Response to reviewers for the paper “Secondary Organic Aerosol (SOA) yields from NO3 radical + isoprene based on nighttime aircraft power plant plume transects” by J.L. Fry et al.

We thank the reviewers for their careful reading of and thoughtful comments on our paper. To guide the review process we have copied the reviewer comments in black text. Our responses are in regular blue font. We have responded to all the referee comments and made alterations to our paper (in bold text).

Overall response to reviews:

Taken together, these three reviews suggest that the referees struggled with many of the same issues that we did as we worked through the data analysis and wrote this paper. With the help of reviewer suggestions, we have attempted to further clarify how we have ruled out some potential confounding effects and how we can constrain the likely impact of others on our results, to ensure a clear discussion of the strengths and limitations of this yield analysis. We do remain convinced that despite the limits of this small dataset, its unique strength as a direct measurement of NO3 + isoprene SOA yields under conditions of atmospherically relevant peroxy radical lifetime merits publication and will make a useful contribution to our field. We hope that with these responses the reviewers and editor will support our reporting these results as SOA yields, with clear discussion of the attendant uncertainties. We do understand the reviewers’ concerns about the small number of measurements and large uncertainties in these yields, so we have proposed edits to the figures and discussion to emphasize this further. While the number of data are limited and the uncertainties substantial, it is the case that chamber-derived yields may also have large uncertainties due to instrument uncertainties, unaccounted for gas losses to Teflon chamber walls, RO2 fate relevance, etc. -- and there are also quite limited chamber data available on this reaction. Thus, we feel that this paper adds a valuable contribution to the literature. We believe that as revised, this manuscript will not prematurely induce modelers to substitute uncertain yields into their models, but instead this report of higher yield values than those previously observed will pique other researchers’ interest, and thus spur valuable follow-up studies.

Anonymous Referee #1

The manuscript is original and very interesting to read. The authors tried to get the optimum out of the data, but still addressed openly the limitations of their approach.

From the viewpoint of raising interesting questions regarding the role of isoprene chemistry and isoprene NO3 chemistry for SOA formation and interesting approaches to address these questions, the paper could be published after some minor revisions (most of it of formal character, e.g. references in text and supplement, see below).

However the manuscript fails clearly short behind its title claim and from this point of view, I
suggest to reject the manuscript, due to the major concerns following below. Since the authors have already done the best with their data in a positive sense, I guess major revisions would not make sense.

A way out could be a reformulation of the title of the manuscript away from “providing yields” (reliable numbers) to a more procedural character of “addressing an important issue with interesting approaches and possibly important findings”.

The basic observation we report in this paper is a change in particulate nitrate for a change in isoprene (ΔpRONO2/ΔIsop). As long as the Δ pRONO2 is attributable to organic nitrate (with uncertainties clearly acknowledged), and as long as the association is plausibly the result of the isoprene lost, then this number can only be called a yield. Therefore, we argue that the term yield should be retained in the title, but that, as described below, we provide clear accounting of the uncertainties.

We propose to update Figure 5 with error bars to more clearly emphasize the uncertainties (see response R2.2. below) and adjust wording (see abstract text change below) to ensure that the reliability of our derived yields is appropriately discussed. This way, the yield numbers will not be taken to be an update from previous chamber studies, but rather, this will spur valuable further work to better constrain these yields under atmospherically relevant conditions.

The last sentence of the abstract has been edited to emphasize this goal: “More in-depth studies are needed to better understand the aerosol yield and oxidation mechanism of NO$_3$ radical + isoprene, a coupled anthropogenic – biogenic source of SOA that may be regionally significant.”

Major:

R1.1. The authors convinced me that pRONO2 and thus organic nitrate in plumes is enhanced and that may indeed relate to enhanced NO3 concentrations (Figure 6). However, the paper does not really show that that increase of pRONO2 is related to isoprene oxidation alone (Figure 5). While the reasoning of a single -ONO2 group per organic nitrate molecules is an acceptable approach to derive molar yields, the scatter in Figure 5 casts doubts, if the increase of pRONO2 is really related solely to isoprene oxidation. Herein the weak point is the limited number of data points. I don’t say the authors are wrong, but one would need more observations to strengthen the case. I concede that the authors revealed an interesting phenomenon, interesting enough to pursue the ideas and go out and get more/better proof.

We agree that there are not many data points in Figure 5, although the paper describes in detail how many power plant plume intercepts were available and how many were suitable for analysis. Thus the data set is by its nature unavoidably limited. Nevertheless, the increase in pRONO2 associated with each isoprene depletion is clear and repeatable, such that there is not another, more plausible explanation for the observation of pRONO2 enhancement caused by
rapid NO$_3$ oxidation of isoprene. When these points are displayed in the format of Figure 5, they produce considerable scatter, indicating that the same yield is not necessarily obtained for each plume, or that the uncertainty in the determination is large. One potential reason for scatter in the data is that the plumes are not all of the same age, as the color code indicates. To clearly show the uncertainty in yields, we have modified Figure 5 to show the error bars that are associated with the yield determination.

R1.2. L: 651: In going from the molar yield to the mass yield the uncertainty - and speculations clearly indicated as such, though - become even larger. On one hand obviously two oxidation steps are needed to achieve condensable isoprene oxidation products, on the other hand NO$_3$ seems to be the only available oxidant. Oxidation of both double bonds should thus lead to dinitrates.

Two oxidation steps are needed only if auto-oxidation is an unimportant mechanism.

If pOrgNO$_3$ would really isoprene dinitrates the estimated yield would drop from 27% to 18%, not so far away from the referenced value by Rollins of 14%. I can follow the authors that it is likely that pRONO$_2$ dinitrates could be hydrolysed, but why should hydrolysis stop after one group, why not hydrolysing every second -ONO$_2$ group or even both ONO$_2$ groups? Moreover, as far as I understand, Rollin’s value is based in parts on observations of several hours in a large chamber. So reaction time cannot be an issue?!

We agree with the reviewer’s comment that the mass or molar yield would be different by a factor of two in the case of both double bonds oxidized by NO$_3$ and retention of both nitrate groups on the isoprene backbone. We do not understand the statement that reaction time cannot then be an issue. Especially in the case of a two step oxidation, with a slower rate constant anticipated for the second step, additional reaction time would be required, as stated in the manuscript.

I agree that wall losses could be an issue, though, but wall losses are also less important in large chambers.

Wall losses are not unimportant in large chambers. Cited references show that partitioning of semivolatile organic compounds to walls is an important effect in any chamber study.

There for with the same right I could argue that Rollin’s yield of 14% is correct and then ask where could the rest of organic nitrate come from. I follow the authors that inorganic nitrate can be excluded as source. Could it be that the organic nitrates arise from liquid phase or heterogeneous processes via NO$_2$, NO$_3$? Is anything known about such heterogeneous nitration processes? NOX and NO$_3$ were by definition high in the plumes. Actually if I really think about it the mass yield analysis adds not much beyond the molar yield considerations and an analogous plot would just reproduce Figure 5 with slopes of 18% or 27%, depending only on the assumption if the isoprene nitrates bring in two or three times the molecular weight of isoprene itself.
We concur that the mass yield estimate is subject to substantial additional uncertainties beyond the molar yield, which we have endeavored to describe clearly here. Because it took the author team quite some time and discussions to come up with all of these considerations, we thought it could be helpful to readers to have them collected here in one place. Because of the noted uncertainties, however, we choose not to emphasize these mass yields with a figure, instead showing molar yields in Figure 5. This way a future reader with additional information about likely reaction mechanisms or SOA composition could do exactly the calculation this reviewer does to determine refined mass yield estimates based on that new information.

In response to the suggestion to consider heterogeneous uptake of NO$_3$ onto organic particles, we make an estimate of the rate of that process to determine whether it might contribute to observed organic nitrate aerosol. Based on available literature, the maximum NO$_3$ uptake coefficient would be 0.1, and this condition would only occur if there are a significant number of double bonds remaining in the newly formed organic aerosol [Ng review paper, p. 2114]. Given this uptake coefficient and the observed in-plume wet aerosol surface of on average 300 um2 cm$^{-3}$ (=3x10$^{-4}$ m$^{-1}$), the kinetic molecular theory predicted uptake rate constant is $k = \gamma v SA/4 = 0.0024$ s$^{-1}$. At average in-plume [NO$_3$] of 20 pptv, this would correspond to an uptake of 0.17 ppb NO$_3$ per hour. This means that a 5 to 6-hour old plume could have up to ~1 ppb of nitrate functional groups produced by this heterogeneous process if this high uptake coefficient is true. However, because the aerosol surface area is not exclusively alkene nor even exclusively organic aerosol (indeed, it is calculated to be partially aqueous), we expect that a much smaller uptake coefficient, on the order of 0.001, is more realistic, and thus heterogeneous NO$_3$ uptake is not likely to contribute significantly. (Brown & Stutz 2012).

We have added the following line to the revised manuscript at line 733: “We have not corrected the calculated yields for the possibility of NO$_3$ heterogeneous uptake, which could add a nitrate functionality to existing aerosol. Such a process could be rapid if the uptake coefficient for NO$_3$ were 0.1, a value characteristics of unsaturated substrates (Ng et al, 3016), but would not contribute measurably at more conventional NO$_3$ uptake coefficients of 0.001 (Brown & Stutz 2012).”

R1.3. L483/ Fig. 2: What also concerns me and this is again related to small number of cases: There are indeed correlations between PNO$_3$ andpRONO$_2$ and anti-correlation with isoprene, but pOrg NO$_3$ sometimes increases by the same amount in the absence of plumes (2:17.30AM, 2:22.00AM) and some plumes do not create OrgNO$_3$ despite lower isoprene (ca. 2:21.20AM).

We again concur that this study would be stronger with a larger number of observed plume transects, however we reassert that our screening methodology and error limits have all been stated in the manuscript. We have considered the variations in the background in making estimates of the organic nitrate increases in plumes. We average as many points as possible in each of multiple plumes.

Minor:
R1.4. I315, Fig.S1: If I compare the SENEX data with actual data in the range of plumes and background the difference is more a factor of 2 than 1.6. Moreover, two of the plumes fall off line while all the background measurements correlate as all other data. Unfortunately, the exception of AMS performance(?) or UHSAS performance(?) for “just that flight” in addition weakens the case.

The right-hand panel of Figure S1 is reproduced below with a 2:1 line shown, to illustrate that the slope of 1.6 is correct for this flight.

As far as the scatter in the plume enhancements and the contribution of this volume related uncertainty -- we now cite forward to Figure 4, where the enhancements are shown with complete propagated error on pRONO2, showing that while there are uncertainties due to (among other things) the uncertainty in the volume comparison, the enhancements are always positive. These same error bars are now also shown on Figure 5, so that the full uncertainties are available for the reader to evaluate.

We also noted in the process of updating this that the uncertainties in the yield tables had not incorporated these additional uncertainties -- these have all been updated to include the full error propagation. (Note: this did not change yields and increased errors on only some plumes)

Changed text to: “This does not change the conclusions of this work because this has been incorporated into the error in aerosol organic nitrate, which still show positive enhancements in pRONO2 for these plumes (see Figure 4 below). These complete error estimates are also used in Figure 5 to clearly show the uncertainties in the yields. The volume comparison is discussed further in the Supplemental Information and shown for the plumes of interest in Fig. S1
R1.5. I suggest listing also PNO3 in Table 1; that would help to link quickly oxidation strength and observed effect

This has been added to Table 1.

R1.6. Main text: references not in ACP format Replace “author et al. (author et al., year)” by “author et al. (year)”

Fixed.

R1.7. Supplement: the literature is not assessable and given in bracketed format

Fixed.

R1.8. l59: review

This appears to be an editor’s note.

l172: Xu et al. (2015)

Fixed.

l339: Fry et al. [47]

Fixed.

l657: no “N” in the formula, it is not clear that refer only to organic rest of the trihydroxynitrate

Thank you, clarified: “e.g. a tri-hydroxynitrate (with organic portion of formula C$_5$H$_{11}$O$_3$, 119 g mol$^{-1}$)”

l418: I suggest to replace “number densities” with “concentration” in context of gases I

Done.

Anonymous Referee #2

Summary: The manuscript by Fry et al. addresses, for the first time, the potential to measure in-situ secondary organic aerosol (SOA) yields from isoprene oxidation in a power plant plume by aircraft. This is a completely original and timely study that aims to assess SOA yields in the ambient environment without the competing effects of wall loss, which has hampered most laboratory (reaction chamber) studies in the past. In this view, the paper is highly suitable for Atmospheric Chemistry and Physics. The authors determine isoprene-derived SOA yields from NO3 oxidation in the plume based on measured enhancements in aerosol organic nitrate and
isoprene loss in the plume relative to aerosol organic nitrate and isoprene concentrations outside of the plume. The authors find that isoprene-derived molar SOA yields from reaction with NO3 is on the order of 9%, and mass-based SOA yields are 27%, larger than those measured previously in the laboratory (12-14%). The authors conclude that the relatively larger SOA mass yield is due to the longer plume age and processing (forming more nitrates) compared to apparently shorter processing time in chamber studies. While I thought the paper was creative, well written, and well supported by the literature, before I can fully support publication, I encourage the authors to address my points of concern in a revised manuscript as stated below.

Major comments:

R2.1a. Although I thought the authors did their due diligence by addressing several of the caveats in this study, I have a couple of additional concerns (but possible solutions) with the calculation of SOA yield that I encourage the authors to address in a revised manuscript. First, the authors use isoprene measured outside of the plume as the initial (starting) concentration and from that derive the SOA yield based on the difference in isoprene concentrations measured inside and outside of the plume. Ideally, I think you would want to use isoprene measured from the point of plume emission as the starting concentration of isoprene, i.e., measure the isoprene concentration in the plume near the point source, and then measure isoprene in the plume at a distance further downwind of the point source, because then you know how much of the initial isoprene in the plume (same air mass) was consumed. My main concern with using isoprene outside of the plume as the starting concentration is that it does not necessarily represent the isoprene that has undergone processing in the plume. According to the isoprene time series shown in Fig. 2, in the span of 5 minutes, isoprene outside of the plume can be 700 ppt, 500 ppt, and 300 ppt, for example. Thus, the SOA yields reported in this work depend critically on the choice of concentration measured outside of the plume. While I am not suggesting the authors are wrong in their approach, it might be helpful if the authors could identify a case where they sampled the same plume twice at different locations downwind of the point source and calculate the SOA yield based on the difference in isoprene/nitrate measured in the first transect and a later transect. This would at least strengthen/validate the approach. Alternatively, it may help to show that “background” isoprene measured outside of the plume does not vary significantly near and further downwind of the plume source.

We thank the reviewer for these suggestions. For each plume point, we used an iterative box model to calculate the isoprene that would have been present at sunset at that location outside of the NOx plume. This enables an alternate Δisoprene calculation based on in-plume isoprene minus modeled sunset isoprene, for comparison to the calculation used in the yield calculations, based on in-plume minus background isoprene. The similarity between these two values for most points suggests that the isoprene just outside of each plume transect was largely unperturbed from the sunset initial value. We have added these values to Table S3, with explanatory text:

“Also shown are the plume changes in isoprene used in the present analysis (Δisop, the
The difference between in-plume and background isoprene concentration, reproduced from Table 1, alongside for comparison the Δisop determined as the difference between in-plume isoprene and the modeled sunset (initial) concentration of isoprene present at that location outside of the plume, determined using an iterative box model (ref). The similarity between these two values for most points suggests that the isoprene just outside of each plume transect was largely unperturbed from the sunset initial value.

