate and is dominant in inorganic ions in most cases (Zhao et al., 2017; Huang et al., 2017; Ma et al., 2017). Moreover, studies about seasonal variation of aerosol pH and size-resolved aerosol pH are rare in NCP, and the key factors affecting aerosol acidity are still not well understood.

In this work, thermodynamic model ISORROPIA-II with the forward mode was utilized to predict ALWC and aerosol pH in Beijing. The hourly measured \(\text{PM}_{2.5} \) inorganic ions and precursor
gases in four seasons during 2016 to 2017 were used to analyze the seasonal and diurnal variation of aerosol acidity, and the sensitivity analysis was conducted to identify the key factors that affecting the aerosol pH. In our previous studies, the multi-stage cascade impactors (MOUDI-122) were used for size-resolved aerosol sampling from 2013 to 2015. The actual relative humidity inside the impactors was calculated, and the size distributions of water-soluble ions, organic carbon, and elemental carbon in three seasons were discussed (Zhao et al., 2017; Su et al., 2018). Based on these size-resolved results, the pH for aerosol in different size ranges could also be predicted.

2. Data Collection and Methods

2.1 Site

The measurements were performed at the Institute of Urban Meteorology in Haidian district of Beijing (39°56′N, 116°17′E). The sampling site was located next to a high-density residential area, without significant air pollution emissions around the site. Therefore, the observation data could represent the air quality levels of the urban area of Beijing.

2.2 Online data collection

Water-soluble ions (SO$_4^{2-}$, NO$_3^-$, Cl$^-$, NH$_4^+$, Na$^+$, K$^+$, Mg$^{2+}$, and Ca$^{2+}$) of PM$_{2.5}$ and trace gases (HCl, HNO$_3$, HNO$_2$, SO$_2$, and NH$_3$) in the ambient air were measured by an online analyzer (MARGA) at hourly temporal resolution during the spring (April and May in 2016), winter (February in 2017), summer (July and August in 2017) and autumn (September and October in 2017). The more details about MARGA can be found at ten Brink et al. (2007). The PM$_{2.5}$ and PM$_{10}$ mass concentrations (TEOM 1405DF), the hourly ambient temperature and relative humidity were also synchronously attained.

Hourly concentrations of PM$_{2.5}$, PM$_{10}$, and water-soluble ions in PM$_{2.5}$, as well as meteorological parameters during the observation, are shown in Figure 1. In the spring, two dust events occurred (21-22, April and 5-6, May). During the first dust events, the wind came predominantly from the north with mean wind speed 3.5 m s$^{-1}$. The PM$_{10}$ concentration reached 425 µg m$^{-3}$ while the PM$_{2.5}$ concentration was only 46 µg m$^{-3}$ on the peak hour. Similarly, the second dust event resulted from the strong wind coming from the northwest direction. In the following pH analysis based on MARGA data, it was assumed that the particles were internally mixed, and the chemical compositions were the same for particles of different sizes in PM$_{2.5}$. Hence, these two dust events
were excluded from this analysis.

Figure 1

2.3 size-resolved chemical compositions

A Micro-Orifice Uniform Deposit Impactor (MOUDI-120) was used to collect size-resolved aerosol samples with the calibrated 50% cut sizes of 0.056, 0.10, 0.18, 0.32, 0.56, 1.0, 1.8, 3.1, 6.2, 9.9 and 18 μm. Size-resolved sampling was conducted during July 12-18, 2013; January 13-19, 2014; July 3-5, 2014; October 9-20, 2014; and January 26-28, 2015. Fifteen, fourteen, and eighteen sets of samples were obtained for the summer, autumn, and winter, respectively. Except for two sets of samples, all the samples were collected in daytime (from 08:00 to 19:00) and nighttime (from 20:00 to 7:00 the next day), respectively. One hour of preparation time was set for filter changing and nozzle plate washing with ethanol. The water-soluble ions were analyzed from the samples by using an ion chromatography (DIONEX ICS-1000). The detailed information about the features of MOUDI-120, and the procedures of sampling, pre-treatment, and laboratory chemical analysis (including the quality assurance & quality control) were described in our previous papers (Zhao et al., 2017; Su et al., 2018). It should be noted that there was no observation of gas precursors during the periods of MOUDI sampling.

2.4 Aerosol pH prediction

As mentioned in the Introduction, pH of ambient aerosols can be predicted by the thermodynamic model such as AIM and ISORROPIA. AIM is considered as an accurate benchmark model while ISORROPIA has been optimized for use in chemical transport models. Currently, ISORROPIA-II, adding K⁺, Mg²⁺, and Ca²⁺ (Fountoukis and Nenes, 2007), can calculate the equilibrium H_{aq}^+ (particle hydronium ion concentration per volume air) and ALWC with reasonable accuracy by taking water-soluble ions mass concentration, temperature, and relative humidity as input. The H_{aq}^+ and ALWC were then used to predict aerosol pH by the Eq. (1).

$$\text{pH} = -\log_{10} H_{aq}^+ = -\log_{10} \frac{1000H_{air}^+}{ALWC_i} \quad (1)$$

Where H_{aq}^+ (mole L⁻¹) is the hydronium ion concentration in the ambient particle liquid water. H_{aq}^+ can also be deemed to be the H_{air}^+ (μg m⁻³) divided by the concentration of ALWC associated with inorganic species, $ALWC_i$ (μg m⁻³). Both inorganic and part of organic species in particles are
hygroscopic. However, the pH prediction is not highly sensitive to the water uptake by organic species \((ALWC_o)\) (Guo et al., 2015, 2016). The similar result was also found in Beijing in Liu et al. (2017). Hence the aerosol pH could be fairly predicted by ISORROPIA-II with just measurements of inorganic species in most cases. However, it should be noted that the potential error could be incurred by ignoring \(ALWC_o\) in regions where hygroscopic organic species has a relatively high contribution to fine particles.

In ISORROPIA-II, forward and reverse mode are provided to predict \(ALWC\) and \(H_{air}^+\). In forward mode, \(T\), \(RH\), and the total (i.e. gas+aerosol) concentrations of \(NH_3\), \(H_2SO_4\), \(HCl\), and \(HNO_3\) need to be input. Reverse mode calculates the equilibrium partitioning given the concentrations of only aerosol compositions together with \(RH\) and \(T\) as input. In this work, the online ion chromatography MARGA was used to measure both inorganic ions of \(PM_{2.5}\) and precursor gases. Moreover, several studies had shown that the ion balance and reverse-mode calculations of thermodynamic equilibrium models were not applicable to interpret the aerosol acidity (Hennigan et al., 2015; Liu et al. 2017; Song et al., 2018). The forward mode was also reported less sensitive to measurement error than the reverse mode (Hennigan et al., 2015; Song et al., 2018). Hence, ISORROPIA-II was run in the “forward mode” for aerosols in the metastable condition in this study.

