Air quality in the middle and lower reaches of the Yangtze River channel: A cruise campaign

Zhong Li¹, Chunlin Li¹², Xingnan Ye¹, Hongbo Fu¹, Lin Wang¹, Xin Yang¹, Xinke Wang³, Zhuohui Zhao⁴, Haidong Kan⁴, Abdelwahid Mellouki⁵, Jianmin Chen¹⁴,*

¹ Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan Tyndall Center, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China

² Department of Earth and Planetary Sciences, Weizmann Institute of Science

³ Univ Lyon, Université Claude Bernard Lyon 1 CNRS, IRCELYON, F-69626, Villeurbanne, France

⁴ School of Public Health, Fudan University, Shanghai 200032, China

⁵ Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS, 45071 Orléans cedex 02, France

*Correspondence to: Jianmin Chen (jmchen@fudan.edu.cn)
Abstract
Yangtze River is the longest river in China, nearly one-third of the national population lives along the River. Air quality over the Yangtze River is interesting as it may have significant influences on aquatic ecosystem, public health onboard and coastal areas. A comprehensive 15-days cruise campaign has been performed in the Mid-Lower Reaches Yangtze River (MLYR) in winter of 2015. Based on the filter samples, the concentration and chemical composition of PM$_{2.5}$ were greatly varied or fluctuated in different regions. Crustal elements (Ca, Mg, Al and K) from floating dust showed peak concentrations in the Yangtze River Delta (YRD) regions, while secondary species (SO$_4^{2-}$, NO$_3^-$ and NH$_4^+$) and some most enriched elements (Pb, As, Se and Cd) presented high levels in the central China (Wuhan). The significant correlation between Se and SO$_4^{2-}$ suggested that coal combustion may play a key role on the secondary inorganic formation. The relative high enrichment factors (EFs) of Ca (EFs > 100) suggested the crustal elements may derive from anthropogenic sources. Furthermore, the concentration of levoglucosan in PM$_{2.5}$ and CO column level from satellite data greatly enhanced in the rural area (Anhui and Jiangxi), indicating that biomass burning may make remarkable contribution to rural area. The concentrations of V and Ni were found to evidently elevate in the Shanghai port, which were mainly ascribed to the ship emission through the air mass source analysis and the relatively high ratio of V/Ni as well. This result shown herein portrayed a good picture of air pollution along the Yangtze River.

Keywords:
Shipboard observation, chemical composition, ship engine emission, Mid-Lower Yangtze Plain

1 Introduction
The Yangtze River is the longest river in China, originating from the Qinghai-Tibetan Plateau and extending to the East China Sea, and it drains an area of 18,08,500 square km basin, of which is China’s great granary and contains nearly one-third of the national population (Liu et al., 2007; Xiang et al., 2002; Jiang et al., 2008). Along both shores of the Mid-Lower Reaches Yangtze River (MLYR), there are main composed of three city agglomerations, including Wuhan, Nanjing and Shanghai, which are the centers of economy, politics, and culture in the
Middle and Eastern China, all of which are home to larger petrochemical complex and/or steel industry. MLYP is one of the most developed and economically vibrant regions in China, accounting for 34.13% of China’s total GDP in 2015. Owing to fast economic development and industrialization, the MLYP region has become one of the most polluted areas in China (Xu et al., 2016b).