<table>
<thead>
<tr>
<th>plume number [#isop/#AMS</th>
<th>7/2/13 plume time (UTC)</th>
<th>ΔORG_{aero} (µg m^{-3})</th>
<th>ΔNH_{4,aero} (µg m^{-3})</th>
<th>ΔSO_{4,aero} (µg m^{-3})</th>
<th>Temp (C)</th>
<th>%RH</th>
<th>Δisop (pptv)</th>
<th>Δisop from model (pptv)</th>
<th>Isop:M T Mole Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical variability (µg m^{-3}):</td>
<td></td>
<td>0.75</td>
<td>0.1</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 [2/3]</td>
<td>2:18</td>
<td>0.35</td>
<td>0</td>
<td>0</td>
<td>23.6</td>
<td>66.5</td>
<td>-335</td>
<td>-327</td>
<td>36.5</td>
</tr>
<tr>
<td>2 [*]</td>
<td>2:20</td>
<td>0.89</td>
<td>0.3</td>
<td>1.91</td>
<td>23.6</td>
<td>65</td>
<td>-404</td>
<td>-453</td>
<td>71.4</td>
</tr>
<tr>
<td>3 [4/5]</td>
<td>2:21</td>
<td>1.25</td>
<td>1.05</td>
<td>5.14</td>
<td>23.6</td>
<td>65.2</td>
<td>-228</td>
<td>-337</td>
<td>16.6</td>
</tr>
<tr>
<td>4 [*]</td>
<td>3:03</td>
<td>0.16</td>
<td>0.08</td>
<td>0.7</td>
<td>21.2</td>
<td>68.1</td>
<td>-453</td>
<td>-391</td>
<td>50.6</td>
</tr>
<tr>
<td>5 [3/4]</td>
<td>3:55</td>
<td>0.32</td>
<td>0.26</td>
<td>6.07</td>
<td>21.9</td>
<td>65.5</td>
<td>-255</td>
<td>-376</td>
<td>34.2</td>
</tr>
<tr>
<td>6 [2/2]</td>
<td>4:34</td>
<td>0.57</td>
<td>0.3</td>
<td>1.12</td>
<td>19.9</td>
<td>74.6</td>
<td>-713</td>
<td>-233</td>
<td>17.3</td>
</tr>
<tr>
<td>7 [5/6]</td>
<td>4:37</td>
<td>1.05</td>
<td>0.22</td>
<td>0.65</td>
<td>19.7</td>
<td>76.2</td>
<td>-298</td>
<td>-221</td>
<td>14.2</td>
</tr>
<tr>
<td>8 [2/3]</td>
<td>4:39</td>
<td>1.26</td>
<td>0.44</td>
<td>1.18</td>
<td>18.3</td>
<td>82.2</td>
<td>-443</td>
<td>-353</td>
<td>11.0</td>
</tr>
<tr>
<td>9 [7/8]</td>
<td>5:04</td>
<td>1.45</td>
<td>0.35</td>
<td>1.9</td>
<td>17.2</td>
<td>84.8</td>
<td>-293</td>
<td>-434</td>
<td>17.8</td>
</tr>
</tbody>
</table>
This will allow the reader to assess the general robustness of the isoprene background values. However, we don’t believe that it would be appropriate to calculate yields based on these values, because we don’t have analogous pre-plume values for pRONO2. Thus, for the yield calculations we think it’s best to use in-plume and plume-adjacent background isoprene values even though there is noise in the background. We do account for this noise in the standard deviation error bars on the Δ\textit{isop} values.

We appreciate the second suggestion to use multiple, successive downwind plume transects. While this approach has worked in previous analysis of nighttime power plant plumes (e.g., Brown et al. 2012), identifying such plumes is difficult. In the present case, there were not two easily identifiable successive Lagrangian plumes intercepts. Rather, we encountered a range of plumes, often at different altitudes, with different transport times but not in a successive manner.

R2.1b. Second, what is the impact of O3 (and other oxidants) on isoprene loss in the plume? I thought there would be more discussion of this – while the reaction rate of O3 with isoprene is several orders of magnitude less than NO3, the concentration of O3 can be several orders of magnitude greater than NO3, and therefore may rival NO3 in regards to isoprene consumption in the plume at night. In the Edwards, et al. [2017] study referenced by the authors, O3 accounts for 45% of the BVOC consumption at night. In this study, the SOA yield is based on the premise that VOC consumption is controlled entirely by NO3. If other reactants that consume isoprene (e.g., O3 and OH) are present in sufficient quantities, the calculated yields might overestimate the contribution from NO3. I encourage the authors to address this more explicitly, e.g., by calculating the relative loss rates of isoprene at night by NO3, O3, and OH.

We have added to the supplemental information the below plot (new Figure S9) showing isoprene loss in the plume model simulation (black) and stacked plot showing the contributions to this from the NO3, O3, and OH. As described in the model description, the modelled plume was emitted at sunset so these are all nocturnal processes. As is clear from this figure, in the power plant plumes, the isoprene loss is not entirely, but approximately 90% via NO3 radical.
Figure S9. Model simulation of typical in-plume consumption of isoprene (black line), and stacked plot showing the contributions to this from the NO$_3$, O$_3$, and OH. Modeled plume was emitted at sunset, so this represents nocturnal processing under power plant plume conditions.

R2.2. The scatter and limited number of observations used to calculate the average yield as shown in Fig. 5 may be a point of concern. Uncertainty bars on the data would certainly help to convey how far off from the fit the measurements truly are. Often, SOA mass yields are expressed as a function of the change in particle mass (ΔM); if the authors were to instead plot plume change in pRONO$_2$ mass as a function of plume change in isoprene mass, could it be that the larger/smaller enhancements in aerosol organic nitrate mass simply result from a shift in equilibrium partitioning more/less to the particle phase owing to a larger/smaller ΔM? I encourage the authors to show the effects of ΔM in some capacity, e.g., by normalizing each point in Fig. 5 by the measured ΔM (i.e., difference in M between inside and outside of plume) and/or making a separate figure to show mass yield as a function of ΔM. Alternatively, instead of using \sqrt{n} as the bubble size in Fig. 5, scale bubble size by ΔM.

We thank the reviewer for these insightful suggestions. We tried re-plotting Figure 5 with points colored by ΔM, and don’t see a clear dependence that explains the high points (see figure below, not added to manuscript). Given this, we believe the colorbar in the manuscript shows a more likely contributing factor: plume age. The highest pRONO$_2$ values occur for the longest plume ages, which would allow for several routes to more pRONO$_2$: (1) more molecules in with
the second double bond has been oxidized, (2) more time for intramolecular H-rearrangement reactions, or (3) more time for contribution of (slower) heterogeneous uptake of NO3 on organic aerosol.

We have added uncertainty error bars, thank you for that nudge. The new Figure 5 and updated caption are:
Figure 5. SOA molar yield can be determined as the slope of \(\Delta \text{pRONO}_2 \) vs. \(\Delta \text{isoprene} \), both in mixing ratio units. The linear fit is weighted by square root of number of points used to determine each in-plume \(\text{pRONO}_2 \), with intercept held at zero. The slope coefficient ± one standard deviation is 0.0930 ± 0.0011. Points are colored by plume age (red = longest), and size scaled by square root of number of points (the point weight used in linear fit). This plot and fit includes the nine plumes listed in Tables 1 and 2, as well as the 03:14 “unreacted” plume (at \(\Delta \text{isoprene} = -84 \text{ ppt} \)). **Error bars on isoprene are the propagated standard deviations of the (in plume - out plume) differences, for plumes in which multi-point averages were possible.** Error bars on \(\text{pRONO}_2 \) are the same as in Figure 4. The points without error bars are single-point plumes.

These errors bars are the propagated standard deviations of the \{in plume - out plume\} differences for plumes in which multi-point averages were possible (the points without error bars are single-point plumes). This responds also to Reviewer 1’s concern about clearly demonstrating the uncertainties in the derived yields, and the x error bars respond to comment R2.1a. above about the variability of isoprene around these plumes.

Minor comments

R2.3. In the SOA molar yield calculation, the authors first convert the aerosol nitrate from mass concentration units to equivalent ppt assuming the aerosol organic nitrate has a molar mass of 62 g mol\(^{-1}\). This seems far too small a molar mass expected for isoprene+NO3 oxidation products. Why not assume a molar mass consistent with the first generation carbonyl nitrate produced from isoprene+NO3 (MW=145 g mol\(^{-1}\)) (Jenkin et al., 2015) or another suitable organic compound as done later with the SOA mass yield calculation?

The nitrate measurement by the AMS is calibrated to be the mass of the nitrate (NO3) moiety alone, hence, 62 g mol\(^{-1}\), and we use these masses, converted to mixing ratio, in order to determine molar yields. Using the nitrate component alone avoids needing to make any assumption about the molecular weight of the organic mass that accompanies the NO3 in the produced SOA. We thus can make these assumptions separately to estimate a mass yield (see equations 3 and 4 and discussion thereof). To ensure clarity in the text, added this text:

“**we convert the aerosol organic nitrate mass loading differences to mixing ratio differences (ppt) using the NO\(_3\) molecular weight of 62 g mol\(^{-1}\) (the AMS organic nitrate mass is the mass only of the –ONO\(_2\) portion of the organonitrate aerosol).**”

R2.4. Page 2, line 52: “review”

This appears to be an editor’s note.

R2.5. Page 3, lines 92-94: Please include reference.

R2.6. Page 9, Eq. 1 (lines 367-371): Equation (1) has k1, whereas text states k2.

Thank you! Corrected.

R2.5. Page 14, lines 500-502: It’s probably more correct to write the production rate of isoprene oxidation products by NO3 reaction is greater than for monoterpenes.

As suggested we modified this line to read: “At these relative concentrations, even if all of the monoterpene is oxidized, the production rate of oxidation products will be much larger for isoprene.”

R2.6. Figure 5: It would be helpful to the readers if in the legend, the symbol for ∆pRONO2 were black with a color scale next to the current legend (the red color of the symbol is confusing with some of the points being red). A separate legend for marker/bubble size would also be helpful.

Thank you, done, and color bar legend added (see new version of figure above in response to R2.2.

Anonymous Referee #3

Fry et al use airborne observations from the SENEX campaign to infer SOA yields for the reaction of isoprene with NO3 radicals. Specifically they show that night time transects through power plant plumes capture conditions in which the loss of NO3 is dominated by the reaction with isoprene. Comparisons of out of plume isoprene and particle phase nitrate measurements with values observed in the seconds to minutes long in-plume parts of the flight, are used to calculate SOA molar and mass yields. While the approach of using field data to evaluate SOA yields in “wall free” environments is interesting, the data analysis is based on highly speculative assumptions and the SOA yields can therefore not be taken as reliable real world reference. The paper needs major modifications before it can be published.

Major Points

R3.1. The particulate organic nitrate mass concentration is evaluated according to an established method using AMS observed NO2+/NO+ ion ratios. While this method has been used before for high resolution data sets, the authors have to apply corrections for unknown organic interferences to their C-TOF-AMS dataset, subtracting 55% and 33% of the total measured signal on m/z 30 and 46, respectively. As shown in Figure S2 e (lower panel), the thus derived UMR corrected NO2+/NO+ ratio agrees relatively well with the HR ratio, except for periods in which the total nitrate signal is low. The authors should have a look into this feature
and derive from it a threshold total nitrate mass concentration below which no reliable analysis of organic nitrate is possible.

Detection limits (DL) for nitrate using HR-ToF-AMS (HR data shown in Fig. S2) are ~10 ng/m3. As either NOx+ ion approaches their DL (and zero), the uncertainty in the NOx+ ratio determinations will blow up. This effect is clearly visible in both the HR and UMR -derived NOx+ ratios in Fig. S2. The DLs for NO2+ and NO+ are similar to the nitrate DL. Depending on the instrument-specific response and the proportions of inorganic/organic nitrate, the NO2+/NO+ ratio can vary between ~1 and ~0.1. Therefore, the NOx+ ratio detection limit is typically dominated by the NO2+ ion DL, especially when the nitrate is dominated by pRONO2. So for HR-ToF AMS that would be equivalent to a total nitrate concentration of ~50 ng/m3. Importantly, when the NOx+ ratio is below DL, discarding pRONO2 and ammonium nitrate concentration data is not necessarily warranted or desired, since despite that apportionment may be indeterminate, the concentration of both are still constrained to the nitrate concentration (if above the total nitrate DL) or the nitrate DL (if below the total nitrate DL) which is often valuable information and places quantitative constraints on concentrations. Given these considerations, we do not think there is a “threshold total nitrate mass concentration below which no reliable analysis of organic nitrate is possible”.

For this study, the nitrate DLs (3-sigma) reported here for the native 10-second CToF data were 50 ng/m3 (L305) which for the upper limit of pure pRONO2, where only ~20% of the NOx+ ions are NO2+, would correspond to a nitrate DL of 250 ng/m3 for the NOx+ ratio. As seen in Fig. 6, all the plume pRONO2 concentrations were between 200-600 ng/m3 (and total nitrate was similar or higher) and additionally the AMS plume averages typically consisted of several points (1-8) for which the combined DL should scale down as 1/sqrt(n). Therefore, for the plume analysis used in this manuscript, the pRONO2 concentration determination should be near or well above expected 3-sigma DLs.

Note that the values for R ammonium nitrate and R organic nitrate indicated in Figure S2 do not match with the values of 0.49 and 0.175 reported in the paper and in Figure 3.

That is correct, the NOx+ ratios for ammonium nitrate in Fig. S2 are from calibrations conducted during that campaign (SEAC4RS) while those in Fig. 3 are from the campaign investigated in this manuscript (SENEX). For both cases, the pRONO2 ratio was estimated as 2.8 times lower NO2+/NO+ ratio than measured for ammonium nitrate (see details in manuscript and below).

The use of a value R=0.175 of NO2+/NO+ for organic nitrates is justified with reference to Day et al 2017, a paper in preparation. As the R-value directly affects the calculated mass concentration of organic nitrates, basing its justification on unpublished work is not acceptable. In a more conservative approach the authors should instead use the organic nitrate R-value of 0.1, which will lead to a lower estimate of organic nitrate mass concentration. Implementing this value for the data set in Table 2 would lead to a reduction of organic nitrate mass concentration by ~ 25%, directly reducing the SOA molar and mass yields by the same percentage.
Noteworthy, the use of R=0.1 for organic nitrates would also increase slightly the mass concentration of ammonium nitrate. As for many plumes the authors calculate negative ammonium nitrate mass concentration, this negative bias for the ammonium nitrate would be overcome, further supporting the use of R=0.1 instead of R=0.175. As mentioned above, the use of R=0.1 would reduce organic nitrate mass concentration and therefore the SOA mass yield would be reduced to ~20% instead of the current 27%. Accounting for the 2/3 organic mass the SOA mass yield presented here would translate into an organic mass yield of 13%, well comparable to the literature data cited by the authors.

We agree that the pRONO\textsubscript{2} NO\textsubscript{x}⁺ ratio affects pRONO\textsubscript{2} quantification. However, we disagree with the proposed value, which is not consistent with the average of the published literature.

As for the “negative ammonium nitrate mass concentration” when calculating the plume enhancements, these cannot be simply prescribed to a bias in the pRONO\textsubscript{2} NO\textsubscript{x}⁺ ratio. Note that those values are differences between in/out of plume. As shown in Fig. 4, they are statistically zero when considering the uncertainties derived from the variability associated with in/out plume subtraction and measurement uncertainties (as clearly shown in the error bars on that plot). Therefore this does not provide any evidence that a pRONO\textsubscript{2} NO\textsubscript{x}⁺ ratio of 0.1 is more appropriate.

We have replaced the text in question describing the pRONO\textsubscript{2} ratio used with the following text, and removed all references to Day et al. from the manuscript:

This factor was determined as the average of several literature studies (Fry et al., 2009; Rollins et al., 2009; Farmer et al., 2010; Sato et al., 2010; Fry et al., 2011; Boyd et al., 2015) and applied according to the “ratio of ratios” method (Fry et al., 2013).

R3.2. The discussion on urban plumes, although acknowledging uncertainties, is far too speculative and should be removed from the manuscript.

We agree that the urban plume cases are more difficult to analyze due to variability in the background that is on the same scale as the enhancements. Therefore, we have moved this figure and discussion to the supplement to make this observation available, with only a qualitative analysis that organic nitrate aerosol is also enhanced in these urban plumes but is superimposed on an apparently large background variability.

Other points (in order of appearance in the manuscript)
R3.3. Page 5, line 172, 174: “0.7 µg m-3 . . . a factor of three lower than . . . 1.7 µg m-3” the numbers don’t match up, check for consistency.

Edited to: “Xu et al. predict only 0.7 µg m-3 of SOA would be produced, substantially lower than the measured nighttime LO-OOA production of 1.7 µg m-3.”
R3.4. Page 13, line 469: the nitrate radical production rate that was used to identify in-plume parts of the flight needs justification

Added text to explain: “This threshold was chosen to be above background noise and large enough to isolate only true plumes (see Fig. 1a). The value is thus subjectively chosen, but was consistently applied across the dataset.”

R3.5. Page 16, line 567 and following: To justify the statement, the authors need to show calibration data for deriving RIE of NH4 and show the precision of ion balance in the calibration aerosol.