When using ISORROPIA-II to calculate the \(PM_{2.5}\) acidity, all particles were assumed internally mixed and the bulk properties were used, without considering the variability of chemical compositions with particle size. In the ambient atmosphere, the aerosol chemical composition is complicated, hence the deliquescent relative humidity of aerosol is generally low (Seinfeld and Pandis, 2016) and the particles usually exist in the form of droplets, which makes the assumption that the particles are in a liquid state (metastable condition) reasonable. However, when the particles are exposed to a quite low RH, the state of particles may change. Figure 2 and Figure S1-S4 exhibit the comparisons between predicted and measured \(NH_3\), \(HNO_3\), \(HCl\), \(NH_4^+\), \(NO_3^-\), \(Cl^-\), \(\varepsilon(NH_4^+)\) \((NH_4^+/(NH_3+NH_4^+), \text{mol/mol})\), \(\varepsilon(NO_3^-)\) \((NO_3^-/(HNO_3+NO_3^-), \text{mol/mol})\), and \(\varepsilon(Cl^-)\) \((Cl^-/(HCl+Cl^-), \text{mol/mol})\) based on real-time ion chromatography data, which are all colored by the corresponding RH. It can be seen that agreements between predicted and measured \(NH_3\), \(NH_4^+\), \(NO_3^-\), and \(Cl^-\) are pretty well, the \(R^2\) of linear regressions are all higher than 0.94, and the slopes are around 1. Moreover, the agreement between predicted and measured \(\varepsilon(NH_4^+)\) is better when compared with
$\varepsilon(\text{NO}_3^-)$ and $\varepsilon(\text{Cl}^-)$. The slope of linear regression between predicted and measured $\varepsilon(\text{NH}_4^+)$ was 0.93, 0.91, 0.95, and 0.96 and the R^2 is 0.87, 0.93, 0.89, and 0.97 in spring, winter, summer, and autumn, respectively. However, measured and predicted partitioning of HNO$_3$ and HCl show significant discrepancies (R^2 of 0.28 and 0.18), which may attribute to the much lower gas concentrations compared with the particle concentrations, as well as the gas denuder measurement uncertainties from particle collection artifacts (Guo et al., 2018). Obviously, more scatter points deviate from the 1:1 line when ISORROPIA-II runs at RH \leq 30%, which is much evident in winter and spring. For data with RH \leq 30%, the predictions are significantly improved when assuming aerosol in stable mode (solid + liquid) (Figure S5-S6). However, the aerosol liquid water was almost zero and cannot be used to predict aerosol pH. It reveals that it is not reasonable to predict the aerosol pH using the thermodynamic model when the RH is relatively low. Consequently, we only discussed the PM$_{2.5}$ pH for data with RH higher than 30% in this work.

Running ISORROPIA-II in the forward mode with only aerosol concentrations as input may result in a bias in predicted pH due to repartitioning of ammonia in the model, leading to a lower predicted pH when gas-phase data are not available (Hennigan et al., 2015). In this work, since no gas phase was available for the size-resolved pH prediction. We determined aerosol pH through an iteration procedure that used the measured particulate species and ISORROPIA-II to predict gas species, the detailed information could be found in Fang et al. (2017) and Guo et al. (2016). As a brief summary, the predicted NH$_3$, HNO$_3$, and HCl concentrations from the i-1 run were applied to the ith iteration, until the gas concentrations converged. Based on these iterative gas phase concentrations, the ion concentrations from samples collected by the MOUDI as well as the averaged RH and T during each sampling period were used to determine aerosol pH for different size ranges. Just like calculating the pH of PM$_{2.5}$, it was also assumed that all the particles at each size bin were internally mixed and had the same pH.

The comparisons of iterative and predicted NH$_3$, HNO$_3$, and HCl as well as measured and predicted NO$_3^-$, NH$_4^+$, Cl$^-$, ε(NH$_4^+$), ε(NO$_3^-$), and ε(Cl$^-$) for data from MOUDI samples are showed in Figure 3. The previous study showed that coarse mode particles were very difficult to reach equilibrium with the gaseous precursors due to kinetic limitations (Dassios et al., 1999; Cruz et al.,...
Assuming coarse mode particles in equilibrium with the gas phase could result in a large bias between measured and predicted NO$_3^-$ and NH$_4^+$ in coarse mode particles (Fang et al., 2017). We also find that in this work, it can be clearly seen that assuming coarse mode particles in equilibrium with the gas phase could overpredict NO$_3^-$ and Cl$^-$ and underestimate NH$_4^+$ in the coarse mode (the blue scatters), which could subsequently underestimate the coarse mode aerosol pH. Compared with the coarse mode particles, the measured and predicted NO$_3^-$, NH$_4^+$, and Cl$^-$ agreed very well in fine mode particles. Considering the kinetic limitations and nonideal gas-particle partitioning in coarse mode particles, the aerosol pH in coarse mode was determined by ignoring the gas phase.

Figure 3

2.5 Sensitivities of aerosol pH to SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, Cl$^-$, RH, and T

In the real ambient air, the thermodynamic process of the aerosol is complicated, it is not easy to tell the effect of one factor on the aerosol pH. The ALWC, H$_{air}^+$, aerosol pH, ε(NH$_4^+$), ε(NO$_3^-$), and ε(Cl$^-$) are all the output of ISORROPIA-II. Together, they reflect an objective state of particles. Considering the relative independence between input parameters, it is reasonable to discuss the influence of input variables on output parameters with the results of ISORROPIA-II. Thus, in this paper, we focus on the sensitivity analysis of single-factor variation, which can reflect the variation tendency of aerosol pH caused by the change of each variable.

In the ISORROPIA-II, the input parameters include SO$_4^{2-}$ (total sulfate (gas+aerosol) expressed as equivalent H$_2$SO$_4$), NO$_3^-$ (total nitrate (gas+aerosol) expressed as equivalent HNO$_3$), NH$_4^+$ (total ammonium (gas+aerosol) expressed as equivalent NH$_3$), Cl$^-$ (total chloride (gas+aerosol) expressed as equivalent HCl), Na$^+$, Ca$^{2+}$, K$^+$, Mg$^{2+}$, RH, and T. After running, the gas and aerosol phase of NO$_3^-$, NH$_4^+$, and Cl$^-$ would be reapportioned and output. In view of this, it is more reasonable to analyze the impact of NO$_3^-$, NH$_4^+$, and Cl$^-$ on aerosol pH, rather than the impact of a single gas or aerosol phase of NO$_3^-$, NH$_4^+$, and Cl$^-$ on aerosol pH. In addition, the mass concentration of K$^+$ and Mg$^{2+}$ was low, so the variables in the sensitivity analysis were determined as SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, Cl$^-$, Ca$^{2+}$, RH, and T. When assessing how a variable affects ALWC, H$_{air}^+$, and aerosol pH, the real-time measured values of this variable and the averaged values of other variables in each season were input ISORROPIA-II. The magnitude of the relative standard deviation (RSD) of calculated aerosol pH can reflect the impact of one variable on the aerosol acidity. The higher the RSD, the greater the
impact, vice versa. The average value and variation range for each variable in all four seasons are listed in Table S1 and Figure S7.

The sensitivity analysis in this work aimed at the PM$_{2.5}$ (i.e., fine particles) because the PM$_{2.5}$ components in four seasons were available and had a high temporal resolution (1h). In addition, the data set had a wide range, covering different levels of haze events. Noted that the sensitivity analysis in this work only reflected the characteristics during the observation periods, further work is needed to determine whether the sensitivity analysis is valid in other environments.