Physical properties and chemical compositions of fine aerosol particles are becoming more important in recent years, due to their effects on human health, agriculture, and climate change (Wang et al., 2012; Kang et al., 2013a; Pöschl, 2005; Seaton et al., 1995; Ackerman et al., 2004; Stier et al., 2005; Chameides et al., 1999; Novakov and Penner, 1993; Jones et al., 1994). Numerous field researches related to fine particle have been conducted in megacities of the Yangtze River Delta (YRD) region. At present, the fine particle concentrations, chemical compositions, size distributions, seasonal variations, daily change optical properties and possible sources in this region have been generally characterized (Zhou et al., 2016; Kang et al., 2013a; Tao et al., 2014b; Shen et al., 2014; Fu et al., 2014; Huang et al., 2013; Huang et al., 2012b; Huang et al., 2012a; Ding et al., 2013a; Ding et al., 2017; Zhang et al., 2010). By analysis of several serious haze cases, Huang et al. (2012) pointed out that secondary inorganic species (SNA, SO$_4^{2-}$, NO$_3^-$, and NH$_4^+$) and dust pollution erupted in spring, while biomass burning (BB) event was often observed in summer (harvest season for wheat). The high values for sulfate oxidizing rate (SOR) and nitrate oxidizing rate (NOR) were also observed from long-term field measurements in Nanjing and Shanghai, indicating that atmospheric photochemical processes were quit active in these areas (Zhou et al., 2016; Zhou et al., 2017; An et al., 2015). Wang et al. (2015b) also found that secondary inorganic species highly contributed to the PM$_{2.5}$ pollution. Additionally, the increase trend of the NO$_3^-$/SO$_4^{2-}$ ratio suggested that vehicle sources became more and more important (Kang et al., 2013b; Huang et al., 2012a; Tao et al., 2014b). Beyond, Cheng et al. (2014) estimated that BB contributed to 37% of PM$_{2.5}$, 70% of organic carbon and 61% of element carbon in harvest, respectively. If BB was controlled and even forbidden, the PM$_{2.5}$ level would decrease by 47% in the YRD region (Cheng et al., 2014). Some typical events, including fresh combustion pollution from firework (Zhang et al., 2010; Kong et al., 2015), and
peaking SNA originated from travel rush and re-opening of factories after China Spring Festival (Huang et al., 2012b; Kong et al., 2015) have also focused and analyzed. Huang et al. (2013) found that the concentration of anthropogenic Ca decreased as results of implementing strict emission control of construction activity during 2010 Word Expo. During the 2014 Youth Olympic Games (YOG), the levels of Ca$^{2+}$ and SO$_2$ reduced 55% and 46%, respectively (Zhou et al., 2017). The MLYR faces the most complex anthropogenic emission sources effecting its air quality, including a variety of power plants, large petrochemical and steel industries, and farmland located on both banks of the Yangtze River, as well as ship emission. It was well documented that ship emissions displayed a significant impact on regional air quality, particularly in traffic hubs and harbors (Pandis et al., 1999; Becagli et al., 2017; Zhan et al., 2014). The contribution and effect of ship-plume to local air pollution, especially particulate matter, have been partly analyzed in global and regional scale (Jalkanen et al., 2015; Zhan et al., 2014; Pandis et al., 1999; Fan et al., 2016; Coggon et al., 2012). The emission factors and properties of emitted particles and gases from ship plume in different engine speeds were also reported (Zhang et al., 2016; Moldanová et al., 2009; Agrawal et al., 2009). Ship-related pollutants have been identified in the YRD port cluster and surrounding areas. In 2010, the ship emissions of SO$_2$, NO$_x$ and PM$_{2.5}$ in this region were 3.8×10^5 t/y, 7.1×10^5 t/y and 5.1×10^4 t/y, respectively. The maximal SO$_2$ and NO$_x$ concentrations from ship in harbors or traffic hubs were nearly 36 times and 17 times higher than the maximal land-based emissions, respectively (Fan et al., 2016). Zhao et al. (2013b) noted that Ni and V enriched in fine particles in Shanghai port. Recently, Liu et al. (2017) reported that ship plume contributed to 2-7 μg m$^{-3}$ to fine particle within the coastal of Shanghai port, accounting for 20-30% of total PM$_{2.5}$. Known as “golden canal”, Yangtze River was an important route of trade and travel. However, there is seldom data related to air quality and the influence of ship emission along the Yangtze River channel. Meanwhile, related observations for synchronous trend of aerosol in the MLYP region remain insufficient.

To characterize the air quality in this region, a comprehensive field observation, namely Yangtze River Campaign (YRC), was conducted from 22 November to 05 December 2015.
along the Yangtze River. Multitudinous off-line and online instruments were installed on a vessel and a round-trip observation voyage was carried out from Shanghai to Wuhan. The purpose of this cruise campaign was main to characterize the components of atmospheric pollutants, to analyze their spatial distribution, and to identify their potential sources. Herein, the data of the gaseous pollutants (SO$_2$, CO, O$_3$, NO-NOx), meteorological parameters and the satellite data in this region were also collected and analyzed. Back trajectory, principle component analysis (PCA) and potential source contribution functions (PSCF) were applied to determine the potential geographic distribution of fine particles and their main sources over the MLYP region during the cruise. To the best of our knowledge, it is the first systematic observation to characterize the air pollution along the China’s largest and longest river.