The values for the relative ionization efficiencies for ammonium are mentioned in the experimental section on page 9 in lines 357-358: “Note that the relative ionization efficiency for ammonium was 3.91 and 3.87 for the two bracketing calibrations and an average value of 3.9 was used for the flight analyzed here.”

The ion balance for the plume enhancements is now plotted with the ion balance for the ammonium nitrate calibration data along with uncertainty bands and error bars (new Figure S5b shown below & added to manuscript).

Figure 5. … (b) Measured vs. calculated (ion balanced) NH4 for calibration data and plume enhancements. This also shows that plumes are acidic than ammonium sulfate, ruling out the possibility of inorganic nitrate formation.

Added at line 647 to describe the ion balance precision:
“The ion balance for the ammonium nitrate calibration particles and the plume enhancements are shown in Fig. S5b. Complete neutralization of the calibration aerosols is nearly always within the gray 10% uncertainty band for the relative ionization efficiency of ammonium (Bahreini et al., 2009). In contrast, many of the plume enhancements are near the 1:2 line (as primarily ammonium bisulfate) within the combined 10% ammonium and 15% sulfate uncertainty error bars or without ammonium (sulfuric acid).”

R3.6. Although the authors cite, that NO3 loss is dominated by reaction with isoprene, they could use the calculated potential for inorganic nitrate formation from N2O5 uptake to support the interpretation of most in-plume particulate nitrate formation having organic sources.

The contribution of N2O5 uptake to overall NO3 losses was considered in detail in Edwards, et al. (2017). The results reported in Figure S4 show N2O5 heterogeneous uptake contributing negligibly, with the exception of 2 brief periods, which do not correspond to plumes analyzed in this work. The authors further argue that even this small contribution of N2O5 heterogeneous uptake is likely overestimated.

Added this line to the text at line 561 to clarify this:

“Inorganic nitrate can also be produced by the heterogeneous uptake of N2O5 onto aqueous aerosol; Edwards et al. (2017) demonstrated that this process is negligible relative to NO3 + BVOC for the July 2 SENEX night flight considered here.”

References for these responses:

Secondary Organic Aerosol (SOA) yields from NO$_3$ radical + isoprene based on nighttime aircraft power plant plume transects

Juliane L. Fry1, Steven S. Brown2,5, Ann M. Middlebrook2, Peter M. Edwards2,3,4, Pedro Campuzano-Jost2,5, Douglas A. Day3,5, José L. Jimenez3,5, Hannah M. Allen6, Thomas B. Ryerson7, Ilana Pollack2,3,4, Martin Graus3,9, Carsten Warnke2,3, Joost A. deGouw3,5, Charles A. Brock2, Jessica Gilman2,9, Brian M. Lerner2,3,4, William P. Dubé2,9, Jin Liao2,3,4, André Welti2,3,8

1Chemistry Department, Reed College, Portland, OR, USA
2Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
3Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
4Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK
5Department of Chemistry, University of Colorado, Boulder, CO, USA
6Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
7now at Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
8now at Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Austria
9now at Aerodyne Research, Inc., Billerica, MA, USA
10now at Universities Space Research Association, Columbia, MD, USA and NASA Goddard Space Flight Center, Atmospheric Chemistry and Dynamic Laboratory, Greenbelt, MD, USA
11now at Leibniz Institute for Tropospheric Research, Department of Physics, Leipzig, Germany

Abstract

Nighttime reaction of nitrate radicals (NO$_3$) with biogenic volatile organic compounds (BVOC) has been proposed as a potentially important but also highly uncertain source of secondary organic aerosol (SOA). The southeast United States has both high BVOC and nitrogen oxide (NO$_x$) emissions, resulting in a large model-predicted NO$_3$-BVOC source of SOA. Coal-fired power plants in this region constitute substantial NO$_x$ emissions point sources into a nighttime atmosphere characterized by high regionally widespread concentrations of isoprene. In this paper, we exploit nighttime aircraft observations of these power plant plumes, in which NO$_3$ radicals rapidly remove isoprene, to obtain field-based estimates of the secondary organic aerosol yield from NO$_3$ + isoprene. Observed in-plume increases in nitrate aerosol are consistent with organic nitrate aerosol production from NO$_3$ + isoprene, and these are used to determine molar SOA yields, for which the average over 9 plumes is 9%. Corresponding mass yields depend on the assumed molecular formula for isoprene-NO$_3$-SOA, but the average over 9 plumes is 27%, larger than those previously measured in chamber studies (12 – 14% after oxidation of both double bonds). Yields are larger for longer plume ages. This suggests that ambient aging processes lead more effectively to condensable material than typical chamber conditions allow. We discuss potential mechanistic explanations for this difference, including longer ambient peroxy radical lifetimes and heterogeneous reactions of NO$_3$-isoprene gas phase products. More in-depth studies are needed to better understand the aerosol yield and
1 Introduction

Organic aerosol (OA) is increasingly recognized as a globally important component of the fine particulate matter that exerts a large but uncertain negative radiative forcing on Earth’s climate (Myhre et al., 2013) and adversely affects human health around the world (Lelieveld et al., 2015). This global importance is complicated by large regional differences in OA concentrations relative to other sources of aerosol such as black carbon, sulfate, nitrate and sea salt. OA comprises 20–50% of total fine aerosol mass at continental mid-latitudes, but more in urban environments and biomass burning plumes, and up to 90% over tropical forests (Kanakidou et al., 2005, Zhang et al., 2007). Outside of urban centers and fresh biomass burning plumes, the majority of this OA is secondary organic aerosol (SOA) (Jimenez et al., 2009), produced by oxidation of directly emitted volatile organic compounds followed by partitioning into the aerosol phase. Forests are strong biogenic VOC emitters, in the form of isoprene (C\textsubscript{10}H\textsubscript{18}), monoterpenes (C\textsubscript{10}H\textsubscript{16}), and sesquiterpenes (C\textsubscript{13}H\textsubscript{22}), all of which are readily oxidized by the three major atmospheric oxidants, OH, NO\textsubscript{3}, and O\textsubscript{3}. The total global source of biogenic SOA from such reactions remains highly uncertain, with a review estimating it at 90 +/- 90 Tg C yr-1 (Hallquist et al., 2009), a large fraction of which may be anthropogenically controlled (Goldstein et al., 2009, Carlton et al., 2010, Hoyle et al., 2011, Spracklen et al., 2011). As most NO\textsubscript{3} arises from anthropogenic emissions, OA production from NO\textsubscript{3} + isoprene is one mechanism that could allow for the anthropogenic control of biogenic SOA mass loading.

Isoprene constitutes nearly half of all global VOC emissions to the atmosphere, with a flux of ~600 Tg yr-1 (Guenther et al., 2006). As a result, accurate global biogenic SOA budgets depend strongly on yields from isoprene oxidation. Recent global modeling efforts find that isoprene SOA is produced at rates from 14 (Henze and Seinfeld 2006, Hoyle et al., 2007) to 19 TgC yr-1 (Heald et al., 2008), which implies that it could constitute 27% (Hoyle et al., 2007) to 48% (Henze and Seinfeld 2006) to 78% (Heald et al., 2008) of total SOA (based also on varying estimates of total SOA burden in each study). More recent observational constraints on SOA yield from isoprene find complex temperature-dependent mechanisms that could affect vertical distributions (Worton et al., 2013) and suggest that isoprene SOA constitutes from 17% (Hu et al., 2015) to 40% (Kim et al., 2015) up to 48% (Marais et al., 2016) of total OA in the southeastern United States. This large significance comes despite isoprene’s low SOA mass yields – two recent observational studies estimated the total isoprene SOA mass yield to be ~3% (Kim et al., 2015, Marais et al., 2016), and modeling studies typically estimate isoprene SOA yields to be 4 to 10%, depending on the oxidant, in contrast to monoterpenes’ yields of 10 to 20% and sesquiterpenes’ yields of >40% (Pye et al., 2010). Furthermore, laboratory studies of SOA mass yields may have a tendency to underestimate these yields, if they cannot access the longer timescales of later-generation chemistry, or are otherwise run under conditions that limit oxidative aging of first-generation products (Carlton et al., 2009).
Laboratory chamber studies of SOA mass yield at OA loadings of ~ 10 µg m\(^{-3}\) from isoprene have typically found low yields from O\(_3\) (1% (Kleindienst et al., 2007)) and OH (2% at low NO\(_x\) to 5% at high NO\(_x\) (Kroll et al., 2006, Dommen et al., 2009); 1.3% at low NO\(_x\) and neutral seed aerosol pH but rising to 29% in the presence of acidic sulfate seed aerosol due to reactive uptake of epoxides of isoprene (IEPOX) (Surratt et al., 2010)). One recent chamber study on OH-initiated isoprene SOA formation focused on the fate of second-generation NO\(_x\) radical found significantly higher yields, up to 15% at low NO\(_x\) (Liu et al., 2016), suggesting that omitting later-generation oxidation chemistry could be an important limitation of early chamber determinations of isoprene SOA yields. Another found an increase in SOA formed with increasing HO\(_2\) to RO\(_2\) ratios, suggesting that RO\(_2\) fate could also play a role in the variability of previously reported SOA yields (D’Ambro et al., 2017).

For NO\(_2\) oxidation of isoprene, early chamber experiments already pointed to higher yields (e.g., 12% (Ng et al., 2008)) than for OH oxidation. Ng et al. (Ng et al., 2008) also observed chemical regime differences: SOA yields were approximately two times larger when chamber conditions were tuned such that first-generation peroxy radical fate was RO\(_2\)+RO\(_2\) dominated than when it was RO\(_2\)+NO\(_3\) dominated. In addition, Rollins et al. (Rollins et al., 2009) observed a significantly higher SOA yield (14%) from second-generation NO\(_3\) oxidation than that when only one double bond was oxidized (0.7%). This points to the possibility that later-generation, RO\(_2\)+RO\(_2\) dominated isoprene + NO\(_3\) chemistry may be an even more substantial source of SOA than what current chamber studies have captured. Schwantes et al. (Schwantes et al., 2015) investigated the gas-phase products of NO\(_3\) + isoprene in the RO\(_2\)+HO\(_2\) dominated regime and found the major product to be isoprene nitrooxy hydroperoxide (INP, 75-78% molar yield), which can photochemically convert to isoprene nitrooxy hydroxyepoxide (INHE), a molecule that might contribute to SOA formation via heterogeneous uptake similar to IEPOX. Here again, multiple generations of chemistry are required to produce products that may contribute to SOA.

Because the SOA yield appears to be highest for NO\(_3\) radical oxidation, and isoprene is such an abundantly emitted BVOC, oxidation of isoprene by NO\(_3\) may be an important source of OA in areas with regional NO\(_3\) pollution. Since the SOA yield with neutral aerosol seed appears to be an order of magnitude larger than that from other oxidants, even if only 10% of isoprene is oxidized by NO\(_3\), it will produce comparable SOA to daytime photo-oxidation. For example, Brown et al. (Brown et al., 2009) concluded that NO\(_3\) contributed more SOA from isoprene than OH over New England, where > 20% of isoprene emitted during the previous day was available at sunset to undergo dark oxidation by either NO\(_3\) or O\(_3\). The corresponding contribution to total SOA mass loading was 1 – 17% based on laboratory yields (Ng et al., 2017). Rollins et al. (Rollins et al., 2012) concluded that multi-generational NO\(_3\) oxidation of biogenic precursors was responsible for one-third of nighttime organic aerosol increases during the CalNex-2010 experiment in Bakersfield, CA. In an aircraft study near Houston, TX, Brown et al. (Brown et al., 2013) observed elevated organic aerosol in the nighttime boundary layer, and correlated vertical profiles of organic and nitrate aerosol in regions with rapid surface level NO\(_3\) radical production and BVOC emissions. From these observations, the authors estimated an SOA source from NO\(_3\) + BVOCs within the nocturnal boundary layer of 0.05 – 1 µg m\(^{-3}\) h\(^{-1}\). Carlton et al. (Carlton et al., 2009) note the large scatter in chamber-measured SOA yields from isoprene.
photooxidation and point throughout their review of SOA formation from isoprene to the likely
importance of poorly understood later generations of chemistry in explaining field observations.
We suggest that similar differences in multi-generational chemistry could explain the variation
among the (sparse) chamber and field observations of NO$_3$ + isoprene yields described in the
previous paragraph, and summarized in a recent review of NO$_3$ + BVOC oxidation mechanisms
and SOA formation (Ng et al., 2017).

The initial products of NO$_3$ + isoprene include organic nitrates, some of which will partially
partition to the aerosol phase. Organic nitrates in the particle phase (pRONO$_3$) are challenging
to quantify with online methods, due to both interferences and their often overall low
concentrations in ambient aerosol. Hence, field datasets to constrain modeled pRONO$_3$ are
sparse (Fisher et al., 2016, Ng et al., 2017). One of the most used methods in recent studies,
used also here, is quantification with the Aerodyne Aerosol Mass Spectrometer (AMS). Organic
nitrates thermally decompose in the AMS vaporizer and different approaches have been used to
apportion the organic fraction contributing to the total nitrate signal. Allan et al. (Allan et al.,
2004) first proposed the use of nitrate peaks at m/z 30 and 46 to distinguish various nitrate
species with the AMS. Marcolli et al. (Marcolli et al., 2006), in the first reported tentative
assignment of aerosol organic nitrate using AMS data, used cluster analysis to analyze data
from the 2002 New England Air Quality Study. In that study, cluster analysis identified two
categories with high m/z 30 contributions. One of these peaked in the morning when NO$_3$ was
abundant and was more prevalent in plumes with lowest photochemical ages, potentially from
isoprene oxidation products. The second was observed throughout the diurnal cycle in both
fresh and aged plumes, and contained substantial m/z 44 contribution (highly oxidized OA). A
subsequent AMS laboratory and field study discussed and further developed methods for
separate quantification of organic nitrate (in contrast to inorganic nitrate) (Farmer et al., 2010). A
refined version of one of these separation methods, based on the differing NO$_3$*/NO*
fragmentation ratio for organic vs. inorganic nitrate, was later employed to quantify organic
nitrate aerosol at two forested rural field sites where strong biogenic VOC emissions and
relatively low NOx combined to make substantial organic nitrate aerosol concentrations ((Fry et
al., 2013, Ayres et al., 2015)). Most recently, Kiendler-Scharr et al. (Kiendler-Scharr et al., 2016)
used a variant of this method to conclude that across Europe, organic nitrates comprise ~40%
of submicron organic aerosol. Modeling analysis concluded that a substantial fraction of this
organic nitrate aerosol is produced via NO$_3$ radical initiated chemistry. Chamber studies have
employed this fragmentation ratio method to quantify organic nitrates (Fry et al., 2009, Rollins et
al., 2009, Bruns et al., 2010, Fry et al., 2011, Boyd et al., 2015), providing the beginnings of a
database of typical organonitrate fragmentation ratios from various BVOC precursors.

Measurements conducted at the SOAS ground site in Centreville, Alabama in 2013 found
evidence of significant organonitrate contribution to SOA mass loading. Xu et al. (Xu et al.,
2015) reported that organic nitrates constituted 5 to 12% of total organic aerosol mass from
AMS data applying a variant of the NO$_3$*/NO* ratio method. They identify a nighttime-peaking
“LO-OOA” AMS factor which they attribute to mostly NO$_3$ oxidation of BVOC (in addition to O$_3$ +
BVOC). They estimated that the NO$_3$ radical oxidizes 17% of isoprene, 20% of α-pinene, and
38% of β-pinene in the nocturnal boundary layer at this site. However, applying laboratory-
based SOA yields to model the predicted increase in OA, Xu et al. predict only 0.7 µg m⁻³ of
SOA would be produced, substantially lower than the measured nighttime LO-OOA production
of 1.7 µg m⁻³. The more recent analysis of Zhang et al. (Zhang et al., 2018) found a strong
correlation of monoterpane SOA with the fraction of monoterpane oxidation attributed to NO₃,
even for non-nitrate containing aerosol, suggesting an influence of NO₃ even in pathways that
ultimately eliminate the nitrate functionality from the SOA, such as hydrolysis or NO₂
regeneration. Ayres et al. (Ayres et al., 2015) used a correlation of overnight organonitrate
aerosol buildup with calculated net NO₃ + monoterpane and isoprene reactions to estimate an
overall NO₃ + monoterpane SOA mass yield of 40 – 80%. The factor of two range in this
analysis was based on two different measurements of aerosol-phase organic nitrates. These
authors used similar correlations to identify specific CIMS-derived molecular formulae that are
likely to be NO₃ radical chemistry products of isoprene and monoterpenes, and found minimal
contribution of identified first-generation NO₃ + isoprene products to the aerosol phase (as
expected based on their volatility). Lee et al. (Lee et al., 2016) detected abundant highly
functionalized particle-phase organic nitrates at the same site, with apparent origin both from
isoprene and monoterpenes, and both daytime and nighttime oxidation, and estimated their
average contribution to submicron organic aerosol mass to be between 3 – 8 %. For the same
ground campaign, Romer et al. (Romer et al., 2016) found evidence of rapid conversion from
alkyl nitrates to HNO₃, with total alkyl nitrates having an average daytime lifetime of 1.7 hours.