3. Results and Discussion

3.1 Overall summary of PM$_{2.5}$ pH over four seasons

The averaged PM$_{2.5}$ concentrations were 62±36, 60±69, 39±24, and 59±48 μg m$^{-3}$ for observation periods of spring, winter, summer, and autumn, respectively (Table 1). Among all ions measured, NO$_3^-$, SO$_4^{2-}$, and NH$_4^+$ were three dominant species, accounting for 83% ~ 87% of total ions. Compared with other seasons, the averaged concentration of primary inorganic ions (Cl$^-$, Na$^+$, K$^+$, Mg$^{2+}$, Ca$^{2+}$) was higher in spring. The aerosol in Beijing showed the moderate acidity with PM$_{2.5}$ pH of 4.0±1.0, 4.5±0.7, 3.8±1.2, and 4.3±0.8 for spring, winter, summer, and autumn observation, respectively (data at RH ≤30% were excluded). The overall winter PM$_{2.5}$ pH was comparable to the result found in Beijing, 4.2 from Liu et al. (2017) and 4.5 from Guo et al. (2017), but lower than that (4.9, winter and spring) in Tianjin (Shi et al., 2017), another mega city about 120 km away from Beijing. The summer PM$_{2.5}$ pH was lowest among all four seasons. The seasonal variation of PM$_{2.5}$ pH in this work was similar to the result from Tan et al. (2018) except for spring, which was winter (4.11 ± 1.37) > autumn (3.13 ± 1.20) > spring (2.12 ± 0.72) > summer (1.82 ± 0.53). Noted that the observation in Tan et al. (2018) was conducted in Beijing in 2014, the distinction in the aerosol compositions was probably responsible for the lower PM$_{2.5}$ pH in their work.

Table 1

To further investigate the PM$_{2.5}$ pH performance under different pollution levels over four seasons, the PM$_{2.5}$ concentrations were classified into three groups with 0~75 μg m$^{-3}$, 75~150 μg m$^{-3}$, and >150 μg m$^{-3}$, representing the clean, polluted, and heavily polluted conditions, respectively. The relationship between PM$_{2.5}$ and its pH is shown in Figure S8. The PM$_{2.5}$ pH under clean condition spanned 2~7 while the PM$_{2.5}$ pH under polluted and heavily polluted conditions mostly concentrated...
in 3~5. Table 1 shows that as the air quality deteriorated, aerosol components, as well as ALWC and
H_{air}^+, all increased for each season, but the differences in PM$_{2.5}$ pH for three pollution levels were
not statistically significant. In terms of the averaged values, the PM$_{2.5}$ pH under the clean condition
was the highest (Table 1), then followed by polluted and heavily polluted conditions in spring,
summer, and autumn. In winter, however, the averaged pH under polluted condition (4.8±1.0) was
the highest, then followed by clean (4.5±0.6) and heavily polluted conditions (4.4±0.7).

Time series of mass fraction of NO$_3^-$, SO$_4^{2-}$, NH$_4^+$, Cl$^-$, and crustal ions (Mg$^{2+}$ and Ca$^{2+}$) in total
ions, as well as pH in all four seasons, are showed in Figure 4. It can be seen that on clean days,
high PM$_{2.5}$ pH (>6) was generally companied by high mass fraction of crustal ions, while the
relatively low PM$_{2.5}$ pH (<3) was companied by high mass fraction of SO$_4^{2-}$ and low mass fraction
of crustal ion, which was most obvious in summer (large part of PM$_{2.5}$ pH with RH ≤30% were
excluded in spring and winter). On polluted and heavily polluted days, the aerosol chemical
composition was similar, mainly dominated by NO$_3^-$, hence the differences of PM$_{2.5}$ pH on polluted
and heavily polluted days were small. Compared with the mass concentration of PM$_{2.5}$, the different
aerosol chemical compositions might be the essence that drove aerosol acidity. The impact of
aerosol compositions on PM$_{2.5}$ pH is discussed in Section 3.4.

Figure 4

Beijing is surrounded by mountains on three sides. Haze episodes usually occur with southwest
and southeast winds as well as calm winds in Beijing. The industry is mainly concentrated in the
south of Beijing, leading to the higher PM$_{2.5}$ concentration in Beijing by the regional transport and
accumulation. Wind dependence of PM$_{2.5}$, NO$_3^-$, SO$_4^{2-}$, NH$_4^+$ and the averaged PM$_{2.5}$ pH are shown
in Figure 5 and Figure S9. In spring, summer, and autumn, the PM$_{2.5}$ pH in northern direction were
generally higher than that in the southwest direction, but the high pH in summer also occurred with
southwest strong winds (wind speed >3 m s$^{-1}$). Generally, the northerly winds usually occur with
cold front systems, which could sweep away air pollutants but raised dust in which the crustal ion
species (Ca$^{2+}$, Mg$^{2+}$) were higher. In winter, the PM$_{2.5}$ pH distributed relatively evenly in each wind
direction, but we surprisingly found that the pH in northerly winds is as low as 3~4, which was
consistent with the high mass fraction of SO$_4^{2-}$ on the clean days caused by the northerly winds.

Figure 5

3.2 Diurnal variation of ALWC, H$_{\text{air}}^+$, and PM$_{2.5}$ pH

The diurnal variations of NO$_3^-$, SO$_4^{2-}$, ALWC, H$_{\text{air}}^+$, and PM$_{2.5}$ pH are exhibited in Figure 6. The diurnal variations for ALWC, H$_{\text{air}}^+$, and pH was similar over four seasons. Generally, nighttime mean ALWC was higher than daytime and reached a peak at near 04:00 ~ 06:00 (local time). After sunrise, the increasing temperatures resulted in a rapid drop in RH, leading to the obvious loss of particle water, ALWC reached the lowest level in the afternoon. H$_{\text{air}}^+$ was highest in the afternoon and then followed by nighttime, and H$_{\text{air}}^+$ was relatively low in the forenoon. The low ALWC and high H$_{\text{air}}^+$ resulted in the minimum pH in the afternoon. The averaged nighttime pH is 0.3~0.4 unit higher than that on daytime. Noted that the diurnal variations of PM$_{2.5}$ pH here were for the cases with RH higher than 30%. If the data at RH≤30% were included, the diurnal variations of H$_{\text{air}}^+$, pH, and SO$_4^{2-}$ in winter were changed (Figure S10). H$_{\text{air}}^+$ and SO$_4^{2-}$ were both higher at nighttime since the nocturnal boundary layer height was generally low in winter and easily resulted in the accumulation of SO$_4^{2-}$, hence leading to a lower pH at the night.

The diurnal variation of NO$_3^-$ in winter and spring agreed well with the aerosol acidity. Nevertheless, in summer and autumn, the agreement was not well. Figure S11 shows the relationship between mass concentrations of SO$_4^{2-}$ and NO$_3^-$ and PM$_{2.5}$ pH at different ALWC levels for all four seasons. At the relatively low ALWC, the increasing SO$_4^{2-}$ could decrease the pH obviously; at the relatively high ALWC, the negative correlation still existed between SO$_4^{2-}$ mass concentration and PM$_{2.5}$ pH. On the contrary, a weak positive correlation was found between NO$_3^-$ and pH at the relatively low ALWC and the PM$_{2.5}$ pH was almost invariable with the NO$_3^-$ mass concentration at the relatively high ALWC. Compared with the NO$_3^-$, the SO$_4^{2-}$ had a greater effect on PM$_{2.5}$ pH. When the ALWC was high enough (for example, higher than 100 μg m$^{-3}$), the impact of dilution of ALWC to the H$_{\text{air}}^+$ was more significant.