2 Measurements and methods

2.1 Overview YRC

A mobile haze monitoring platform (A container: length 10 m, width 4 m and height 2.5m) was placed on the vessel (length: 20 m, width 6 m), sailing from 22 November to 05 December in 2015 along the Yangtze River channel between Shanghai to Wuhan (29.72˚N-32.33˚N, 114.33˚E-121.61˚E). This campaign route was illustrated in Figure 1. Starting on 22 November in the Waigaoqiao port of Shanghai, then the vessel crossed Jiangsu, Anhui province and finally arrived at the Hankou port in Wuhan, Hubei province on 29 November along the Yangtze River waterway. The ship shifted at an average speed of 1 m/s heading the upper the Yangtze River towards Wuhan. After berthing in the port of Wuhan one night, the vessel turned around, departed and proceeded towards Shanghai. This cruise finally ended in the Waigaoqiao port in Shanghai on 5 December. During YRC, a wide range of data, including common meteorological parameters, trace gas concentrations (CO, NO-NOx, SO$_2$ and O$_3$), were acquired. The aerosol particles were collected on the filter samples for chemical composition analysis.

2.2 Trace gases measurements

A set of commercial trace gas instruments (Thermo Environmental Instruments Ins., USA C-series), including 43i SO$_2$ analyzer, 49i O$_3$ analyzer, 48i CO analyzer, and 42i NO-NO$_2$-NO$_x$ analyzer, were installed in an air-conditioned container to measure gaseous pollutants. The
routine QA/QC (the daily zero/standard calibration) procedures were followed the technical guidance established by U.S. Environmental Protection Agency (USEPA, 1998).

Trace alkanes, including toluene and benzene, were also sampled in stainless summa canister and quantified by a gas chromatograph with a mass spectrometer and a flame ionization detector (GC-MS/FID) (Wang et al., 2014). The sampling time of VOCs was 3 hours with fluctuation. The ratio of toluene/benzene (T/B) was commonly regarded as an indicator of the photochemical age (Baltrenas et al., 2011). The high ratio of T/B indicated that air masses were fresh emission, while lower value suggested that air masses had undergone photochemical processes. In this paper, we used the same value ratio of T/B in CalNex (Gaston et al., 2013). Air masses with T/B << 1 were excepted to well undergo photochemical aging while urban fresh air masses had much higher T/B ratio (≥ 2). Ship track self-emission was removed by subducting the periods when the wind blew from the stern, that is, the relative wind direction was from 130° to 220° to the ship direction (0° in the front). The real-time measurement of trace gases and aerosol data presented here were all filtered out by this method.

2.3 Chemical analysis of the filter samples

The filter samples of PM$_{2.5}$ and PM$_{1.0}$ were collected on the separate quartz filters (Φ90 mm, Whatman Inc., Maidstone, UK) using a medium-volume sampler by HY-100 (Qingdao Hengyuan S.T. Development Co., Ltd, China) (model: PM$_{2.5}$/PM$_{1.0}$; flow rate: 100 L min$^{-1}$), which was placed on the foredeck about 3 meters above sea levels. The sampling time was generally set at 12 h (in parallels: day 07:00-19:00, night 19:00-07:00), while it was also collected PM for 24 h. The quartz filters were preheated at 500 °C for 10 h to remove the residues prior to sampling. All the samples were stored in a refrigerator at -20 °C for analysis. The particle masses were measured by an intelligent weight system (Hangzhou Wmade Intelligent Technology co., LTD) after the equilibration at 20 °C for 24 h under RH of 40%. All of the procedures were strictly controlled to avoid the possible contamination. The sample instrument was placed on the bow of the ship far away of its track. Ship self-emission in the
filter samples was ignored since the most prevailing winds blew from the bow to the stern during the sampling.

One-eighth of each filter was extracted ultrasonically by 20 mL of deionized water for 40 min (18.2 MΩ cm⁻¹). After filtering, eight inorganic ions (SO₄²⁻, NO₃⁻, Cl⁻, NH₄⁺, Na⁺, K⁺, Ca²⁺, and Mg²⁺) were analyzed by an ion chromatography (940 Professional IC, Metrohm, Switzerland) and a sugar column (945 Professional Detector Vario, Metrohm, Switzerland) was used to measure levoglucosen by the high-performance anion-exchange chromatography coupled with pulsed electrochemical detection (HPAEC-PAD) method in the extract. Both of instruments were controlled with a 940 Professional IC software. The lower and upper limits of the detection were 0.5 and 4 µg m⁻³, respectively. The relative standard deviation of each ion was < 2% from three reproducibility tests. Six blank samples were analyzed with the same processes to remove possibly contaminations.