Xie et al. (Xie et al., 2013) used a model constrained by observed alkyl nitrate correlations with
O₃ from the INTEX-NA/ICARTT 2004 field campaign to determine a range of isoprene nitrate
lifetimes between 4 and 6 hours, with 40-50% of isoprene nitrates formed by NO₃ + isoprene
reactions. Laboratory studies show that not all organic nitrates hydrolyze to HNO₃ equally
rapidly: primary and secondary organic nitrates were found to be less prone to aqueous
hydrollysis than tertiary organic nitrates (Darer et al., 2011, Hu et al., 2011, Boyd et al., 2015,
Fisher et al., 2016). This suggests that field-based estimates of the contribution of organic
nitrates to SOA formation could be a lower limit, if they are based on measurement of those
aerosol-phase nitrates. This is because if hydrolysis is rapid, releasing HNO₃ but leaving behind
the organic fraction in the aerosol phase, then that organic mass would not be accurately
accounted for as arising from nitrate chemistry. This was addressed in a recent modeling study
of SOAS (Pye et al., 2015) in which modeled hydrolysis products of particulate organic nitrates
of up to 0.8 µg m⁻³ additional aerosol mass loading in the southeast U.S. were included in the
estimate of change in OA due to changes in NOₓ. Another recent GEOS-Chem modeling study
using of gas- and particle-phase organic nitrates observed during the SEAC⁴RS and SOAS
campaigns similarly finds RONO₂ to be a major sink of NOₓ across the SEUS region (Fisher et al., 2016, Lee et al., 2016).

Complementing these SOAS ground site measurements, the NOAA-led SENEX (Southeast
Nexus) aircraft campaign conducted 18 research flights focused in part on studying the
interactions between biogenic and anthropogenic emissions that form secondary pollutants
between 3 June and 10 July 2013 (Warneke et al., 2016). Flight instrumentation focused on
measurement of aerosol precursors and composition enable the present investigation of SOA
yields using this aircraft data set. Edwards et al. (Edwards et al., 2017) used data from the
SENEX night flights to evaluate the nighttime oxidation of BVOC, observing high nighttime isoprene mixing ratios in the residual layer that can undergo rapid NO\textsubscript{3} oxidation when sufficient NO\textsubscript{3} is present. These authors suggest that past NO\textsubscript{3} reductions may have been uncoupled from OA trends due to NO\textsubscript{3} not having been the limiting chemical species for OA production, but that future reductions in NO\textsubscript{3} may decrease OA if NO\textsubscript{3} oxidation of BVOC is a substantial regional SOA source. Because isoprene is ubiquitous in the nighttime residual layer over the southeastern United States and the NO\textsubscript{3} + isoprene reaction is rapid, NO\textsubscript{3} reaction will be dominant relative to O\textsubscript{3} in places with anthropogenic inputs of NO\textsubscript{3} (Edwards et al., 2017) concludes that when NO\textsubscript{3}/BVOC > 0.5, NO\textsubscript{3} oxidation will be dominant). Hence, a modest NO\textsubscript{3} + isoprene SOA yield may constitute a regionally important OA source.

Several modeling studies have investigated the effects of changing NO\textsubscript{3} on global and SEUS SOA. Hoyle et al. (Hoyle et al., 2007) found an increase in global SOA production from 35 Tg yr-1 to 53 Tg yr-1 since preindustrial times, resulting in an increase in global annual mean SOA mass loading of 51%, attributable in part to changing NO\textsubscript{3} emissions. Zheng et al. (Zheng et al., 2015) found only moderate SOA reductions from a 50% reduction in NO emissions: 0.9 – 5.6% for global NO\textsubscript{3}, or 6.4 – 12.0% for southeast US NO\textsubscript{3}x, which they attributed to buffering by alternate chemical pathways and offsetting tendencies in the biogenic vs. anthropogenic SOA components. In contrast, Pye et al. (Pye et al., 2015) find a 9% reduction in total organic aerosol in Centreville, AL for only 25% reduction in NO\textsubscript{3} emissions. A simple limiting-reagent analysis of NO\textsubscript{3} + monoterpane SOA from power plant plumes across the United States found that between 2008 and 2011, based on EPA-reported NO\textsubscript{3} emissions inventories, some American power plants shifted to the NO\textsubscript{3}-limited regime (from 3.5% to 11% of the power plants), and showed that these newly NO\textsubscript{3}-limited power plants were primarily in the southeastern United States (Fry et al., 2015). The effect of changing NO\textsubscript{3} on SOA burden is clearly still in need of further study.

Here, we present aircraft transects of spatially discrete NO\textsubscript{3} plumes from electric generating units (EGU), or power plants (PP), as a method to specifically isolate the influence of NO\textsubscript{3} oxidation. These plumes are concentrated and highly enriched in NO\textsubscript{3} over a scale of only a few km (Brown et al., 2012), and have nitrate radical production rates (P(NO\textsubscript{3})) 10 – 100 times greater than those of background air. The rapid shift in P(NO\textsubscript{3}) allows direct comparison of air masses with slow and rapid oxidation rates attributable to the nitrate radical, effectively isolating the influence of this single chemical pathway in producing SOA and other oxidation products. Changes in organic nitrate aerosol (pRONO\textsubscript{2}) concentration and accompanying isoprene titration enable a direct field determination of the SOA yield from NO\textsubscript{3} + isoprene.

2 Field campaign and experimental and modeling methods

The Southeast Nexus (SENEX: http://esrl.noaa.gov/csd/projects/senex/) campaign took place 3 June through 10 July 2013 as the NOAA WP-3D aircraft contribution to the larger Southeast Atmospheric Study (SAS: http://www.eol.ucar.edu/field_projects/sas/), a large, coordinated research effort focused on understanding natural and anthropogenic emissions, oxidation chemistry and production of aerosol in the summertime atmosphere in the southeastern United States. The NOAA WP-3D aircraft operated 18 research flights out of Smyrna, Tennessee,
carrying an instrument payload oriented towards elucidating emissions inventories and reactions of atmospheric trace gases, and aerosol composition and optical properties (Warneke et al., 2016). One of the major goals of the larger SAS study is to quantify the fraction of organic aerosol that is anthropogenically controlled, with a particular focus on understanding how OA may change in the future in response to changing anthropogenic emissions.

The subset of aircraft instrumentation employed for the present analysis of nighttime NO$_2$ + isoprene initiated SOA production includes measurements used to determine NO$_2$ radical production rate ($P(NO_2) = k_{NO_2+O_3}(T) [NO_2] [O_3]$), isoprene and monoterpenes concentrations, other trace gases for plume screening and identification, aerosol size distributions, and aerosol composition. The details on the individual measurements and the overall aircraft deployment goals and strategy are described in Warneke et al. (Warneke et al., 2016). Briefly, NO$_2$ was measured by UV photolysis and gas-phase chemiluminescence (P-CL) and by cavity ringdown spectroscopy, (CRDS), which agreed within 6%. O$_3$ was also measured by both gas-phase chemiluminescence and CRDS and agreed within 8%, within the combined measurement uncertainties of the instruments. Various volatile organic compounds were measured with several techniques, including for the isoprene and monoterpenes of interest here, proton reaction transfer mass spectrometry (PTR-MS) and canister whole air samples and post-flight GC-MS analysis (iWAS/GCMS). A comparison of PTR-MS and iWAS/GCMS measurements of isoprene during SENEX has high scatter due to imperfect time alignment and isoprene’s high variability in the boundary layer, but the slope of the intercomparison is 1.04 ((Warneke et al., 2016); for more details on the VOC intercomparisons, see also Lerner et al., (Lerner et al., 2017)). Acetonitrile from the PTRMS was used to screen for the influence of biomass burning. Sulfur dioxide (SO$_2$) was used to identify emissions from coal-fired power plants. All gas-phase instruments used dedicated inlets, described in detail in the supplemental information for Warneke et al. (Warneke et al., 2016).

Aerosol particles were sampled downstream of a low turbulence inlet (Wilson et al., 2004), after which they were dried by ram heating, size-selected by an impactor with 1 µm aerodynamic diameter size cut-off, and measured by various aerosol instruments (Warneke et al., 2016). An ultra-high-sensitivity aerosol sizing spectrometer (UHSAS, Particle Metrics, Inc., Boulder, CO (Cai et al., 2008, Brock et al., 2011)) was used to measure the dry submicron aerosol size distribution down to about 70 nm. Data for the UHSAS are reported at 1 Hz whereas AMS data were recorded roughly every 10 seconds. The ambient (wet) surface areas were calculated according to the procedures described in Brock et al., 2016 (Brock et al., 2016). A pressure-controlled inlet (Bahreini et al., 2008) was employed to ensure that a constant mass flow rate was sampled by a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) which measured the non-refractory aerosol composition (Drewnick et al., 2005). The aerosol volume transmitted into the AMS was calculated by applying the measured AMS lens transmission curve (Bahreini et al., 2008) to the measured particle volume distributions from the UHSAS. For the entire SENEX study, the mean, calculated fraction of aerosol volume behind the 1 micron impactor that was transmitted through the lens into the AMS instrument was 97% (with ±4% standard deviation), indicating that most of the submicron aerosol volume measured by the sizing instruments was sampled by the AMS.
After applying calibrations and the composition-dependent collection efficiency following Middlebrook et al. (Middlebrooker et al., 2012), the limits of detection for the flight analyzed here were 0.05 μg m$^{-3}$ for nitrate, 0.26 μg m$^{-3}$ for organic mass, 0.21 μg m$^{-3}$ for ammonium, and 0.05 μg m$^{-3}$ for sulfate, determined as three times the standard deviation of 10-second filtered air measurements obtained for 10 minutes during preflight and 10 minutes during postflight (110 datapoints). Note that the relative ionization efficiency for ammonium was 3.91 and 3.87 for the two bracketing calibrations and an average value of 3.9 was used for the flight analyzed here.

An orthogonal distance regression (ODR-2) of the volume from composition data (AMS mass plus refractory black carbon) using a mass weighted density as described by Bahreini et al., 2009 versus the volume based on the sizing instruments (after correcting for AMS lens transmission as above) had a slope of 1.06 for the entire SENEX study and 72% of the data points were within the measurements' combined uncertainties of $\pm 45\%$ (Bahreini et al., 2008). For the flight analyzed here, however, the same regression slope was 1.58, which is slightly higher than the combined uncertainties. It is unclear why the two types of volume measurements disagree more for this flight. This does not change the conclusions of this work because this has been incorporated into the error in aerosol organic nitrate, which still show positive enhancements in PRONO2 for these plumes (see Figure 4 below). These complete error estimates are also used in Figure 5 to clearly show the uncertainties in the yields. The volume comparison is discussed further in the Supplemental Information and shown for the plumes of interest in Fig. S1.

The C-ToF-AMS is a unit mass resolution (UMR) instrument and the mass spectral signals that are characteristic of aerosol nitrate at m/z 30 and 46 (NO^+ and NO_2^+) often contain interferences from organic species such as CH_3O^+ and $CH_2O_2^+$, respectively. Here, the m/z 30 and 46 signals have been corrected for these interferences by using correlated organic signals at m/z 29, 42, 43, and 45 that were derived from high-resolution AMS measurements during the NASA SEAC4RS campaign that took place in the same regions of the SE US shortly after SENEX (see Supplemental Information and Fig. S2). The corrections were applied to the individual flight analyzed here from July 2. All of the corrections were well correlated with each other for the SEAC4RS dataset and we used the organic peak at m/z 29 (from CHO^+) and the peak at m/z 45 (from CHO_2^+), respectively, since those corrections were from peaks closest (in m/z) to those being corrected. Once corrected, the nitrate mass concentrations in the final data archive for this flight were reduced by 0-0.24 μg sm$^{-3}$, an average reduction of 0.11 μg sm$^{-3}$ or 32$\%$ from the initial nitrate mass concentrations. The organic interferences removed from the m/z 30 and m/z 46 signals are linearly correlated with the total organic mass concentrations, corresponding to an average 1.3$\%$ increase in the total organic mass.

The ratio of the corrected NO$_2^+/NO^+$ signals was then used to calculate the fraction of aerosol nitrate that was organic (pRONO$_2$) or inorganic (ammonium nitrate) based on the method described first in (Fry et al., 2013). Here we used an organic NO$_2^+/NO^+$ ratio that was equal to the ammonium nitrate NO$_2^+/NO^+$ ratio from our calibrations divided by 2.8. This factor was determined from multiple datasets (see discussion in Supplemental Information). The ammonium nitrate NO$_2^+/NO^+$ ratio was obtained from the two calibrations on 30 June and 7 July...
that bracketed the flight on 2 July, which is analyzed here. It was 0.514 and 0.488, respectively, and for all of the data from both calibrations it averaged 0.490. Hence, the organic nitrate NO$_2$/NO$^+$ ratio was estimated to be 0.175. This is the first time, to our knowledge, that UMR measurements of aerosol nitrate have been corrected with HR correlations and used to apportion the corrected nitrate into inorganic or organic nitrate species.

The time since emission of intercepted power plant plumes was estimated from the slope of a plot of O$_3$ against NO$_2$. For nighttime emitted NO$_x$ plumes that consist primarily of NO (Peischl et al., 2010), O$_3$ is negatively correlated with NO$_2$ due to the rapid reaction of NO with O$_3$ that produces NO$_2$ in a 1:1 ratio:

\[\text{NO + O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \] (R1)

Reaction R1 goes rapidly (NO pseudo first order loss rate coefficient of 0.03 s$^{-1}$ at 60 ppb O$_3$) to completion, so that all NO$_x$ is present as NO$_2$, as long as the plume NO does not exceed background O$_3$ after initial mixing of the plume into background air. Subsequent oxidation of NO$_2$ via reaction (R2) leads to an increasingly negative slope of O$_3$ vs NO$_2$:

\[\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 + \text{O}_2 \] (R2)

Equation (1) then gives plume age subsequent to the completion of (R1) in terms of the observed slope, m, of O$_3$ vs NO$_2$ (Brown et al., 2006).

\[t_{\text{plume}} = \frac{\ln[1-s(m+1)]}{sk_1\bar{O}_3} \] (1)

Here S is a stoichiometric factor that is chosen for this analysis to be 1 based on agreement of plume age with elapsed time in a box model run initialized with SENEX flight conditions below; k_1 is the temperature dependent bimolecular rate constant for NO$_2$ + O$_3$ (R2) and \bar{O}_3 is the average O$_3$ within the plume.

We calculate plume ages using both a stoichiometric factor of 1 (loss of NO$_3$ and N$_2$O$_5$ dominated by NO$_3$ reactions) and 2 (loss dominated by N$_2$O$_5$ reactions), although we note that the chemical regime for NO$_3$+N$_2$O$_5$ loss may change over the lifetime of the plume, progressing from 1 to 2 as the BVOC is consumed. We use $S=1$ values in the analysis that follows. Because the more aged plumes are more likely to have S approach 2, this means that some of the older plumes may have overestimated ages. Fig. S3 in the Supplemental Information shows the plume age calculated by Eq. 1 using modeled NO$_x$, NO$_y$ and O$_3$ concentrations for $S=1$ and $S=2$, from nighttime simulations of plume evolution using an observationally constrained box model. This confirms that for nighttime plumes, $S=1$ plume ages match modeled elapsed time well. The model used for this calculation, and those used to assess peroxy radical lifetimes and fates in Section 4.3, was the Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC (Emmerson and Evans 2009)) containing the Master Chemical Mechanism v3.3.1 chemistry scheme (Jenkin et al., 2015). More details on the model approach are provided in the SI.
3 Nighttime flight selection

There were three nighttime flights (takeoffs on the evenings of 19 June, 2 July, and 3 July, 2013, local time) conducted during SENEX, of which one (2 July) surveyed regions surrounding Birmingham, Alabama, including multiple urban and power plant plume transects. As described in the introduction, these plume transects are the focus of the current analysis since they correspond to injections of concentrated NO (and subsequently high $P(\text{NO}_3)$) into the regionally widespread residual layer isoprene. The nighttime flight on 3 July, over Missouri, Tennessee and Arkansas sampled air more heavily influenced by biomass burning than biogenic emissions. The 19 June night flight sampled earlier in the evening, in the few hours immediately after sunset, and sampled more diffuse urban plume transects that had less contrast with background air. Therefore, this paper uses data exclusively from the 2 July flight, in which 9 transects of well-defined NO$_3$ plumes from power plants emitted during darkness can be analyzed to obtain independent yields measurements.