Figure 6

Guo et al. (2015) found that the ALWC diurnal variation was significant, and the diurnal pattern in pH was mainly driven by particle water dilution. However, in this work, both H$_{\text{air}}^+$ and ALWC had significant diurnal variations, and the aerosol acidity variation agreed well with sulfate,
indicating the aerosol acidity in NCP was both driven by aerosol composition and particle water.

For example, in the winter of NCP, the PM$_{2.5}$ mass concentration in Beijing was several to dozens times higher than that in the US, which means there are more seeds in the limited particle water, and the RH was generally low, hence the dilution of aerosol liquid water to H$_{air}^+$ doesn’t work at all, the diurnal variation of aerosol components was more important.

3.3 Gas-particle separation

Table 2 exhibits the measured ε(NH$_4^+$), ε(NO$_3^-$), and ε(Cl$^-$) at different RH levels. The measured ε(NH$_4^+$), ε(NO$_3^-$), and ε(Cl$^-$) increased with the elevated RH in all four seasons, indicating more NH$_4^+$T, NO$_3^-$T, and ClT were partitioned into particle phase at higher RH. In winter and spring, NO$_3^-$T and ClT were dominated by particle phases, ε(NO$_3^-$) and ε(Cl$^-$) was higher than 65%. Whereas in summer and autumn, the lower RH generally companied by higher ambient temperature, more than half of the NO$_3^-$T and ClT were partitioned into the gaseous phase. When the RH reached above 60%, more than 90% of NO$_3^-$T and 70% of ClT were in the particle phase for all four seasons. Compared with ε(NO$_3^-$) and ε(Cl$^-$), the ε(NH$_4^+$) was pretty lower. In spring, summer, and autumn, the average ε(NH$_4^+$) was still lower than 0.3 even when the RH >60%, which might attribute to the higher NH$_3$ mass concentration in the atmosphere. The averaged NH$_3$ was 21.5±8.7 μg m$^{-3}$, 19.6±6.4 μg m$^{-3}$, and 16.8±8.0 μg m$^{-3}$ in spring, summer, and autumn, respectively. In winter, the average ε(NH$_4^+$) were much higher than that in other seasons with the relatively lower NH$_3$ mass concentration (4.9±2.8 μg m$^{-3}$).

Table 2.

3.4 Factors affecting ALWC, H$_{air}^+$, PM$_{2.5}$ pH, and gas-particle partitioning

As mentioned above, the aerosol chemical composition has a non-negligible effect on PM$_{2.5}$ pH. In this work, the effects of SO$_2^-$, NO$_3^-$, NH$_4^+$T, ClT, Ca$^{2+}$, RH, and T on PM$_{2.5}$ pH were performed through a sensitivity analysis over four seasons.

As shown in Table 3, for ALWC, the largest relative standard deviation (RSD) was observed when RH was taken as the evaluated factor, then followed by SO$_2^-$ or NO$_3^-$, which means the RH had the greatest influence on ALWC, and SO$_2^-$ and NO$_3^-$ were major hygroscopic components in the aerosol. The SO$_2^-$, RH, NO$_3^-$T, and NH$_3$T were all important influential factors for H$_{air}^+$.

especially \(\text{SO}_4^{2-} \). The \(\text{SO}_4^{2-} \) and \(T \) were two crucial factors affecting the PM\(_{2.5}\) pH variation. The PM\(_{2.5}\) pH was also sensitive to \(\text{NH}_4^+ \) when it was in a lower range and sensitive to RH only in summer. The relationship between pH and \(\text{NH}_4^+ \) was nonlinear, the impact of \(\text{NH}_4^+ \) on pH weakened as \(\text{NH}_4^+ \) increased. In spring, the crucial factor for the PM\(_{2.5}\) pH variation was \(\text{SO}_4^{2-} \) while it was SO\(_4^{2-}\) and \(\text{NH}_4^+ \) in winter. In summer, the most important factor affecting PM\(_{2.5}\) pH was RH only in summer.

The relationship between pH and \(\text{NH}_4^+ \) was nonlinear, the impact of \(\text{NH}_4^+ \) on pH weakened as \(\text{NH}_4^+ \) increased. In spring, the crucial factor for the PM\(_{2.5}\) pH variation was \(\text{SO}_4^{2-} \) while it was SO\(_4^{2-}\) and \(\text{NH}_4^+ \) in winter. In summer, the most important factor affecting PM\(_{2.5}\) pH was RH, then followed by \(\text{NH}_4^+ \) and SO\(_4^{2-}\). In autumn, the effect of \(\text{NH}_4^+ \) on PM\(_{2.5}\) pH was considerable, SO\(_4^{2-}\) and \(T \) were also important. Figure 7-9 and S12-S17 show how these factors affecting the ALWC, \(\text{H}_{\text{air}}^+ \), and aerosol acidity over four seasons. The sensitivity analysis for ALWC and \(\text{H}_{\text{air}}^+ \) were similar over four seasons, while the sensitivity of PM\(_{2.5}\) pH to RH and NO\(_3^-\) in four seasons were different from each other. In this study, winter and summer were chosen for a detailed discussion of sensitivity analysis because more heavy pollution episodes happened in winter while the photochemical reaction was relatively strong in summer.

Table 3

Figure 7

Figure 8

Figure 9

RH: RH had a different impact on PM\(_{2.5}\) pH in different seasons. In winter, the PM\(_{2.5}\) pH decreased with the increasing RH, whereas the PM\(_{2.5}\) pH increased with the increasing RH in summer. In spring and autumn, the RH between 30~83% had little impact on PM\(_{2.5}\) pH. The explanation for this is that the increased RH actually diluted the solution and promoted ionization, releasing \(\text{H}_{\text{air}}^+ \) and increasing ALWC as well, but the gradient was different. In winter, variation in \(\text{H}_{\text{air}}^+ \) caused by RH changes was much larger than variation in ALWC, whereas it showed an opposite tendency in summer. In autumn and spring, variation in \(\text{H}_{\text{air}}^+ \) caused by RH changes was slightly higher than the variation in ALWC. The different impact of RH on PM\(_{2.5}\) pH indicated that the dilution effect of ALWC on \(\text{H}_{\text{air}}^+ \) was obvious only in summer, the high RH during the severe haze in winter could increase the aerosol acidity.

T: At high ambient temperature, \(\varepsilon(\text{NH}_4^+) \), \(\varepsilon(\text{NO}_3^-) \), and \(\varepsilon(\text{Cl}^-) \) all showed a decreased tendency (Figure 10 and S19). The procedure of \(\text{NH}_4^+ \rightarrow \text{NH}_3 \) releases one H\(^+\) to particle phase, whereas the
procedure of $\text{NO}_3^- \rightarrow \text{HNO}_3$ or $\text{Cl}^- \rightarrow \text{HCl}$ both need one H^+ from the particle phase. Compared with
the loss of NO_3^- from NH_4NO_3 as well as Cl^- from NH_4Cl, greater loss of NH_4^+ from NH_4NO_3,
NH_4Cl, and (NH_4)$_2\text{SO}_4$ resulted in a net increase in particle H^+ and lower pH. In addition, the
molality-based equilibrium constant (k^*) of $\text{NH}_3\text{-NH}_4^+$ partitioning decreased faster with
increasing temperature when compared with that of $\text{HNO}_3\text{-NO}_3^-$ partitioning, resulting in a net
increase in particle H^+ (Guo et al., 2018). Moreover, higher ambient temperature tends to lower
ALWC, which further decreases the PM$_{2.5}$ pH. The wide range of ambient temperature in autumn
made a significant impact on PM$_{2.5}$ pH in the sensitivity analysis.