One-eighth of the sample filter and the blank filter were cut into fragment and digested at 170 °C for 4 h in a high pressure Teflon digestion vessel with 3 mL of HNO₃ and 1 mL of HClO₄ (Wang et al., 2006; Li et al., 2015b). After cooling, the digested solution was filtered and diluted to 15 mL with less than 2% acidity with ultrapure Mill-Q water. An inductively coupled plasma mass spectrometer (ICP-MS, Agilent 7500a) was employed to measure the concentrations of 17 elements (Al, As, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Se, Ti, Pb, V and Zn) in the samples. National standard material (soil, GSS-12, China) was digested and applied to calculate the element recoveries ranging from 91%-102%. The detection limits of the trace elements were derived from the standard deviation (3δ) of the blank values. Details relating to ICP-MS have been described (Li et al., 2015b).

Organic carbon (OC) and elemental carbon (EC) in the aerosol samples were analyzed by a Thermal/Optical Carbon Analyzer (DRI Model 2001). Each sample was identified as four OC fraction (OC1, OC2, OC3, and OC4 at 120, 250, 450, and 550 °C, respectively in a helium air) and three EC fraction (EC1, EC2, EC3 at 550,700 and 800 °C, respectively, in the mixture air (98% helium and 2% oxygen) by an IMPROVE thermal/optical reflectance (TOR) protocol.
Pyrolyzed organic carbon (POC) was separately detected by transmittance. IMPROVE OC was defined as OC1 + OC2 + OC3 + OC4 + POC and EC was calculated by EC1 + EC2 + EC3 – POC.

2.4 Satellite data and ship traffic data

The satellite databases, including Moderate Resolution Imaging Spectroradiometer (MODIS), Measurement of Pollutants in the Troposphere (MOPITT) and Ozone Monitoring Instrument (OMI) on the National Aeronautics and Space Administration’s Earth Observing System (NASA’s EOS) Aura satellite, were applied to provide spatial distribution of aerosol particles and trace gases (Xu et al., 2011; Huang et al., 2012a). The column levels of CO, NO$_2$, SO$_2$ and aerosol optical depth (AOD) at 550 nm were retrieved over the MLYP region. Considering different conditions for databases, the poor-quality data was removed.

Ship positions and numbers in the Yangtze River channel were decoded by Automatic Identification System (AIS) database which was obtained from the Marine Department. A 15-day AIS data set in the region of MLYP was chosen with a high time resolution (about 15 min).

2.5 Potential source contribution function

The potential source contribution function developed by Hopke et al. (1995) was applied to derive the potential source regions and spatial distribution. In this study, 3 days back trajectories at arrival height 500 m was computed using National Oceanic and Atmospheric Administration (NOAA) Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT-4) model (http://www.arl.noaa.gov/ready/open/hysplit4.html) with global meteorological data from NCEP Reanalysis data (ftp://arlftp.arlhq.noaa.gov/pub/archives/reanalysis) (Draxler and Hess, 1998). The contribution of potential source during YRC was calculated by the PSCF analysis with TrajStat (Wang et al., 2009). The domain sources were restricted to 25°N-45°N and 110°E-125°E, which were divided into grid cells with a 0.5°×0.5° resolution. The PSCF value for the ij th grid cell was defined as:

$$PSCF_{ij} = \frac{M_{ij}}{N_{ij}} W_{ij} (1)$$
where N_{ij} is the total number of trajectory segment endpoints that fall in the ij cell and M_{ij} is the number of endpoints for the same cell with arrival times at the sampling site corresponding to the pollutant concentrations higher than an arbitrary criterion value. In this study, the average concentration for each trace element was set as the criteria value. To suppress the erroneous and uncertainly of the small value of n_{ij}, the weighting function of W_{ij} reduced the PSCF values when the total number of the endpoints in a particular cell n_{ij} was less by approximately 3 times than the average N_{Ave} value of the endpoints per each cell (Han et al., 2005):

$$W_{ij} = \begin{cases}
1.00 & N_{ij} > 3N_{Ave} \\
0.70 & 1.5N_{Ave} < N_{ij} \leq 3N_{Ave} \\
0.42 & N_{Ave} < N_{ij} \leq 1.5N_{Ave} \\
0.17 & 0 < N_{ij} \leq N_{Ave}
\end{cases}$$