A map of the 2 July flight track is shown in Fig. 1a. After takeoff at 8:08 pm local Central Daylight Time on 2 July, 2013 (1:08 am UTC 3 July, 2016), the flight proceeded towards the southwest until due west of Montgomery, AL, after which it conducted a series of east-west running tracks while working successively north toward Birmingham, AL. Toward the east of Birmingham, the aircraft executed overlapping north-south tracks at six elevations to sample the E. C. Gaston power plant. During the course of the flight, concentrated NO$_3$ plumes from the Gaston, Gorgas, Miller and Greene City power plants were sampled. Around 1:30 and 2:30 AM Central Daylight Time (5:30 and 6:30 am UTC), two transects of the Birmingham, AL urban plume were measured prior to returning to the Smyrna, TN airport base.

The flight track is shown colored by the nitrate radical production rate, $P(\text{NO}_3)$, to show the points of urban and/or power plant plume influence:

$$P(\text{NO}_3) = k_2(T) [\text{NO}_2][\text{O}_3]$$ \hspace{1cm} (2)

Here, k_2 is again the temperature-dependent rate coefficient for reaction of NO$_2$ + O$_3$ (Atkinson et al., 2004), and the square brackets indicate concentrations. Fig. 1b further illustrates the selection of power plants plumes: sharp peaks in $P(\text{NO}_3)$ are indicative of power plant plume transects, during which isoprene mixing ratios also are observed to drop from the typical regional residual layer background values of ~1 ppb, indicative of loss by NO$_3$ oxidation (an individual transect is shown in more detail below in Fig. 2). Also shown in Fig. 1b are measured concentrations of isoprene and monoterpenes throughout the flight, showing substantial residual layer isoprene and supporting the assumption that effectively all NO$_3$ reactivity is via isoprene (see calculation in next section). Residual layer concentrations of other VOCs that could produce SOA (e.g., aromatics) are always below 100 pptv, and their reaction rates with NO$_3$ are slow. Edwards et al. (Edwards et al., 2017) have shown that NO$_3$ and isoprene mixing ratios for this and other SENEX night flights exhibit a strong and characteristic anticorrelation that is consistent with nighttime residual layer oxidation chemistry.
Figure 1a. Map of northern Alabama, showing the location of the flight track of the 2 July 2013 night flight used in the present analysis, with plume numbers labeled and wind direction shown. Although the wind direction changed throughout the night, these measurements enable us to
attribute each plume to a power plant source (see labels in Figure 1b and Table 2). Color scale shows $P(\text{NO}_3)$ based on aircraft-measured $[\text{NO}_2]$ and $[\text{O}_3]$, while power plants discussed in the text are indicated in blue squares with marker size scaled to annual NO$_x$ emissions for 2013 (scale not shown). Isoprene emissions are widespread in the region (Edwards et al., 2017). Figure 1b shows time series data from the same flight, with plume origins and numbers labeled, showing aircraft-measured isoprene and monoterpenes concentrations, altitude, and $P(\text{NO}_3)$ determined according to Eq. 2 (log scale), showing that the isoprene was uniformly distributed (mixing ratios often in excess of 1 ppbv), while the more reactive monoterpenes were present at mixing ratios below 100 ppt except at the lowest few hundred meters above ground in the vertical profiles (not used in the present analysis). Figure 1b also shows that sharp peaks in nitrate radical production rate occur both at the lowest points of these vertical profiles, when the aircraft approached the surface, but also frequently during periods of level flight in the residual layer, which correspond to the power plant plume transects analyzed in this paper.

4 Results
4.1 Selection of plumes
Figure 2 shows a subset of the July 2 flight time series data, illustrating three NO$_x$ plumes used for analysis. The large NO$_3$ source and isoprene loss was accompanied by an increase in organic nitrate aerosol mass, which we attribute to the NO$_3$ + isoprene reaction based on prior arguments. We observed each plume as a rapid and brief perturbation to background conditions, of order 10 – 50 sec., or 1 – 5 km in spatial scale. Each plume’s perturbed conditions can correspond to different plume ages, depending on how far downwind of the power plant the plume transect occurred.
Figure 2. Three representative plume transect observations from the 2 July 2013 flight (plumes are identified by the peaks in $P(\text{NO}_3)$, listed in Table 1 at times 02:18, 02:20, and 02:21 UTC). Note the difference in sulfate enhancement in the three plumes, which is largest in the third plume, and is accompanied by increases in ammonium. In all three cases, the isoprene concentration drops in the plumes, accompanied by a clear increase in organic nitrate, no changes in the inorganic nitrate, and a modest changes in organic aerosol mass concentrations.

Candidate plumes were initially identified by scanning the time series flight data for any period where the production rate of nitrate radical ($P(\text{NO}_3)$) rose above 0.5 ppbv hr$^{-1}$. This threshold was chosen to be above background noise and large enough to isolate only true plumes (see Fig. 1a). The value is thus subjectively chosen, but was consistently applied across the dataset. For each such period, a first screening removed any of these candidate plumes that occurred during missed approaches or other periods where radar altitude above ground level (AGL) was changing, because in the stratified nighttime boundary layer structure, variations in altitude may result in sampling different air-masses, rendering the adjacent out of plume background not necessarily comparable to in-plume conditions. A second criterion for rejection of a plume was missing isoprene or AMS data during brief plume intercepts. No selected plumes on July 2 showed enhanced acetonitrile or refractory black carbon, indicating no significant biomass.
burning influence. Finally, two plumes downwind of the Gaston power plant (at 03:10 and 03:14) were removed from the present analysis, because (03:10) the background isoprene was changing rapidly, preventing a good baseline measurement, and (03:14) there was no observed decrease in isoprene concentration in-plume (as well as no increase in nitrate aerosol). The 03:14 plume was apparently too recently emitted to have undergone significant nighttime reaction; its \(\text{O}_3/\text{NO}_x \) slope was unity to within the combined measurement error of \(\text{O}_3 \) and \(\text{NO}_2 \) (Eq. 1). After this filtering, there are 9 individual plume observations for determination of \(\text{NO}_3 + \) isoprene SOA yields (see Table 1). The rapid increases in \(\text{P(NO}_3) \) appeared simultaneously with significant decreases in isoprene and increases in aerosol nitrate. The aerosol and isoprene measurements (taken at data acquisition rates < 1 Hz) were not exactly coincident in time which leads to some uncertainty in the yield analysis below.

Derivation of SOA yields from observed changes in isoprene and aerosol mass in plumes depends on two conditions, and has several caveats that will be discussed in the text that follows (see Table 3 below for a summary of these caveats). The two conditions are: (1) that the majority of VOC mass consumed by \(\text{NO}_3 \) in plumes is isoprene (rather than monoterpenes or other VOC), and then either or both (2a) that the change in aerosol organic mass concentration during these plumes is due to \(\text{NO}_3 + \) isoprene reactions, and/or (2b) that the change in aerosol nitrate mass concentration is due to \(\text{NO}_3 + \) isoprene reactions. There are separate considerations for each of these conditions.

For the first condition, we note that the isoprene to monoterpenes ratio just outside each plume transect was always high (a factor of 10 to 70, on average 26). With the 298 K \(\text{NO}_3 \) rate constants of \(\sim 5 \times 10^{-12} \text{ cm}^2 \text{ mole}^{-1} \text{ s}^{-1} \) for monoterpenes and \(6.5 \times 10^{-13} \text{ cm}^2 \text{ mole}^{-1} \text{ s}^{-1} \) for isoprene (Calvert et al., 2000), isoprene (\(\sim 2 \text{ ppb} \)) will always react faster with nitrate than monoterpenes (\(\sim 0.04 \text{ ppbv} \)). At these relative concentrations, even if all of the monoterpene is oxidized, the production rate of oxidation products will be much larger for isoprene. Contribution to aerosol by \(\text{N}_2\text{O}_5 \) uptake is also not important in these plumes. Edwards et al. (Edwards et al., 2017) calculated the sum of \(\text{NO}_3 \) and \(\text{N}_2\text{O}_5 \) loss throughout this flight and showed that it is consistently \(\text{NO}_3+\text{BVOC} \) dominated (Fig. S4 of that paper). As isoprene depletes, \(\text{N}_2\text{O}_5 \) uptake will increasingly contribute to \(\text{NO}_3 \) loss, but as shown below, we are able to rule out a substantial source of inorganic nitrate for most plumes. We also know that despite increased \(\text{OH} \) production in-plume, the isoprene loss is still overwhelming dominated by \(\text{NO}_3 \) (Fig. S5 in Edwards, et al. (Edwards et al., 2017))

The second condition requires that we can find an aerosol signal that is attributable exclusively to \(\text{NO}_3 + \) isoprene reaction products, whether it be organic aerosol (OA) or organic nitrate aerosol (\(\text{pRONO}_2 \)) mass loading, or both. We note that the ratio of in-plume aerosol organic mass increase to \(\text{pRONO}_2 \) mass increase is noisy (see discussion below at Fig. 6), but indicates an average in-plume \(\text{OA} \) to \(\text{pRONO}_2 \) ratio of about 5. The large variability is primarily due to the fact that the variability in organic aerosol mass between successive 10-second data points for the entire flight is quite large (of order 0.75 \(\mu g \text{ m}^{-3} \)) and comparable to many of the individual plume \(\text{OA} \) increases, far exceeding the expected organonitrate driven increases in OA, which are roughly twice the \(\text{pRONO}_2 \) mass increases. It is also possible that in these plumes, where
total aerosol mass is elevated, semivolatile organic compounds may re-partition to the aerosol phase, contributing a non-pRONO2 driven variability in ΔOA. For example, if some gas phase IEPOX is present in the residual layer, it may be taken up into the highly acidic aerosol from the power plants. Alternatively, very polar gas-phase compounds could partition further into the higher liquid water associated with the sulfate in the plume. Therefore, in-plume organic aerosol increases cannot be attributed clearly to NO3 + isoprene SOA production, so we do not use them in the SOA yield calculations.

This leaves consideration 2b, whether all increase in nitrate mass is due to NO3 + isoprene reactions. Here we must evaluate the possibility of inorganic nitrate aerosol production in these high-NOx plumes. Fine-mode aerosol inorganic nitrate can be formed by the (reversible) dissolution of HNO3(g) into aqueous aerosol. In dry aerosol samples, inorganic nitrate is typically in the form of ammonium nitrate (NH4NO3), when excess ammonium is available after neutralization of sulfate as (NH4)2SO4 and NH4(HSO4). Because of the greater stability of ammonium sulfate salt relative to ammonium nitrate, in high-sulfate plumes with limited ammonium, inorganic nitrate aerosol will typically evaporate as HNO3(g) (Guo et al., 2015) (reaction R3):

\[
2\text{NH}_4\text{NO}_3(aq) + \text{H}_2\text{SO}_4(aq) \rightleftharpoons (\text{NH}_4)_2\text{SO}_4(aq) + 2\text{HNO}_3(g) \quad \text{(R3)}
\]

Inorganic nitrate can also form when crustal dust (e.g. CaCO3) or seasalt (NaCl) are available. Uptake of HNO3 is rendered favorable by the higher stability of nitrate mineral salts, evaporating CO2 or HCl. Inorganic nitrate can also be produced by the heterogeneous uptake of N2O5 onto aqueous aerosol; Edwards et al. (2017) demonstrated that this process is negligible relative to NO3 + BVOC for the July 2 SENEX night flight considered here.

There are several lines of evidence that the observed nitrate aerosol is organic and not inorganic. First, examination of the NO2+/NO+ (interference-corrected m/z 46:m/z 30) ratio measured by the aircraft AMS (Fig. 3) shows a ratio throughout the July 2 flight, including the selected plumes, that is substantially lower than that from the bracketing ammonium nitrate calibrations. This lower AMS measured NO2+/NO+ ratio has been observed for organic nitrates (Farmer et al., 2010), and some mineral nitrates (e.g. Ca(NO3)2 and NaNO3, Hayes et al., 2013)), which are not important in this case because aerosol was dominantly submicron. As described above, we can separate the observed AMS nitrate signal into pRONO2 and inorganic nitrate contributions. These mass loadings are also shown in Fig. 3, indicating dominance of pRONO2 throughout the flight.
Figure 3. For the flight under consideration, the estimated relative contributions of ammonium and organic nitrate to the total corrected nitrate signal (top panel) was calculated from the ratios of the corrected peaks at m/z 30 and 46 (lower panel). Each of the plumes is identified here by plume number. The ratios of NO$_2$/NO$^+$ (black data in the lower panel) from the corrected peaks at m/z 46 and 30, respectively, are compared to the ratios expected for ammonium nitrate (AN Calibration Ratio, blue horizontal line at 0.49) or organic nitrate (pRONO2 Ratio, green horizontal line at 0.175 which is estimated from the AN calibration ratio using multiple data sets (see discussion in Supplemental Information). The measured ratio for most of the flight is more characteristic of organic nitrate than ammonium nitrate.

We can also employ the comparison of other AMS-measured aerosol components during the individual plumes to assess the possibility of an inorganic nitrate contribution to total measured nitrate. Fig. S5b shows that the in-plume increases in sulfate are correlated with increases in ammonium with an R2 of 0.4. The observed slope of 5.4 is characteristic of primarily (NH$_4$)$_2$HSO$_4$, which indicates that the sulfate mass is not fully neutralized by ammonium. We note, however, that if the largest observed aerosol nitrate increase is due solely to ammonium nitrate, the ammonium increase would be only 0.11 µg m$^{-3}$, which would be difficult to discern from the NH$_4$ variability of order 0.11 µg m$^{-3}$. However, the slope is consistent with incomplete neutralization of the sulfate by ammonium, which would make HNO$_3$(g) more thermodynamically favorable form of inorganic nitrate. The ion balance for the ammonium nitrate calibration particles and the plume enhancements are shown in Fig. S5b. Complete neutralization of the calibration aerosols is nearly always within the gray 10% uncertainty band for the relative ionization efficiency of...
ammonium (Bahreini et al., 2009). In contrast, many of the plume enhancements are near the 1:2 line (as primarily ammonium bisulfate) within the combined 10% ammonium and 15% sulfate uncertainty error bars or without ammonium (sulfuric acid). Thus, NH$_4$NO$_3$ is unlikely to be stable in the aerosol phase under the conditions of these plumes, consistent with the AMS observations. A plot of the calculated plume enhancements from the derived apportionment into organic (pRONO$_2$) and inorganic (ammonium) nitrate is shown in Fig. 4. The increases in aerosol nitrate for nearly all of the plumes appear to be mostly due to enhancements in pRONO$_2$. Based on these considerations, we conclude that in-plume pRONO$_2$ mass increases are a consequence (and thus a robust measure) of organic nitrate aerosol produced from NO$_3^-$ + isoprene. Since each isoprene molecule condensing will have one nitrate group, the ratio of these increases to isoprene loss is a direct measure of the molar organic aerosol yield from NO$_3^-$-isoprene oxidation.

Figure 4. The contribution of each species to the nitrate enhancements in each of the plumes, showing that the enhancements in most of the plumes are mainly due to enhancements in organic nitrate, with the exception of Plume 8 which had enhancements in both organic and ammonium nitrate. Error bars are estimated from the measurement variability, the UMR corrections to the nitrate signals, apportionment between organic and inorganic nitrate, and the total nitrate uncertainty (see Supplemental Information).