Figure 10

SO_4^{2-}: SO_4^{2-} had a key role in aerosol acidity, especially in winter and spring (Figure 9, S14, S17).
In the sensitivity test, the PM$_{2.5}$ pH decreased by about 1.6 (4.1 to 2.5), 4.9 (5.1 to 0.2), 1.0 (3.6 to
2.6), and 0.9 (4.0 to 3.1) unit with SO_4^{2-} concentration went up from 0 to 40 $\mu\text{g m}^{-3}$ in spring, winter,
summer, and autumn, respectively. In spring and winter, the ALWC was low, the variation of SO_4^{2-}
mass concentration could generate dramatic changes in H_{air}^+. In section 3.1, the PM$_{2.5}$ pH was lowest
in summer whereas highest in winter, which was consistent with the SO_4^{2-} mass faction in total ions.
The SO_4^{2-} mass faction in total ions in summer was highest among four seasons with 32.4%±11.1%,
whereas it was lowest in winter with 20.9%±4.4%.

NO_3^-: The impact of NO_3^- on PM$_{2.5}$ pH was also different, which was related to the averages of
input NH_4^- in different seasons. In winter, the PM$_{2.5}$ pH decreased with increasing NO_3^-
concentration, whereas little impact was found in summer (Figure 9). In spring and autumn, the
PM$_{2.5}$ pH increases first and then dropped with the increasing NO_3^- concentration (Figure S14, S17).
In winter, the NH_4^- mass concentration was relatively low. As NO_3^- increases, all NH_3 could be
converted into NH_4^+ ($\epsilon(\text{NH}_4^+)=1$). However, if HNO$_3$ continued to dissolve and released H_{air}^+, it
would result in the decrease of PM$_{2.5}$ pH. In summer, the averages of NO_3^- and Cl^- was relatively
low but the NH_4^- was excessive, the highest $\epsilon(\text{NH}_4^+)$ was only 0.6 with the corresponding highest
NO_3^-. The excessive NH_3 could provide continuous buffering to the increasing NO_3^-, together with
a significant dilution of ALWC on H_{air}^+, leading to the little changes in PM$_{2.5}$ pH. In spring and
autumn, the increasing pH with elevated NO_3^- in lower range attributed to the dilution of ALWC to
H_{air}^+. H_{air}^+ concentration increased exponentially with elevated NO_3^- concentration, especially at
higher NO$_3^\text{T}$ concentrations, whereas the ALWC increased linearly with elevated NO$_3^\text{T}$ concentration (Figure S12-S17), hence ALWC played a dominant role when the NO$_3^\text{T}$ concentration was low. With the further increase of NO$_3^\text{T}$, the variation in H$_{\text{air}^+}$ caused by NO$_3^\text{T}$ addition was larger than the variation in ALWC, leading to the decrease of PM$_{2.5}$ pH. Besides, the relationship between NO$_3^\text{T}$ and ε(NH$_4^+$) in the sensitivity analysis showed that decreasing NO$_3^\text{T}$ could lower the ε(NH$_4^+$) effectively (Figure 11 and S20), which helped NH$_3$ maintain in the gas phase.

Figure 11

NH$_4^\text{T}$: The relationship between PM$_{2.5}$ pH and NH$_4^\text{T}$ was nonlinear. NH$_4^\text{T}$ in lower range had a significant impact on the PM$_{2.5}$ pH (Table S2), and higher NH$_4^\text{T}$ generated limited pH change (Figure 9, S14, S17). Elevated NH$_4^\text{T}$ could reduce H$_{\text{air}^+}$ exponentially and slightly increase ALWC when the other input parameters were held constant. As the NH$_4^\text{T}$ increased, H$_{\text{air}^+}$ was consumed swiftly during the dissolution of NH$_3$ and the further reaction with SO$_4^{2-}$, NO$_3^-$, and Cl$. The elevated NH$_4^\text{T}$ increased the ε(NO$_3^-$) and ε(Cl$^-$) when NO$_3^\text{T}$ and Cl$^\text{T}$ were fixed (Figure 11 and S20), which means the elevated NH$_4^\text{T}$ altered the gas-particle partition and shifted more NO$_3^\text{T}$ and Cl$^\text{T}$ into particle phase, leading to the deliquescence of additional nitrate and chloride and an increase of ALWC. It seems that NH$_3$ emission control is a good way to reduce NO$_3^-$. However, the relationship between NH$_4^\text{T}$ and ε(NO$_3^-$) in the sensitivity analysis (Figure 11 and S20) showed that the ε(NO$_3^-$) response to NH$_4^\text{T}$ control was highly nonlinear, which means the decrease of nitrate would happen only when the NH$_4^\text{T}$ was greatly reduced. The same result was also obtained from a study of Guo et al (2018).

The ratio of [TA]/2[TS] provides a qualitative description for the ammonia abundance, where [TA] and [TS] are the total (gas + aqueous + solid) molar concentrations of ammonia and sulfate. The rich-ammonia is defined as [TA] ≥ 2[TS], while if the [TA] ≤ 2[TS], then it is defined as poor-ammonia (Seinfeld and Pandis, 2016). In this work, the ratio of [TA]/2[TS] was much higher than 1 and belonged to rich-ammonia (Figure. S21). Although NH$_3$ in the NCP was abundant, the PM$_{2.5}$ pH was far from neutral, which might attribute to the limited ALWC. Compared to the liquid water content in clouds and precipitation, ALWC was much lower, hence the dilution of aerosol liquid water to H$_{\text{air}^+}$ was weak.

Cl$^\text{T}$: Cl$^\text{T}$ had a relatively larger impact on the PM$_{2.5}$ pH in winter and spring compared to summer
and autumn. Except for winter, the Cl\textsuperscript{\textnormal{T}} mass concentration was generally lower than 10 \(\mu g m^{-3}\), which accounted for the little impact on PM\textsubscript{2.5} pH. On account of the low level of Cl\textsuperscript{\textnormal{T}}, the dilution of ALWC on H\textsubscript{\textnormal{air}}+ played a dominant role, generating the PM\textsubscript{2.5} pH increase with elevated Cl\textsuperscript{\textnormal{T}}. However, similar to NO\textsubscript{3}T, higher Cl\textsuperscript{\textnormal{T}} could decrease the PM\textsubscript{2.5} pH.