(2)

3 Results and discussion

3.1 Classification of the typical pollution episodes

The air pollution during the cruise was classified into eight distinct episodes based on sampling locations, backward trajectory and photochemical aging processes (the T/B value) (Figure 1, Figure S1 and Table 1). The detailed meteorological information along YRC was also summarized in supplements. As shown in Figure S1, the first episode (EP1), staring from 22 to 23 November, was characterized as the sampled air masses from East China Sea, which brought the local industry and Shanghai harbor pollution. The ratio of T/B ranged from 1 to 2 with an average of 1.3 suggesting fresh air masses mixed by the aged ones. Air masses in the secondary episode (EP2), with B/T<1, originated from Anhui and Henan rural areas, carrying agriculture emission. Sampled air masses stagnated around Jiujiang to Wuhan from the third episode (EP3) to the fifth episode (EP5). However, the fourth episode (EP4) (near Wuhan) with the low average T/B ratio of 0.97 experienced a serious photochemical aging. Besides, the local air in EP4 was under low pressure system with high RH coupled with the low wind speeds that didn’t favor the diffusion of the local pollutants (Figure S2). Both EP3 and EP5 (nearly Jiujiang) were characterized by high T/B value of 2.1, suggesting that these two pollution episodes were
contributed mainly by local fresh emissions. In the sixth episode (EP6), the wind direction
shifted from southwest to northwest, and the vessel was traveling in the rural area of middle
reach of Yangtze River, suggesting that air masses may originate from agricultural activities.
Then, a cold front arrived and wind speed increased from average 3.84 m/s to 5.38 m/s (Table
2) with air masses transported from northern inland in the seventh episode (EP7), which were
further supported by wind field (Figure S2) and a sharply RH decrease. The last episode (EP8)
lied in the YRD region where highly intensive anthropogenic activities released a large amount
of the pollutants. Air masses in EP8, with the average T/B value of 1.73, were expected to
mixture of aged masses sources with local fresh emission. Overall, EP1 and EP8 (the YRD
region) were mainly influenced by fresh local emission mixed by aged air masses, while
agriculture emissions contributed mainly to EP2 and EP6. Both EP3 and EP5 were
characterized by industries emission although the megapolis was not available in this region.
The cruise stared on November 22, but the offline PM\textsubscript{2.5} samples were taken after November
25. The EP1 description was thus ignored in the present study.