Table 1 shows the selected plumes to be used for yield analysis. Wherever possible, multiple points have been averaged for in-plume and background isoprene and nitrate aerosol concentrations; in each case the number of points used is indicated and the corresponding standard deviations are reported. In two cases (2:20 and 3:03 plumes), the plumes were so narrow that only a single point was measured in-plume at the 10 s time resolution of the PTR-
MS and AMS; for these "single-point" plumes it is not possible to calculate error bars. Error bars were determined using the standard deviations calculated for in-plume and background isoprene and nitrate aerosol concentrations, accounting also for the additional uncertainty in the AMS measurement described in the caption to Figure 4, and propagated through the yield formula detailed in the following section.
Table 1. List of plumes used in this NO$_3$ + isoprene SOA yield analysis. For each plume, the delta-values listed indicate the difference between in-plume and outside-plume background in average observed concentration, and the standard deviations (SD) are the propagated error from this subtraction. (For ΔNO$_3$ from pRONO$_3$, the standard deviations also include error propagated from the uncertainties in the nitrate apportionment and aerosol volume, as described in the caption for Figure 4). After each plume number, the numbers of points averaged for isoprene (10 s resolution) and AMS (10 s resolution), respectively, are listed. Because the isoprene data were reported at a lower frequency, these numbers are typically lower to cover the same period of time. Plume numbers annotated with * indicate brief plumes for which only single-point measurements of in-plume aerosol composition were possible. Additional AMS and auxiliary data from each plume is included in the Supplemental Information, Table S3.

<table>
<thead>
<tr>
<th>plume number [#iso3/#AMS]</th>
<th>7/21 plume time (UTC)</th>
<th>P(NO$_3$) (ppbv hr$^{-1}$)</th>
<th>ΔISOP (ppt) (± SD)</th>
<th>ΔNO$3$${aero}$ (µg m$^{-3}$) (± SD)</th>
<th>ΔNO$_3$ from pRONO$_3$ (µg m$^{-3}$) (± SD)</th>
<th>ΔNO$_3$ from NH$_4$NO$_3$ (µg m$^{-3}$) (± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [2/3]</td>
<td>2:18</td>
<td>0.9</td>
<td>-335</td>
<td>0.107</td>
<td>0.086</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
</tr>
<tr>
<td>2 [*]</td>
<td>2:20</td>
<td>0.8</td>
<td>-404</td>
<td>0.079</td>
<td>0.079</td>
<td>0</td>
</tr>
<tr>
<td>3 [4/5]</td>
<td>2:21</td>
<td>1.2</td>
<td>-228</td>
<td>0.067</td>
<td>0.074</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
</tr>
<tr>
<td>4 [*]</td>
<td>3:03</td>
<td>1.4</td>
<td>-453</td>
<td>0.118</td>
<td>0.166</td>
<td>-0.049</td>
</tr>
<tr>
<td>5 [2/3]</td>
<td>3:55</td>
<td>1.0</td>
<td>-255</td>
<td>0.046</td>
<td>0.045</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
</tr>
<tr>
<td>6 [2/2]</td>
<td>4:34</td>
<td>0.6</td>
<td>-713</td>
<td>0.072</td>
<td>0.107</td>
<td>-0.035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
</tr>
<tr>
<td>7 [5/6]</td>
<td>4:37</td>
<td>0.6</td>
<td>-296</td>
<td>0.100</td>
<td>0.080</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
</tr>
<tr>
<td>8 [2/3]</td>
<td>4:39</td>
<td>0.9</td>
<td>-443</td>
<td>0.354</td>
<td>0.201</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
</tr>
<tr>
<td>9 [7/8]</td>
<td>5:04</td>
<td>0.6</td>
<td>-293</td>
<td>0.172</td>
<td>0.227</td>
<td>-0.055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
<td>[± SD]</td>
</tr>
</tbody>
</table>

**Plume 5 has the smallest ΔNO$_3$_{aero}$ and may be affected by background pRONO$_3$ variability.
***Plume 8 has a measurable increase in inorganic nitrate as well as organic.

4.2 SOA yield analysis

A molar SOA yield refers to the number of molecules of aerosol organic nitrate produced per molecule of isoprene consumed. In order to determine molar SOA yields from the data presented in Table 1, we convert the aerosol organic nitrate mass loading differences to mixing ratio differences (ppt) using the NO$_3$ molecular weight of 62 g mol$^{-1}$ (the AMS organic nitrate...
mass is the mass only of the $-\text{ONO}_2$ portion of the organonitrate aerosol). At standard conditions of 273 K and 1 atm (all aerosol data are reported with this STP definition), 1000 ppt NO$_3$ = 2.77 µg m$^{-3}$, so each ΔM_{pRONO} is multiplied by 361 ppt (µg m$^{-3}$)$^{-1}$ to determine this molar yield:

$$Y_{\text{SOA, molar}} = \frac{([\text{pRONO}_2\text{plume}+\text{SD}_\text{pRONO}_2\text{plume}]) - ([\text{isop plume}+\text{SD}_\text{isop plume}])}{([\text{isop kg}+\text{SD}_\text{isop kg}])} \times \frac{361 \text{ ppt NO}_3}{\mu g \text{ m}^{-3}}$$ \hspace{1cm} (3)

The SOA molar yields resulting from this calculation are shown in Table 2, spanning a range of 5-28%, with uncertainties indicated based on the SDs in measured AMS and isoprene concentrations. In addition to this uncertainty based on measurement precision and ambient variability, there is an uncertainty of 50% in the AMS derived-organic nitrate mass loadings (see SI) and 25% in the PTR-MS isoprene concentrations (Warneke et al., 2016). The average molar pRONO$_2$ yield across all plumes, with each point weighed by the inverse of its standard deviation and assuming SD = 0.1 for single point plumes, is 9%. (As noted below, the yield appears to increase with plume age, so this average obscures that trend.) An alternate graphical analysis of molar SOA yield from all nine plumes plus one ‘null’ plume (03:14, in which no isoprene had yet reacted and thus not included in Tables 1 and 2) obtains the same average molar yield of 9% (Fig. 5). Here, the molar yield is the slope of a plot of plume change in pRONO$_2$ vs plume change in isoprene. The slope is determined by a linear fit with points weighted by the square root of the number of AMS data points used to determine in-plume pRONO$_2$ in each case. We have not corrected the calculated yields for the possibility of NO$_x$ heterogeneous uptake, which could add a nitrate functionality to existing aerosol. Such a process could be rapid if the uptake coefficient for NO$_x$ were 0.1, a value characteristics of unsaturated substrates (Ng et al., 2017), but would not contribute measurably at more conventional NO$_3$ uptake coefficients of 0.001 (Brown and Stutz 2012).
Figure 5. SOA molar yield can be determined as the slope of ΔpRONO2 vs. Δisoprene, both in mixing ratio units. The linear fit is weighted by square root of number of points used to determine each in-plume pRONO2, with intercept held at zero. The slope coefficient ± one standard deviation is 0.0930 ± 0.0011. Points are colored by plume age, and size scaled by square root of number of points (the point weight used in linear fit). The points without error bars are single-point plumes. Error bars on isoprene are the propagated standard deviations of the (in plume-out plume) differences, for plumes in which multi-point averages were possible. Error bars on pRONO2 are the same as in Figure 4. The points without error bars are single-point plumes.

To estimate SOA mass yields, we need to make some assumption about the mass of the organic molecules containing the nitrate groups that lead to the observed nitrate aerosol mass increase. The observed changes in organic aerosol are too variable to be simply interpreted as the organic portion of the aerosol organic nitrate molecules. We conservatively assume the organic mass to be approximately double the nitrate mass (62 g mol⁻¹), based on an “average” molecular structure of an isoprene nitrate with 3 additional oxygens: e.g., a tri-hydroxynitrate (with organic portion of formula C₅H₁₁O₃, 119 g mol⁻¹), consistent with 2nd-generation oxidation product structures suggested in Schwantes, et al. (Schwantes et al., 2015). Based on this assumed organic to nitrate ratio, all plumes’ expected organic mass increases would be less...
than the typical variability in organic of 0.75 µg m\(^{-3}\). This assumed structure is consistent with
oxidation of both double bonds, which appears to be necessary for substantial condensation of
isoprene products, and which structures would have calculated vapor pressures sufficiently low
to partition to the aerosol phase (Rollins et al., 2009). Another possible route to low vapor
pressure products is intramolecular H rearrangement reactions, discussed below in Section 4.3.
which would not require oxidant reactions at both double bonds. In the case of oxidant reactions
at both double bonds, it is difficult to understand how the second double bond would be oxidized
unless by another nitrate radical, which would halve these assumed organic to nitrate ratios
(assuming the nitrate is retained in the molecules). On the other hand, any organic nitrate
aerosol may lose NO\(_3\) moieties, increasing the organic to nitrate ratio. Given these uncertainties
in both directions, we use the assumed “average” structure above to guess an associated
organic mass of double the nitrate mass. Thus, to estimate SOA mass yield, we multiply the
increase in organic nitrate aerosol mass concentration by three (i.e., \(2 \times \Delta M_{pRONO2} + \Delta M_{pRONO2}\)),
and divide by the observed decrease in isoprene, converted to µg m\(^{-3}\) by multiplying by 329 ppt
(µg m\(^{-3}\))\(^{-1}\), the conversion factor based on isoprene’s molecular weight of 68.12 g mol\(^{-1}\).

\[
Y_{SOA, mass} = \frac{(<pRONO2\text{plume}+SD_{pRONO2}\text{plume}>) - (<pRONO2\text{bg}+SD_{pRONO2}\text{bg}>) \times 3 \times 329 \text{ ppt} \times \text{µg m}^{-3}}{(<\text{isoP}\text{plume}+SD_{isoP}\text{plume}>) - (<\text{isoP}\text{bg}+SD_{isoP}\text{bg}>)} \times 3 \times 329 \text{ ppt} \times \text{µg m}^{-3}
\]

Note that the SOA mass yield reported here is based on the (assumed) mass of organic aerosol
plus the (organo)nitrate aerosol formed in each plume. If instead the yield were calculated using
only the assumed increase in organic mass (i.e., \(2 \times \Delta M_{pRONO2}\) instead of \(3 \times \Delta M_{pRONO2}\)), which
would be consistent with the method used in Rollins, et al. (Rollins et al., 2009) and Brown et al.
(Brown et al., 2009), the mass yields would be 2/3 the values reported here. However, since
SOA mass yield is typically defined based on the total increase in aerosol mass, we use the
definition with the sum of the organic and nitrate mass here.

We note also that correlation of in-plume increases in OA with pRONO\(_2\) (Fig. 6) point to a
substantially larger 5:1 organic-to-nitrate ratio; if this were interpreted as indicating that the
average molecular formula of the condensing organic nitrate has 5 times the organic mass as
nitrate, this would increase the SOA mass yields reported here. However, due to the
aforementioned possibility of additional sources of co-condensing organic aerosol, which led us
to avoid using ΔOA in determining SOA yields, we do not consider this to be a direct indication
of the molecular formula of the condensing organic nitrate. Including OA in the SOA yield
determination, based on this 5:1 slope rather than the assumed 2:1 OA:pRONO\(_2\), would give
2.5 times larger SOA mass yields than reported here.
Figure 6. Correlation of organic aerosol mass concentration with pRONO$_2$ mass concentration for the full 2 July flight (grey points and red fit line, fitted slope and thus average OA/pRONO$_2$ mass ratio of ~30) and for the points during the selected plumes (colored points, colored by plume age, average OA/pRONO$_2$ mass ratio of ~5).
Table 2. SOA Yields for each plume observation, estimated plume age, and likely origin. See text for description of uncertainty estimates. For the mass yields, the calculated SOA mass increase includes both the organic and (organo)nitrate aerosol mass; the measurements for OA increases shown in Figure 6 do not include the nitrate mass.

<table>
<thead>
<tr>
<th>plume number</th>
<th>plume time (UTC)</th>
<th>SOA molar yield (fraction) [± SD]</th>
<th>SOA mass yield (fraction) [± SD]</th>
<th>plume age from O₃/NO₂ clock assuming S=1 (hours)</th>
<th>Likely NOx origin & altitude (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7/2/13 2:18</td>
<td>0.09 [0.05]</td>
<td>0.25 [0.17]</td>
<td>2.5</td>
<td>Greene County @ 540 m</td>
</tr>
<tr>
<td>2</td>
<td>7/2/13 2:20</td>
<td>0.07</td>
<td>0.21</td>
<td>1.5</td>
<td>ibid</td>
</tr>
<tr>
<td>3</td>
<td>7/2/13 2:21</td>
<td>0.12 [0.10]</td>
<td>0.32 [0.25]</td>
<td>1.5</td>
<td>ibid</td>
</tr>
<tr>
<td>4</td>
<td>7/2/13 3:03</td>
<td>0.13</td>
<td>0.36</td>
<td>1.5</td>
<td>Gaston @ 720 m</td>
</tr>
<tr>
<td>5</td>
<td>7/2/13 3:55</td>
<td>0.06 [0.07]</td>
<td>0.17 [0.20]</td>
<td>1.4</td>
<td>Miller / Gorgas @ 690 m</td>
</tr>
<tr>
<td>6</td>
<td>7/2/13 4:34</td>
<td>0.05 [0.03]</td>
<td>0.15 [0.08]</td>
<td>2</td>
<td>ibid</td>
</tr>
<tr>
<td>7</td>
<td>7/2/13 4:37</td>
<td>0.10 [0.09]</td>
<td>0.26 [0.24]</td>
<td>5.5</td>
<td>ibid</td>
</tr>
<tr>
<td>8</td>
<td>7/2/13 4:39</td>
<td>0.16 [0.10]</td>
<td>0.45 [0.24]</td>
<td>5.8</td>
<td>Miller / Gorgas @ 1120 m</td>
</tr>
<tr>
<td>9</td>
<td>7/2/13 5:04</td>
<td>0.28 [0.16]</td>
<td>0.77 [0.52]</td>
<td>6.3</td>
<td>Gaston @ 1280 m</td>
</tr>
</tbody>
</table>
Table 3. Several caveats to the present SOA yields analysis are listed below, alongside the expected direction each would adjust the estimated yields. Because we do not know whether or how much each process may have occurred in the studied plumes, we cannot quantitatively assess the resulting uncertainties, so we simply list them here. See text above for more detailed discussion.

<table>
<thead>
<tr>
<th>Process</th>
<th>Effect on determined SOA yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic nitrate aerosol loses NO₃ functional group</td>
<td>Larger, because the non-nitrate OA would not be counted in this analysis</td>
</tr>
<tr>
<td>Both double bonds in isoprene are oxidized by NO₂: two nitrates per condensing molecule</td>
<td>Smaller, because the assumed organic to nitrate mass ratio assumes one nitrate per molecule</td>
</tr>
<tr>
<td>NO₃ oxidizes daytime isoprene oxidation products (e.g. ISOPOOH) to make new aerosol</td>
<td>Smaller, because this would produce organic nitrate aerosol without corresponding decrease in isoprene, so that some of existing SOA production is mis-attributed to isoprene + NO₃</td>
</tr>
<tr>
<td>Assumed organic to nitrate mass ratio is incorrect</td>
<td>Unknown direction of effect, depends on whether assumed ratio is high or low</td>
</tr>
<tr>
<td>Daytime-produced IEPOX uptake onto acidic particles</td>
<td>No effect (only changes ΔOA, not nitrate)</td>
</tr>
<tr>
<td>Suppression of O₃ + monoterpene or O₃ + isoprene SOA in plumes</td>
<td>No effect (only changes ΔOA, not nitrate)</td>
</tr>
</tbody>
</table>

Finally, the large range in observed yields can be interpreted by examining the relationship to estimated plume age. Using the slope of O₃ to NO₂ (Eq. 1) to estimate plume age as described above, a weak positive correlation is observed (Table 2, Fig. S4), suggesting that as the plume ages, later-generation chemistry results in greater partitioning to the condensed phase of NO₃ + isoprene organonitrate aerosol products. This is consistent with the observation by Rollins et al. (Rollins et al., 2009) that 2nd-generation oxidation produced substantially higher SOA yields than the oxidation of the first double bond alone, but we note that these mass yields (averaging 27%, would be 18% using the organic mass only) are higher than even the largest yield found in that chamber study (14%, used organic mass only).

We observe increasing SOA yield, from a molar yield of around 10% at 1.5 hours up to 30% at 6 hours of aging. The lowest yields observed are found in the most recently emitted plumes, suggesting the interpretation of the higher yields as a consequence of longer aging timescales in the atmosphere.