Ca2+: In fine particles, Ca2+ mass concentration was generally low. In the output of ISORROPIA-II, Ca existed as CaSO\textsubscript{4} (slightly soluble). Elevated Ca2+ concentration could increase the PM\textsubscript{2.5} pH by decreasing H\textsubscript{\textnormal{air}}+ and ALWC (Figure S18), the decreased H\textsubscript{\textnormal{air}}+ resulted from the buffering capacity of Ca2+ to the acid species, while the decreased ALWC resulted from the weak water solubility of CaSO\textsubscript{4}. As discussed in Section 3.1, on clean conditions, the PM\textsubscript{2.5} pH could reach 6–7 when the mass fraction of Ca2+ was high, hence the role of mineral ions on PM\textsubscript{2.5} pH could not be ignored in seasons (such as spring) or regions where mineral dust was an important source of fine particles. Due to the strict control measures for road dust, construction sites, and other bare ground, the nonvolatile cations in PM\textsubscript{2.5} decreased significantly in NCP.

3.5 Size distribution of aerosol components and pH

According to the average PM\textsubscript{2.5} concentration during every sampling periods, all the samples were also classified into three groups (clean, polluted, heavily polluted) with the same rule described in Section 3.1. A severe haze episode occurred during the autumn sampling, hence there were more heavily polluted samples for autumn than that in other seasons. Figure 12 shows the averaged size distributions of PM components and pH on clean, polluted, and heavily polluted conditions in summer, autumn, and winter, respectively. The NO\textsubscript{3}-, SO\textsubscript{4}2-, NH\textsubscript{4}+, Cl-, K+, OC, and EC mainly concentrated in the size range with aerodynamic diameters between 0.32–3.1\(\mu m\), while Mg2+ and Ca2+ predominantly distributed in the coarse mode. As shown in Figure 12, the concentration levels for all chemical components increased with the increasing pollution. During the haze episodes, the sulfate and nitrate in the accumulated mode increased significantly. However, the increase of Mg2+ and Ca2+ in the coarse mode were not as obvious as secondary ions, mainly due to the low wind speed and calm atmosphere which made it more difficult to raise dust during the heavy pollution. More detailed information about size distributions of mass concentration for all analyzed species during three seasons is shown in Zhao et al. (2017) and Su et al. (2018). As mentioned in section
2.4, assuming coarse mode particles in equilibrium with the gas phase could overpredict NO₃⁻ and Cl⁻ and underestimate NH₄⁺ in the coarse mode (Figure 3), which subsequently underestimated the coarse mode aerosol pH. Thus, the gas phase was ignored for pH calculation of the coarse particles (>3.1 μm).

Figure 12

The aerosol pH for both fine mode and coarse mode in summer was lowest among three seasons, then followed by autumn and winter. The seasonal variation of aerosol pH derived from MOUDI data was consistent with that derived from real-time PM₂.₅ chemical components measurement. In summer, the predominance of sulfate in the fine mode and high ambient temperature resulted in a low pH, ranging between 1.8 and 3.9. Aerosol pH for fine particles in autumn and winter was in the range of 2.4 ~ 6.3 and 3.5 ~ 6.5, respectively. The difference of aerosol pH between size bins in fine mode was not significant, probably owing to the excessive NH₃ (Guo et al., 2017).

As for coarse particles, the predicted pH was approximately near or even higher than 7 for all of the three seasons in this work, which mainly attributed to the buffering capacity of the coarse mode mineral dust. Simulations with extreme cases that Ca²⁺ and Mg²⁺ were removed from the input files were conducted. The results showed that the presence of Ca²⁺ and Mg²⁺ had a crucial effect on coarse mode aerosol pH (Figure S22), the difference of aerosol pH (with and without Ca²⁺ and Mg²⁺) for particles larger than 1 μm increased with the increasing particle size. For particles smaller than 1 μm, the removal of Ca²⁺ and Mg²⁺ had little effect on aerosol pH.

The aerosol pH in coarse mode decreased significantly when under the heavily polluted condition, especially in autumn and winter. For example, the pH in stage 3 (3.1-6.2 μm) declined from 7.8 under the clean condition to 4.5 under the heavily polluted condition in winter, implying that the aerosols in coarse mode during severe hazy days would become weak acid from neutral. The obvious increase of nitrate in coarse mode might responsible for this. Moreover, the significant decrease of mass ratios of Ca²⁺ and Mg²⁺ resulted in the loss of coarse mode buffering capacity.

The size distributions of aerosol pH and all analyzed chemical components in the daytime and nighttime are illustrated in Figure S23. For summer and autumn, the pH in the nighttime was higher than that in the daytime. The diurnal variation for aerosol pH based on MOUDI data was consistent with the online data. Whereas in winter, the pH was higher in the daytime. In winter, the averaged
RH during the sampling period was relatively low, leading to a low ALWC, but the SO$_4^{2-}$ and NO$_3^-$ in the nighttime were obviously higher due to the lower boundary layer height. Therefore, H$_{air}^+$ was more abundant in nighttime while the low ALWC had little effect on pH.

5. Summary and conclusions

On the basis of online measurements, the measured and predicted NH$_3$, NH$_4^+$, NO$_3^-$, Cl$^-$, and ε(NH$_4^+$) by using ISORROPIA-II agreed pretty well when RH was higher than 30%. It is not reasonable to assume aerosol in a liquid state (metastable) and the aerosol pH could not be accurately predicted by a thermodynamic model where the RH is relatively low. Thus, we only discussed the PM$_{2.5}$ pH for data with RH higher than 30% in this work.

In Beijing, the mean PM$_{2.5}$ pH over four seasons (RH≥30%) was 4.0±1.0 (spring), 4.5±0.7(winter), 3.8±1.2(summer), 4.3±0.8 (autumn), respectively, showing the moderate acidity.

In this work, both H$_{air}^+$ and ALWC had significant diurnal variation, and the PM$_{2.5}$ acidity variation agreed well with sulfate, indicating the aerosol acidity in NCP was both driven by aerosol composition and particle water. The averaged nighttime pH is 0.3~0.4 unit higher than that on daytime. The PM$_{2.5}$ pH in the northerly direction was higher than that in the southwest direction.

A sensitivity analysis was performed in this work to investigate how SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, Cl$^-$, Ca$^{2+}$, RH, and T affect ALWC, H$_{air}^+$, and PM$_{2.5}$ acidity. The RH affects ALWC most, then followed by SO$_4^{2-}$ or NO$_3^-$. The SO$_4^{2-}$, RH, NO$_3^-$, and NH$_4^+$, especially SO$_4^{2-}$, were all important influential factors for H$_{air}^+$. As for PM$_{2.5}$ pH, SO$_4^{2-}$, T, NH$_4^+$, and RH (only in summer) were crucial factors.

In winter, PM$_{2.5}$ pH decreased slightly with the increasing RH, whereas the PM$_{2.5}$ pH increased with the increasing RH in summer. The dilution effect of ALWC on H$_{air}^+$ was obvious only in summer. In spring and autumn, the RH had little impact on PM$_{2.5}$ pH due to the comparable variations of H$_{air}^+$ and ALWC. The measured ε(NH$_4^+$), ε(NO$_3^-$), and ε(Cl$^-$) increased with the elevated RH in all four seasons. In addition, the higher ambient temperature tended to lower PM$_{2.5}$ pH due to the volatilization of NH$_4^+$, NO$_3^-$, Cl$^-$ and the decrease of ALWC.