4.3 Mechanistic considerations

These larger SOA mass yields from field determinations (average 27%) relative to chamber work (12 – 14%, see introduction) may arise for several reasons. We first assess the volatility of assumed first- and second-generation products using group contribution theory in order to predict partitioning. After a single oxidation step, with a representative product assumed to be a
C$_5$ hydroperoxynitrate, the saturation vapor pressure estimated by group contribution theory (Pankow and Asher 2008) at 283 K would be 2.10×10^{-3} Torr ($C^* = 1.7 \times 10^4 \mu g m^{-3}$ for MW = 147 g mol$^{-1}$), while a double-oxidized isoprene molecule (assuming a C$_5$ dihydroxy dinitrate) has an estimated vapor pressure of 7.95×10^{-8} Torr ($C^* = 1.01 \mu g m^{-3}$ for MW = 226 g mol$^{-1}$). This supports the conclusion that while the first oxidation step produces compounds too volatile to contribute appreciably to aerosol formation, oxidizing both double bonds of the isoprene molecule is sufficient to produce substantial partitioning, consistent with Rollins et al. (Rollins et al., 2009). This is also true if the second double bond is not oxidized by nitrate (group contribution estimate P_{vap} for a C$_5$ trihydroxy nitrate is 7.7×10^{-8} Torr, $C^* = 0.79 \mu g m^{-3}$ for MW = 181 g mol$^{-1}$). These C^* saturation concentration values suggest that no dimer formation or oligomerization is required to produce low-enough volatility products to condense to the aerosol phase; however, such oligomerization would result in more efficient condensation. The fact that Rollins et al. (Rollins et al., 2009) did not observe larger mass yields may indicate that it takes longer than a typical chamber experiment timescale to reach equilibrium, or that this absorptive partitioning model did not accurately capture those experiments, or that substantial loss of semivolatiles to the chamber walls (e.g. (Krechmer et al., 2016)) suppressed apparent yields.

Determination of yields from ambient atmospheric data differs from chamber determinations in several additional respects. First, ambient measurements do not suffer from wall loss effects, such that no corrections are necessary for loss of aerosol or semi-volatile gases (Matsunaga and Ziemann 2010, Krechmer et al., 2016). Second, ambient measurements take place on the aging time scale of the atmosphere rather than a time scale imposed by the characteristics of the chamber or the choice of oxidant addition. Third, the typical lifetime of the initially produced nitrooxy-isoprene-RO$_2$ radical is more representative of the ambient atmosphere rather than a chamber. The unique conditions of a high NO$_x$ power plant plume affect lifetime and fates of peroxy radicals, as described below.

To help interpret these in-plume peroxy radical lifetimes, a box model calculation using the MCM v3.3.1 chemistry scheme was run (see details in Supplemental Information). This box model shows substantially longer peroxy radical lifetimes during nighttime than daytime, initializing with identical plume-observed conditions. These long peroxy radical lifetimes may have consequences for comparison to chamber experiments: for example, in Schwantes’ (Schwantes et al., 2015) chamber experiment on the NO$_2$ + isoprene reaction mechanism, the HO$_2$-limited nitrooxy-RO$_2$ lifetime was at maximum 30 s. In the plumes investigated in this study, peroxy radical lifetimes are predicted to be substantially longer (>200 s early in the night, see Fig. 7), allowing for the possibility of different bimolecular fates, or of unimolecular transformations of the peroxy radicals that may result in lower-volatility products (e.g., auto-oxidation to form highly oxidized molecules (Ehn et al., 2014)).
Figure 7. Simulated peroxy radical concentration (left), loss rates (middle), and lifetime (right), using the MCM v3.3.1 chemical mechanism, for conditions typical of a nighttime intercepted power plant plume (top) and the same plume initial conditions run for daytime simulation (bottom, local noon occurs at 5 hrs). Included are total peroxy radical concentration and losses, as well as the highlighted subclasses HO$_2$, CH$_3$O$_2$, total nitrooxy-isoprene-RO$_2$ and the total hydroxy-isoprene-RO$_2$ produced from OH oxidation. The righthand panels show HO$_2$, CH$_3$O$_2$ and the dominant hydroxy-isoprene-RO$_2$ ISOPBO$_2$ and ISOPDO$_2$ (β-hydroxy-peroxy radicals from OH attack at carbons 1 and 4 respectively) lifetime on the left axis and nitrooxy-isoprene-RO$_2$ on the right axis, showing nighttime lifetimes an order of magnitude longer than daytime for this NO$_3$ + isoprene derived RO$_2$ radical (NISOPO$_2$).

The typically assumed major fate of nighttime RO$_2$ in the atmosphere is reaction with HO$_2$ to yield a hydroperoxide, NO$_3$-ROOH. This is shown in the model output above as the green reaction, and is responsible for half of early RO$_2$ losses in the MCM modeled plume. Schwantes et al. (Schwantes et al., 2015) proposed reaction of these nighttime derived hydroperoxides with OH during the following day as a route to epoxides, which in turn can form SOA via reaction with acidic aerosol. Reaction of hydroperoxides with nighttime generated OH may similarly provide a route to SOA through epoxides, albeit more slowly than that due to photochemically generated OH.

The predicted longer nighttime peroxy radical lifetimes may enable unique chemistry. For example, if nitroxy-isoprene-RO$_2$ self-reactions are substantially faster than assumed in the MCM, as suggested by Schwantes et al. (Schwantes et al., 2015), RO$_2$+RO$_2$ reactions may compete with the HO$_2$ reaction even more than shown in Fig. 7, and dimer formation may be favored at night, yielding lower volatility products. The 5:1 AMS Organic:Nitrate ratio observed in
Alternatively, longer nighttime peroxy radical lifetimes may allow sufficient time for intramolecular reactions to produce condensable products. This unimolecular isomerization (auto-oxidation) of initially formed peroxy radicals is a potentially efficient route to low-volatility, highly functionalized products that could result in high aerosol yields. For OH-initiated oxidation of isoprene, laboratory relative rate experiments found the fastest 1,6-H-shift isomerization reaction to occur for the hydroxy-isoprene-RO₂ radical at a rate of 0.002 s⁻¹ (Crounse et al., 2011), meaning that peroxy radicals must have an ambient lifetime of >500 s for this process to be dominant. As shown in Fig. 7, the simulated power plant plume peroxy radical lifetimes are long (>200 s), so an isomerization reaction at this rate may play a significant role. However, a recent study has demonstrated that OH-initiated and NO₂-initiated RO₂ radicals from the same precursor VOC can have very different unimolecular reactive fates due to highly structurally sensitive varying rates of reactions of different product channels (Kurtén et al., 2017). A similar theoretical study on the rate of unimolecular autooxidation reactions of nitrooxy-isoprene-RO₂ radicals would be valuable to help determine under what conditions such reactions might occur, and this knowledge could be applied to comparing chamber and field SOA yields.

4.4 Atmospheric implications and needs for future work

Because this paper proposes higher SOA yield for the NO₂ + isoprene reaction than measured in chamber studies, we conclude with some discussion of the implications for regional aerosol burdens, and further needs for investigation in the NO₂ + isoprene system.

Using an isoprene + NO₂ yield parameterization that gave a 12% SOA mass yield at 10 µg m⁻³, Pye et al. (2010) found that adding the NO₂ + isoprene oxidation pathway increased isoprene SOA mass concentrations in the southeastern United States by about 30%, increases of 0.4 to 0.6 µg m⁻³. The larger NO₂ + isoprene SOA mass yields suggested in this paper, with an average value of 30%, could double this expected NO₂ radical enhancement of SOA production. Edwards et al. (2017) concluded that the southeast U.S. is currently in transition between NO₃-dependent and NO₂-controlled nighttime BVOC oxidation regime. If NO₂-isoprene oxidation is a larger aerosol source than currently understood, and if future NO₂ reductions lead to a stronger sensitivity in nighttime BVOC oxidation rates, regional SOA loadings could decrease by a substantial fraction from the typical regional summertime OA loadings of 5 +/− 3 µg m⁻³ (Saha et al., 2017).

Analysis of the degree of oxidation and chemical composition of NO₂ + isoprene SOA would help to elucidate mechanistic reasons for the different field and lab SOA yields. For example, the potential contribution of the uptake of morning-after OH + NISOPOOH produced epoxides, discussed above in section 4.3, onto existing (acidic) aerosol could be quantified by measurement of these intermediates or their products in the aerosol phase. Assessment of degree of oxidation could help determine whether auto-oxidation mechanisms are active.
Because of the potentially large effect on predicted SOA loading in regions of high isoprene emissions, a better mechanistic understanding of these observed yields is crucial.

Acknowledgements

JLF gratefully acknowledges funding from the EPA STAR Program (no. RD-83539901) and from the Fulbright U.S. Scholars Program in the Netherlands. PCJ, DAD, and JLJ were partially supported by EPA STAR 83587701-0 and DOE (BER/ASR) DE-SC0016559. This paper has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors, and do not necessarily reflect those of EPA. EPA does not endorse any products or commercial services mentioned in this publication.

5 References

1089 Organic nitrates at BEACHON.
1091
1093
1095
1097
1099
1101
1103

Supplemental Information

In the main text, we noted a discrepancy between overall average aerosol volume estimates based on size measurements vs. AMS for the flight analyzed here (see Figure S1). We checked to see if this bias was also present in the individual plumes studied here by calculating the volume changes from the sizing instruments and the derived volume changes from the AMS+rBC mass. There is quite a bit of scatter in the volume enhancements, with most of the points falling along the same line as the data for this flight. It is unclear why the two types of volume measurements disagree more for this flight. Therefore, the bias in volume changes introduces additional uncertainty in the magnitude of the plume enhancements.

Figure S1. Aerosol volume measured using the total aerosol mass from the AMS plus refractory black carbon (rBC) and mass-weighted densities versus the aerosol volume measured by optical size with the UHSAS after correcting for AMS lens transmission. The procedure for calculating the mass-weighted density is described by Bahreini et al. (2009). On average, the measured aerosol volume from composition is roughly equal to the measured aerosol volume for the entire SENEX study (left hand panel) and is higher than one for the flight analyzed here (July 2, 2013, right hand panel).

Corrections for AMS UMR nitrate data and applicability to pRONO2 estimation

Nitrate in the AMS is quantified in unit mass resolution mode (UMR) as the sum of the estimated NO+ at m/z 30 and NO2+ at m/z 46, with a correction factor to account for the smaller ions (N5 and HNO2+, mostly) produced from nitrate (Allan et al., 2004). The default AMS UMR quantification algorithm (documented in the AMS “fragmentation table”) estimates NO+ as the total signal at m/z 30 minus a small (2.2% of OA at m/z 29, “Org29” in AMS parlance) subtraction to account for organic interferences and an isotopic correction for naturally-occurring 15N2 from nitrogen in air. The default UMR fragmentation table was developed for mixed ambient aerosols, in particular in urban studies, and it is the responsibility of each AMS user to correct it as needed for each study. In environments with high biogenic contributions to total OA, and/or low total nitrate concentrations, the contribution of the CH2O+ ion can be much larger than the...
default subtraction at m/z 30. Similarly, the CH$_2$O$_2^+$ ion at m/z 46 becomes non-negligible, and hence nitrate reported from AMS data with UMR resolution will frequently be overestimated in these situations. The poor performance of the default AMS correction is likely due to the initial focus on urban OA with high nitrate fractions when deriving those corrections (Allan et al., 2004, Zhang et al., 2004).

Here we derive a set of corrections based on an aircraft high-resolution (HR) dataset acquired with the University of Colorado HR-AMS (Dunlea et al., 2009) on the NASA DC-8 during the SEAC4RS campaign (Toon et al., 2016). SEAC4RS took place with a strong emphasis on the SEUS 6 weeks after the SENEX flight analyzed in this manuscript. Based on an initial screening of the correlations of the CH$_2$O$_2^+$ and CH$_2$O$_2^-^+$ ions with UMR signals, 10 potential UMR m/z between m/z 29 and m/z 53 were selected as viable for deriving suitable corrections. Further analysis using three specific SEAC4RS flights (RF11 on 30 Aug 2013, RF16 on Sep 11th, 2013 and RF18 on Sep 16th, 2013) that covered a wide range of OA composition with both strong biogenic contributions and fresh and aged biomass plumes showed that only four m/z (29, 42, 43 and 45) had good enough S/N and robust enough correlations to be used as corrections. Table S1 summarizes the correction coefficients obtained in this analysis, and Figure S2 shows the ability of matching the actual NO$_2^+$ and NO$_2^-$ signals (as obtained from high-resolution analysis of these flights) with the corrected UMR procedure. These corrections are applied as:

$$\text{UMR NO} = \text{Signal(m/z30)} - a_i \times \text{Signal(Variable$_i$)}$$

$$\text{UMR NO$_2}$ = Signal(m/z 46) – b_i \times \text{Signal(Variable$_i$)}$$

with the coefficients a_i and b_i as reported in Table S1. It should be noted that in all cases the contributions of C18O$^+$ to m/z 30 need to be subtracted first before applying the correction (which is constrained to the organic CO$_2^+$ signal, measured at m/z 44, by the naturally-occurring isotopic ratio and assuming that OA produces CO$^+ = CO_2^+$ (Zhang et al., 2005, Takegawa et al., 2007). Likewise, the contribution of 13CO$^+$ to Org29 needs to be subtracted first. It is hence very important for this analysis that the corrections to the AMS frag table to suitably estimate the contribution of gas phase CO$_2^+$ to total UMR m/z 44 as well as the baseline correction for m/z 29 be properly applied first (Allan et al., 2004). Finally, also note that the corrections using m/z 29 and 43 are rather based on Org29 and Org43, which are standard AMS products that take the OA relative ionization efficiency (RIE) into account.

For the SEAC4RS dataset, the corrections amounted to on average subtracting 55% from UMR m/z 30 and 33% from UMR m/z 46. Despite this large subtraction, the corrected data correlates very well with the HR AMS results, with less than 5% deviation in the regression slope between the two datasets.

Although all of the corrections in Table S1 were valid for the SEAC4RS data set, for the flight analyzed here we chose Org29 to correct m/z 30 and m/z 45 correction to correct m/z 46 because they were the closest organic signals to the UMR nitrate peaks with organic interferences and may be more valid for other field studies where different types of OA are
sampled. After these UMR signals were corrected and the appropriate RIEs and CE were
applied, the nitrate mass concentrations in the final data archive for the flight analyzed here
were reduced by 0-0.24 µg sm⁻³, averaging 0.11 µg sm⁻³ or 32%. The corresponding increase in
OA due to the organic interferences in the UMR nitrate had linear dependence on the reported
OA mass concentrations (r² = 0.89) with a slope of 1.3%.

To estimate the fraction of nitrate that is organic nitrate (pRONO₂) the use of the NO₂⁺/NO⁻ ratio
with an empirically determined pRONO₂ calibration ratio has been successfully used previously
with HR-AMS data (Farmer et al., 2010, Fry et al., 2013, Ayres et al., 2015, Fisher et al., 2016,
Lee et al., 2016, Day et al., 2017, Palm et al., 2017). Figure S2 summarizes how well the ratio of
the corrected UMR m/z 30 and 46 signals correlate with the NO₂⁺ and NO⁻ (and ratios)
determined using HR data. As expected, there is considerable scatter at very low nitrate
concentrations (which is a considerable part of the dataset, as the time series shows, since the
free troposphere was sampled extensively). However, for the predicted pRONO₂ (which is
mass-weighted), most of this scatter disappears, and for concentrations above 0.1 µg sm⁻³ of
nitrate there is good agreement between the HR results and the UMR-corrected pRONO₂,
regardless of the correction chosen. For lower concentrations the scatter is considerably larger,
with the Org29 correction providing the best overall agreement. Based on the variability in this
dataset for this correction (Org29), we estimate the uncertainty in pRONO₂ fraction
apportionment using UMR to be about 30%, in addition to an estimated uncertainty for the
apportionment method using HR of 20%. From the comparison of UMR-corrected total nitrate
to HR nitrate (not shown), we estimate an additional error of 5% for total nitrate error using
these corrections.

As mentioned in the main text, the empirically determined pRONO₂ calibration ratio used for the
flight data analyzed here was the ratio of NO₂⁺/NO⁻ from the ammonium nitrate calibration
divided by 2.8. This factor was determined as the average of several literature studies
(Fry et al., 2009, Rollins et al., 2009, Farmer et al., 2010, Sato et al., 2010, Fry et al., 2011,
Boyd et al., 2015) and applied according to the “ratio of ratios” method (Fry et al., 2013). The
ammonium nitrate NO₂⁺/NO⁻ ratio was obtained from the two calibrations on 30 June and 7 July
that bracketed the flight on 2 July, as described above. This ratio averaged 0.490. Hence, the
organic nitrate NO₂⁺/NO⁻ ratio was estimated to be 0.175. The ratio of NO₂⁺/NO⁻ from the flight
data was then used with the pRONO₂ and ammonium nitrate NO₂⁺/NO⁻ calibration ratios to
estimate the fraction of the total corrected nitrate mass concentrations that was organic
(pRONO₂) or inorganic (nitrate associated with ammonium or NH₄NO₃). Propagating the 30%
UMR vs HR uncertainty and 20% apportionment (see above) error on top of the 34% AMS total
nitrate measurement uncertainty results in ±50% uncertainties in the derived organic nitrate
mass concentrations (and similar for NH₄NO₃; however it will depend on the relative
contributions of pRONO₂ and NH₄NO₃ to total nitrate since the absolute concentration errors
associated with pRONO₂ - NH₄NO₃ apportionment should be similar [64]).
Figure S2. (a and b) Comparison of m/z 30 and 46 with the NO⁺ and NO₂⁺ signals from the high resolution analysis of the AMS data before and after applying the four different corrections listed in Table S1. The Pearson r² for the corrected dataset is shown as well. (c) Comparison of the NO₂⁻/NO⁺ ratio obtained from HR analysis with the ratios of the corrected UMR NO and NO₂ variables (d) Comparison of the pRONO₂ concentrations derived using the HR and corrected UMR NO₂⁻/NO⁺ ratios (e) Time series of the total and speciated nitrate as reported from HR analysis of the SEAC⁴ RS data (NASA 2018) compared to the speciation using the Org29 correction (note the logarithmic scale). The bottom time series shows the NO₂⁻/NO⁺ ratio that the speciation is based on, again for the HR and corrected UMR case.

Table S1. Coefficients used to correct m/z 30 and 46 to estimate total nitrate.

<table>
<thead>
<tr>
<th>AMS Variable</th>
<th>Correction coefficient for m/z 30 (a)</th>
<th>Correction coefficient for m/z 46 (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Org29</td>
<td>0.215</td>
<td>0.037</td>
</tr>
<tr>
<td>m/z 42</td>
<td>0.51</td>
<td>0.092</td>
</tr>
<tr>
<td>Org43</td>
<td>0.215</td>
<td>0.037</td>
</tr>
<tr>
<td>m/z 45</td>
<td>0.72</td>
<td>0.127</td>
</tr>
</tbody>
</table>
Figure S3. Calculated plume age vs. elapsed time in a box model run for a single representative night. Plume ages on the y-axis are calculated based on Equation 1 in the main text but using model NO$_2$ and O$_3$ data. Time since sunset on the x-axis is the model elapsed time (i.e., run time of the model during darkness).

Figure S4. SOA molar yield is positively correlated with estimated plume age. This SOA molar yield is based on Eq. 3, with error bars determined by propagation of observed variability in pRONO$_2$ and isoprene, where multiple point averaging was possible. Markers correspond to
Based on the box model described in more detail below, the first-generation isoprene products peak at approximately 4 hours plume age and then begin to decay.

Table S2. Peak ambient (wet) aerosol surface area during each plume used in the yield analysis (plume numbers 1 – 9), and for the two longer urban plumes transected at the end of the flight.

<table>
<thead>
<tr>
<th>plume number</th>
<th>7/2/13 plume time (UTC)</th>
<th>Peak aerosol surface area (µm² cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2:18</td>
<td>280</td>
</tr>
<tr>
<td>2</td>
<td>2:20</td>
<td>370</td>
</tr>
<tr>
<td>3</td>
<td>2:21</td>
<td>470</td>
</tr>
<tr>
<td>4</td>
<td>3:03</td>
<td>340</td>
</tr>
<tr>
<td>5</td>
<td>3:55</td>
<td>800</td>
</tr>
<tr>
<td>6</td>
<td>4:34</td>
<td>470</td>
</tr>
<tr>
<td>7</td>
<td>4:37</td>
<td>370</td>
</tr>
<tr>
<td>8</td>
<td>4:39</td>
<td>420</td>
</tr>
<tr>
<td>9</td>
<td>5:04</td>
<td>490</td>
</tr>
<tr>
<td>Urban plume</td>
<td>5:36</td>
<td>340</td>
</tr>
<tr>
<td>Urban plume</td>
<td>6:37</td>
<td>300</td>
</tr>
</tbody>
</table>
Figure S5. (a) In-plume change in sulfate mass concentration vs. change in ammonium aerosol mass concentration is generally well correlated, with a slope of 5.4. The masses of the cations and anions would give an ion balance for pure (NH$_4$)$_2$SO$_4$ of MW(SO$_4$)/2 x MW(NH$_4$) = 2.7, and for (NH$_4$)HSO$_4$ of MW(SO$_4$)/MW(NH$_4$) = 5.4. Hence, this slope provides support for a mix of these two ammonium sulfate salts, with sometimes exclusively (NH$_4$)HSO$_4$. This is consistent with incomplete neutralization of the sulfate mass by ammonium. The one clear outlier (sulfate increase of 6 µg m$^{-3}$ for Plume #5) suggests excess sulfate, rendering ammonium or other inorganic nitrate formation even less likely. Points with ammonium aerosol below 0.1 µg m$^{-3}$ are within the variability of that measurement; their omission does not change the slope. (b) Measured vs. calculated (ion balanced) NH$_4^+$ for calibration data and plume enhancements. This also shows that plumes are acidic than ammonium sulfate, ruling out the possibility of inorganic nitrate formation.
Additional AMS and auxiliary data from plumes

| Table S3. Additional information for the list of plumes used in this NO₃ + isoprene SOA yield analysis, for which key yield-related data is presented in Table 1. For each plume, the delta-values listed indicate the difference between in-plume and outside-plume background in average observed concentration. After each plume number, the numbers of points averaged for isoprene and AMS, respectively, are listed. Plume numbers annotated with * indicate brief plumes for which only single-point measurements of in-plume aerosol composition were possible. Also shown are the plume changes in isoprene used in the present analysis (Δisop, the difference between in-plume and background isoprene concentration, reproduced from Table 1), alongside for comparison the Δisop determined as the difference between in-plume isoprene and the modeled sunset (initial) concentration of isoprene present at that location outside of the plume, determined using an iterative box model (Edwards et al., 2017). The similarity between these two values for most points suggests that the isoprene just outside of each plume transect was largely unperturbed from the sunset initial value. |

<table>
<thead>
<tr>
<th>plume number</th>
<th>7/2/13 plume time (UTC)</th>
<th>ΔORGₐero (µg m⁻³)</th>
<th>ΔNH₄ₐero (µg m⁻³)</th>
<th>ΔSO₄ₐero (µg m⁻³)</th>
<th>Temp (°C)</th>
<th>%RH</th>
<th>Δisop (pptv)</th>
<th>Δisop from model (pptv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [2/3]</td>
<td>2:18</td>
<td>0.35</td>
<td>0</td>
<td>0</td>
<td>23.6</td>
<td>66.5</td>
<td>-335</td>
<td>-327</td>
</tr>
<tr>
<td>2 [1*]</td>
<td>2:20</td>
<td>0.89</td>
<td>0.3</td>
<td>1.91</td>
<td>23.6</td>
<td>65</td>
<td>-404</td>
<td>-453</td>
</tr>
<tr>
<td>3 [4/5]</td>
<td>2:21</td>
<td>1.25</td>
<td>1.05</td>
<td>5.14</td>
<td>23.6</td>
<td>65.2</td>
<td>-228</td>
<td>-337</td>
</tr>
<tr>
<td>4 [2*]</td>
<td>3:03</td>
<td>0.16</td>
<td>0.08</td>
<td>0.7</td>
<td>21.2</td>
<td>68.1</td>
<td>-453</td>
<td>-391</td>
</tr>
<tr>
<td>5 [3/4]</td>
<td>3:55</td>
<td>0.32</td>
<td>0.26</td>
<td>6.07</td>
<td>21.9</td>
<td>65.5</td>
<td>-255</td>
<td>-376</td>
</tr>
<tr>
<td>6 [2/2]</td>
<td>4:34</td>
<td>0.57</td>
<td>0.3</td>
<td>1.12</td>
<td>19.9</td>
<td>74.6</td>
<td>-713</td>
<td>-233</td>
</tr>
<tr>
<td>7 [5/6]</td>
<td>4:37</td>
<td>1.05</td>
<td>0.22</td>
<td>0.65</td>
<td>19.7</td>
<td>76.2</td>
<td>-298</td>
<td>-221</td>
</tr>
<tr>
<td>8 [2/3]</td>
<td>4:39</td>
<td>1.26</td>
<td>0.44</td>
<td>1.18</td>
<td>18.3</td>
<td>82.2</td>
<td>-443</td>
<td>-253</td>
</tr>
<tr>
<td>9 [7/8]</td>
<td>5:04</td>
<td>1.45</td>
<td>0.35</td>
<td>1.9</td>
<td>17.2</td>
<td>84.8</td>
<td>-293</td>
<td>-434</td>
</tr>
</tbody>
</table>

Box model calculations
Box model simulations were performed using the Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC, http://wiki.seas.harvard.edu/geos-chem/index.php/DSMACC_chemical_box_model), containing the Master Chemical Mechanism v3.3.1 chemistry scheme (http://mcm.leeds.ac.uk/MCM/). The model approach is similar to that described in detail in Edwards et al. 2017, and the accompanying supplement, with the model run over a 9.5 hour night to simulate the nocturnal residual layer. For the nocturnal simulation used in this work (for both the plume lifetime calculation and the peroxy radical lifetime analysis in Sect. 4.3) the model was initialized with concentrations of the constraining species representative of the SENEX observations (Table S4). As the model is simulating power plant plume evolution from point of emission, a starting NO mixing ratio of 10 ppb was used to constrain NO, and the chemistry scheme was subsequently allowed to partition the reactive nitrogen. The top panels in Figure S7 show the evolution of key species during this nocturnal simulation.

Table S4: Species constrained (MCM v3.3.1 names) during model simulations and constraining values. Constraint column indicates if species concentrations were held at the constrained value throughout the simulation (Fixed) or allowed to vary after initialization (Initial).

<table>
<thead>
<tr>
<th>Species</th>
<th>Mixing ratio</th>
<th>Units</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>9.28</td>
<td>ppb</td>
<td>Initial</td>
</tr>
<tr>
<td>O3</td>
<td>55.72</td>
<td>ppb</td>
<td>Initial</td>
</tr>
<tr>
<td>CO</td>
<td>134.00</td>
<td>ppb</td>
<td>Fixed</td>
</tr>
<tr>
<td>C5H8</td>
<td>1920.00</td>
<td>ppb</td>
<td>Initial</td>
</tr>
<tr>
<td>APIVINE</td>
<td>38.87</td>
<td>ppt</td>
<td>Initial</td>
</tr>
<tr>
<td>BPINENE</td>
<td>195.50</td>
<td>ppt</td>
<td>Initial</td>
</tr>
<tr>
<td>LIMONENE</td>
<td>12.42</td>
<td>ppt</td>
<td>Initial</td>
</tr>
<tr>
<td>MACR</td>
<td>454.13</td>
<td>ppt</td>
<td>Initial</td>
</tr>
<tr>
<td>MVK</td>
<td>1006.00</td>
<td>ppt</td>
<td>Initial</td>
</tr>
<tr>
<td>IC4H10</td>
<td>47.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>NC4H10</td>
<td>128.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>C2H6</td>
<td>1199.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>C2H4</td>
<td>117.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>C2H2</td>
<td>145.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>NC6H14</td>
<td>20.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>IC5H12</td>
<td>120.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>NC5H12</td>
<td>76.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>C3H8</td>
<td>344.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>C3H6</td>
<td>26.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>CH3COCH3</td>
<td>2556.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>BENZENE</td>
<td>35.90</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>C2H5OH</td>
<td>2239.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>MEK</td>
<td>309.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
<tr>
<td>CH3OH</td>
<td>5560.00</td>
<td>ppt</td>
<td>Fixed</td>
</tr>
</tbody>
</table>

The daytime simulation used for comparison in Sect. 4.3 of the main manuscript (lower panels of Figure S7) uses the same initialization as the nocturnal simulation; with the only difference being the model is run during the daytime. Photolysis rates are calculated using TUV (https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model). The daytime simulation does not accurately simulate daytime mixing ratios of species such as O3 representative of SENEX observations. However, the intent of this simulation is to compare model daytime peroxy radical fate and lifetime with the nocturnal simulation. The presence of
intense convective mixing in the daytime planetary boundary layer of the Southeast US makes accurately modeling these concentrations difficult with a zero dimensional model.

Fig. S6. Model calculated NO, NO$_2$, O$_3$, and isoprene (left) and NO$_3$, N$_2$O$_5$ and OH (right for the nocturnal (top) and daytime (bottom) simulations shown in Sect. 4.3.

Additional considerations investigated via RO$_2$ fate box modeling

Based on the potentially larger than previously estimated contribution of RO$_2$+RO$_2$ reactions at night, we considered a related possible source of a high bias in the determined SOA yields. If NO$_3$ reaction with the major daytime isoprene oxidation products MVK and/or MACR produces RO$_2$ radicals that can cross-react with NO$_3$ + isoprene products to produce condensable products, this would be a mechanism of recruiting isoprene-derived organic mass into the aerosol, but that original isoprene oxidation would not be counted in the denominator of the yield calculation, since its interaction with NO$_3$ began as MACR or MVK. In the box model, substantial MVK and MACR are available in the plume at nighttime, but only MACR reacts with NO$_3$, and a maximum fraction of one-quarter of MVK+MACR losses go to reaction with NO$_3$ overnight (see Figure S8). In addition, in our power plant plume observations, MVK+MACR are not observed to be appreciably depleted by the large NO$_3$ injection, further suggesting that this chemistry is not a substantial additional source of SOA (see Figure S9).
Figure S7. Calculated (via MCM) loss rate contributions for the daytime isoprene products methyl vinyl ketone (MVK) and methacrolein (MACR) in the simulated nighttime plume used in the text. Only MACR reacts with NO$_3$, and the contribution of this process to total losses (green stack) is relatively minor.

Figure S8. MVK and MACR are not titrated on the timescale of these yield estimates in power plant plumes.
Two urban plume case studies

In addition to the nine power plant plumes analyzed above to determine the NO$_3^+$ isoprene SOA molar yield, towards the end of the July 2 flight, the Birmingham urban plume was intercepted twice (around 5:36 am and 6:37 am UTC, Fig. 8). These downwind urban plumes are among the most aged plumes (estimated at 5.2 and 5.8 hours, respectively), but are also substantially more diffuse than the narrow power plant plume intercepts and have lower peak P(NO$_3$). Nevertheless, we note that these two plumes contain periods of apparent anti-correlation of isoprene and organic nitrate aerosol time series and high apparent SOA molar yields (23%, 19%) and mass yields (62%, 51%), if calculated by the same method as above and omitting the period of vertical profiling in the second plume. Potentially complicating these urban SOA yield determinations is the fact that the inorganic fraction of nitrate was much larger than in the power plant plumes (see Fig. 8). The background isoprene is also somewhat lower in these urban plumes, potentially shifting the NO$_3$/N$_2$O$_5$ fate to reactions other than NO$_3^+$ isoprene (see Fig. S4 in Edwards et al. (Edwards et al., 2017)). The aerosol surface area is not noticeably higher in these urban plumes, which one might expect to lead to a larger contribution of N$_2$O$_5$ uptake and hydrolysis. In the more complex mix of gases characteristic of an urban plume, we hesitate to attribute these apparent yields exclusively to the NO$_3^+$ isoprene reaction.

Figure S9. Model simulation of typical in-plume consumption of isoprene (black line), and stacked plot showing the contributions to this from the NO$_3^+$, O$_3$, and OH. Modeled plume was emitted at sunset, so this represents nocturnal processing under power plant plume conditions.
Figure S10. Flight map and time series of two urban plume intercepts, showing anticorrelation of organic nitrate and isoprene. These more diffuse plumes, with lower $P(\text{NO}_3)$ and larger inorganic nitrate contribution, make yield determination more uncertain, so we do not include them in the overall yield determination. However, using the same methodology as for the power plant plumes would give similarly high yields for these very aged plumes.