SO$_4^{2-}$ had a key role for aerosol acidity, especially in winter and spring. In spring and winter, the ALWC was relatively low, the variation of SO$_4^{2-}$ concentration could generate dramatic changes in H$_{air}^+$. The impact of NO$_3^-$ on PM$_{2.5}$ pH was different in four seasons. In winter, the PM$_{2.5}$ pH decreased with increasing NO$_3^-$ concentration due to the low NH$_4^+$ mass concentration. In summer,
the excessive NH₃ could provide continuous buffering to the increasing NO₃⁻ and lead to little
change in PM₂.₅ pH.

The relationship between pH and NH₄⁺ was nonlinear, the impact of NH₄⁺ on PM₂.₅ pH gradually
weakened as NH₄⁺ increased. Elevated NH₄⁺ consumed H⁺ swiftly and shifted more NO₃⁻ and Cl⁻
into particle phase. In NCP, NH₃ was much rich in spring, summer, and autumn, while less rich in
winter. Although NH₃ in the NCP was abundant, the PM₂.₅ pH was far from neutral, which mainly
attributed to the limited ALWC.

Cl⁻ and Ca²⁺ had little impact on the PM₂.₅ pH due to the low mass concentration. Elevated Ca²⁺
concentration could increase the PM₂.₅ pH because of the buffering capacity of Ca²⁺ to the acid
species and the weak water solubility of CaSO₄.

The sensitivity analysis of the relationship between NO₃⁻ and ε(NH₄⁺) imply that decreasing
NO₃⁻ could reduce the ε(NH₄⁺) effectively, which helped keep NH₃ in the gas phase. In contrast,
the nitrate response to NH₄⁺ control was highly nonlinear, the decrease of nitrate would happen only
when the NH₄⁺ was greatly reduced.

The size-resolved results showed that the pH of coarse particles was approximately near or even
higher than 7 for all three seasons, which was quite higher than that of fine particles. The difference
of aerosol pH between size bins in fine mode was not significant. The aerosol pH in coarse mode
decreased significantly, becoming weak acid from neutral, when under heavily polluted condition.
For summer and autumn, the pH in the nighttime was higher than that in the daytime. Whereas in
winter, the pH was higher in the daytime.

Data availability. All data in this work are available by contacting the corresponding author P. S.
Zhao (pszhao@ium.cn).

Author contributions. P Z designed and led this study. J D and P Z interpreted the data and discussed
the results. J S and X D analyzed the chemical compositions from size-resolved aerosol samples. J
D and P Z wrote the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgments. This work was supported by the National Natural Science Foundation of China
(41675131), the Beijing Talents Fund (2014000021223ZK49), and the Beijing Natural Science
Foundation (8131003). Special thanks to the Max Planck Institute for Chemistry and Leibniz
Institute for Tropospheric Research where Dr. Zhao visited as a guest scientist in 2018.

References

Fountoukis, C., and Nenes, A.: ISORROPIA II A computationally efficient aerosol thermodynamic equilibrium model for K⁺, Ca²⁺, Mg²⁺, NH₄⁺, Na⁺, SO₄²⁻, NO₃⁻, Cl⁻, H₂O aerosols, Atmos. Chem. Phys. 7, 4639-4659, 2007.

Jang, M., Czoschke, N. M., Lee, S., and Kamens, R. M.: Heterogeneous atmospheric aerosol

Schwertmann, U., Cornell, R. M.: Iron Oxides In the Laboratory: Preparation and Characterization,
Weinheim, WCH Publisher, 1991.

Zhao, P. S., Dong, F., He, D., Zhao, X.J., Zhang, X.L., Zhang, W.Z., Yao, Q., Liu, H. Y.: Characteristics of concentrations and chemical compositions for PM$_{2.5}$ in the region of Beijing,

Table captions

Table 1. Average mass concentrations of NO₃⁻, SO₄²⁻, NH₄⁺ and PM₂.₅ as well as RH, ALWC, H₄H⁺, and PM₂.₅ pH under clean, polluted, and heavily polluted conditions over four seasons.

Table 2. Average ε(NH₄⁺), ε(NO₃⁻), ε(Cl⁻), and ambient temperature at different ambient RH levels in four seasons.

Table 3. Sensitivity of ALWC, H₄H⁺, and PM₂.₅ pH to SO₄²⁻, NH₄⁺, NO₃⁻, Cl⁻, Ca²⁺, RH, and T. The larger magnitude of the relative standard deviation (RSD) represents the larger impact derived from the variation of variables.
<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>Clean</td>
</tr>
<tr>
<td>Polluted</td>
</tr>
<tr>
<td>Heavily polluted</td>
</tr>
</tbody>
</table>

| **Winter** |
PM$_{2.5}$	NO$_3^-$	SO$_4^{2-}$	NH$_4^+$	ALWC*	H$_{air}$$^+$	pH*	
Average	60±69	13.7±21.0	7.3±8.7	7.3±10.0	35±46	2.2E-05±2.3E-04	4.5±0.7
Clean	22±20	3.6±3.9	2.8±1.8	2.2±2.0	10±16	3.2E-07±4.8E-07	4.5±0.6
Polluted	107±21	18.9±8.6	11.0±5.7	11.0±4.7	41±45	1.9E-05±9.1E-05	4.8±1.0
Heavily polluted	209±39	59.7±21.8	26.2±6.3	29.1±8.7	80±52	7.0E-05±4.7E-04	4.4±0.7

| **Summer** |
PM$_{2.5}$	NO$_3^-$	SO$_4^{2-}$	NH$_4^+$	ALWC*	H$_{air}$$^+$	pH*	
Average	39±24	9.5±9.5	8.6±7.5	7.2±5.6	50±68	1.6E-05±1.8E-05	3.8±1.2
Clean	33±18	7.3±6.8	7.0±6.0	5.9±4.0	42±61	1.4E-05±1.6E-05	3.8±1.2
Polluted	87±13	26.5±10.5	20.7±7.0	17.6±4.8	100±88	3.1E-05±2.0E-05	3.5±0.4

| **Autumn** |
PM$_{2.5}$	NO$_3^-$	SO$_4^{2-}$	NH$_4^+$	ALWC*	H$_{air}$$^+$	pH*	
Average	59±48	18.5±19.5	6.5±5.9	8.2±8.2	109±160	8.1E-06±1.1E-05	4.3±0.8
Clean	33±21	7.6±7.4	4.4±4.1	3.8±3.5	49±83	3.8E-06±6.6E-06	4.5±1.0
Polluted	105±21	33.8±11.6	14.3±6.3	16.0±4.6	225±189	1.7E-05±1.2E-05	4.1±0.3
Heavily polluted	174±18	63.4±15.4	25.0±15.9	29.0±5.1	317±236	2.2E-05±1.0E-05	4.1±0.2

* For data with RH>30%.
Table 2

<table>
<thead>
<tr>
<th>RH</th>
<th>T, °C</th>
<th>ε(NH$_4^+$)</th>
<th>ε(NO$_3^-$)</th>
<th>ε(Cl$^-$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 30 %</td>
<td>24.8 ± 3.7</td>
<td>0.17±0.14</td>
<td>0.84±0.12</td>
<td>0.67±0.24</td>
</tr>
<tr>
<td>Spring</td>
<td>30–60 %</td>
<td>20.6 ± 3.8</td>
<td>0.25±0.14</td>
<td>0.91±0.06</td>
</tr>
<tr>
<td>>60 %</td>
<td>15.8 ± 2.7</td>
<td>0.28±0.12</td>
<td>0.96±0.03</td>
<td>0.96±0.06</td>
</tr>
<tr>
<td>≤ 30 %</td>
<td>5.4 ± 5.3</td>
<td>0.31±0.13</td>
<td>0.78±0.12</td>
<td>0.89±0.14</td>
</tr>
<tr>
<td>Winter</td>
<td>30–60 %</td>
<td>1.0 ± 3.6</td>
<td>0.50±0.21</td>
<td>0.89±0.10</td>
</tr>
<tr>
<td>>60 %</td>
<td>-1.9 ± 2.1</td>
<td>0.60±0.20</td>
<td>0.96±0.03</td>
<td>0.99±0.01</td>
</tr>
<tr>
<td>≤ 30 %</td>
<td>35.6± 0.4</td>
<td>0.06±0.02</td>
<td>0.35±0.20</td>
<td>0.39±0.17</td>
</tr>
<tr>
<td>Summer</td>
<td>30–60 %</td>
<td>29.6 ± 4.2</td>
<td>0.17±0.11</td>
<td>0.65±0.23</td>
</tr>
<tr>
<td>>60 %</td>
<td>25.2 ± 3.8</td>
<td>0.26±0.12</td>
<td>0.90±0.12</td>
<td>0.71±0.15</td>
</tr>
<tr>
<td>≤ 30 %</td>
<td>21.7± 7.5</td>
<td>0.07±0.06</td>
<td>0.49±0.25</td>
<td>0.45±0.21</td>
</tr>
<tr>
<td>Autumn</td>
<td>30–60 %</td>
<td>20.8± 6.3</td>
<td>0.21±0.14</td>
<td>0.82±0.19</td>
</tr>
<tr>
<td>>60 %</td>
<td>14.9 ± 5.7</td>
<td>0.30±0.19</td>
<td>0.92±0.10</td>
<td>0.86±0.13</td>
</tr>
<tr>
<td>Impact Factor</td>
<td>SO₄²⁻</td>
<td>NO₃⁻</td>
<td>NH₄⁺</td>
<td>Cl⁻</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Spring</td>
<td>RSD-ALWC</td>
<td>50.5%</td>
<td>53.4%</td>
<td>2.9%</td>
</tr>
<tr>
<td></td>
<td>RSD-H₄⁺</td>
<td>223%</td>
<td>34.4%</td>
<td>26.8%</td>
</tr>
<tr>
<td></td>
<td>RSD-pH</td>
<td>12.4%</td>
<td>5.2%</td>
<td>3.9%</td>
</tr>
<tr>
<td>Winter</td>
<td>RSD-ALWC</td>
<td>33.8%</td>
<td>28.7%</td>
<td>14.2%</td>
</tr>
<tr>
<td></td>
<td>RSD-H₄⁺</td>
<td>431%</td>
<td>431%</td>
<td>187.4%</td>
</tr>
<tr>
<td></td>
<td>RSD-pH</td>
<td>28.1%</td>
<td>8.4%</td>
<td>27.0%</td>
</tr>
<tr>
<td>Summer</td>
<td>RSD-ALWC</td>
<td>49.4%</td>
<td>46.0%</td>
<td>6.9%</td>
</tr>
<tr>
<td></td>
<td>RSD-H₄⁺</td>
<td>131%</td>
<td>29.9%</td>
<td>78.1%</td>
</tr>
<tr>
<td></td>
<td>RSD-pH</td>
<td>7.9%</td>
<td>3.6%</td>
<td>8.1%</td>
</tr>
<tr>
<td>Autumn</td>
<td>RSD-ALWC</td>
<td>32.8%</td>
<td>58.1%</td>
<td>9.9%</td>
</tr>
<tr>
<td></td>
<td>RSD-H₄⁺</td>
<td>171%</td>
<td>126.7%</td>
<td>333.1%</td>
</tr>
<tr>
<td></td>
<td>RSD-pH</td>
<td>6.0%</td>
<td>3.3%</td>
<td>16.1%</td>
</tr>
</tbody>
</table>
Figure captions

Figure 1. Time series of relative humidity (RH), temperature (T) (a, e, i, m); PM$_{2.5}$, PM$_{10}$, and NH$_3$ (b, f, g, n); dominant water-soluble ion species: NO$_3^-$, SO$_4^{2-}$, and NH$_4^+$ (c, g, k, o); and PM$_{2.5}$ pH colored by PM$_{2.5}$ concentration (d, h, l, p) over four seasons.

Figure 2. Comparisons of predicted and measured NH$_3$, HNO$_3$, HCl, NH$_4^+$, NO$_3^-$, Cl$,\varepsilon$(NH$_4^+$), ε(NO$_3^-$), and ε(Cl) colored by RH. In this Figure, the data of four seasons were put together, and the comparisons for each season were shown in Figure S1-S4.

Figure 3. Comparisons of predicted and iterative NH$_3$, HNO$_3$, and HCl, as well as the predicted and measured NH$_4^+$, NO$_3^-$, Cl$,\varepsilon$(NH$_4^+$), ε(NO$_3^-$), and ε(Cl) colored by particle size. In this Figure, all MOUDI data were put together.

Figure 4. Time series of mass fraction of NO$_3^-$, SO$_4^{2-}$, NH$_4^+$, Cl$^-$, and crustal ions (Mg$^{2+}$, Ca$^{2+}$) in total ions as well as PM$_{2.5}$ pH in all four seasons.

Figure 5. Wind dependence map of PM$_{2.5}$ pH over four seasons. In each picture, the shaded contour indicates the average of variables for varying wind speeds (radial direction) and wind directions (transverse direction).

Figure 6. Diurnal patterns of mass concentrations of NO$_3^-$ and SO$_4^{2-}$ in PM$_{2.5}$, predicted aerosol liquid water content (ALWC), H$_{air}^+$, and PM$_{2.5}$ pH over four seasons. Mean and median values are shown, together with 25% and 75% quantiles. Data with RH ≤ 30% were excluded, the shadow represents the time period when the RH lower than 30% mostly occurred.

Figure 7. Sensitivities of H$_{air}^+$ to SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, and Cl$^-$, as well as meteorological parameters (RH, T) in summer and winter.

Figure 8. Sensitivities of ALWC to SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, and Cl$^-$, as well as meteorological parameters (RH, T) in summer and winter.

Figure 9. Sensitivities of PM$_{2.5}$ pH to SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, and Cl$^-$, as well as meteorological parameters (RH, T) in summer and winter.

Figure 10. Sensitivities of ε(NH$_4^+$), ε(NO$_3^-$), and ε(Cl) to NO$_3^-$, NH$_4^+$, and Cl$^-$ colored by PM$_{2.5}$ pH in summer and winter.

Figure 11. Sensitivities of ε(NH$_4^+$), ε(NO$_3^-$), and ε(Cl) to RH and T colored by PM$_{2.5}$ pH in summer and winter.
Figure 12. The size distributions of aerosol pH and all analyzed chemical components under clean (a, d, g), polluted (b, e, h), and heavily polluted conditions (c, f, i) in summer, autumn, and winter.
Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.
Figure 6.

Figure 7.
Figure 8.

Figure 9.
Figure 10.

Figure 11.
Figure 12.