3.2 Trace gases and fine particles measurements during YRC
3.2.1 The pollutants measured in the vessel
The off-line of PM\textsubscript{2.5} and PM\textsubscript{1.0} were sampled from 25 November to 5 December. Their detail
information was also summarized in Table 1. The average mass concentration of PM\textsubscript{1.0} and
PM\textsubscript{2.5} during YRC were 96.69 ± 22.18 \(\mu\)g m\(^{-3}\) and 119.29 ± 33.67 \(\mu\)g m\(^{-3}\), respectively. The
average ratio of PM\textsubscript{1.0}/PM\textsubscript{2.5} was 0.8 ± 0.085, implying that PM\textsubscript{2.5} was mainly dominated by
fine particles with the size of < 1 \(\mu\)m. The detailed meteorological information, including
temperature (T), RH, pressure and wind speed (WS), and trace gases for pollution episodes
were also summarized in Table 2. The peak PM\textsubscript{2.5} concentrations were observed in EP4 and
EP7. However, there were obvious differences between EP4 and EP7 in the meteorological
parameters and trace gases levels, indicating that these two pollution events were completely
different. As mentioned in 3.1, air masses in EP4 were mainly originated from local emission,
whereas EP7 was influenced by a long-transport of the pollutants.
As shown in Table 2, the average concentrations of CO, SO$_2$ and NO$_X$ varied dramatically in the pollution episodes, mainly owing to local emissions, photochemical processes and meteorology conditions (Xu et al., 2011). Average concentrations of CO and SO$_2$ (993.96 ± 387.34 and 9.32 ± 4.33 ppbv, respectively) were slightly lower than those in cities in winter, including Wuhan (1024.00 and 13.30 ppbv) (Wang et al., 2017), Nanjing (1096.00 and 13.09 ppbv) (Sun et al., 2017), Chengdu (1440.00 and 12.60 ppbv) (Liao et al., 2017) and Shanghai (1067.20 and 18.90 ppbv) (Huang et al., 2012a). The CO level increased during the sampling and peaked in EP6 and EP7. Meanwhile, the SO$_2$ and NO$_X$ levels were much lower in these two episodes, which was identified as the BB events. The mean CO concentration in EP7 was substantially enhanced and reached to 1224.88 ppbv, which was close to the level recorded at Shanghai during the harvest season of wheat (June) (Huang et al., 2012a). As reported previously, CO was the major gaseous pollutants released from BB (Huang et al., 2012a; Ding et al., 2013b). The SO$_2$ concentrations in EP3 and EP8 greatly increased, which were close to the SO$_2$ level in the haze event in Shanghai (Huang et al., 2012a). This was partly caused by local fresh emission (high T/B in EP3 and EP8). Besides EP6 and EP7 (BB), the NO$_X$ concentration almost exceeded 50 ppbv along this cruise. The NO$_X$ concentration peaked in EP3, which was identified as local emission region. Mean NO$_X$ mass concentration in this cruise is 63.74 ± 41.08 ppbv, which was much higher than the mean levels in Shanghai (42.40 ppbv, 2012) (Han et al., 2015) and Guangzhou (39.14 ppbv, 2012) (Zou et al., 2015) that represented typical urban NO$_X$ level. The high NO$_X$ distribution along YRC revealed strong local emission from both edge of the Yangtze River. It could be supposed that lots of the pollution sources distributed on both the bank of the Yangtze River.

3.2.2 Regional distributions of the air pollutants by remote sense

The YRC region is one of the most polluted areas in China and the spatial distribution of various pollutants were regionally different. As shown in Figure 2a, high average values of AOD retrieved from MODIS MOD04 were observed in eastern Jiangsu and Shanghai, etc, where human and industries activities were concentrated, suggesting that anthropogenic emission was dominated. However, there was much missing data of AOD in central China due to heavy...
clouds. As evidenced in Figure S3 by the MODIS true-color imagery on 28 November, thick clouds covered across central China. Besides, the average of AOD was about 0.45, which was slight lower than that in Shanghai in winter (0.55) (He et al., 2012) and background (0.65) in the North China plain. Besides, the AOD value in Northern China was higher than that in Southern China. As plotted in Figure 2b, CO surface mixing ratio calculated by MOPITT revealed that Shandong, Henan and Anhui were exposed to high CO column concentration. CO is an important tracer for the incomplete combustion sources, such as BB and fossil fuel combustions (Girach et al., 2014). BB should be the major source for CO in the grain-producing areas (Huang et al., 2012; Ding et al., 2013). As mentioned above, the peak CO level was also observed in Anhui (EP6 and EP7). The high levels of SO2 were mainly observed in Anhui and stretched to the Shanghai area (Figure 2c). Whereas, the SO2 level in the Wuhan and Nanjing urban areas were measured at the background pollution level. In general, NO2 was regarded as a tracer for the local emission sources due to short lifetime in the atmosphere (Geng et al., 2009; Xu et al., 2011). NOx were significantly originated from vehicle and power plant emissions (Fu et al., 2013). One can see that the NO2 emission was characterized by strong local source in north China and the YRD urban area, which are in good agreement with the previous reports (Lin, 2011; Zhao et al., 2013a).

3.3 The ionic composition and levoglucosan in PM2.5 collected along the YRC

3.3.1 General characterization

The water-soluble ions constitute one of the dominant components in atmospheric aerosol and determine the aerosol acidity (Kerminen et al., 2001), accounting for 37.43% and 40.15% in PM2.5 and PM1.0, respectively. For the ionic concentration, the most abundant species hosted by PM2.5 were SO4²⁻ with an mean of 15.21 ± 6.69 µg m⁻³, followed by NO3⁻ (13.76 ± 4.99 µg m⁻³), NH4⁺ (9.38 ± 4.35 µg m⁻³), Ca²⁺ (2.23 ± 1.24 µg m⁻³), Cl⁻ (1.94 ± 0.92 µg m⁻³), Na⁺ (1.29 ± 0.48 µg m⁻³), K⁺ (0.63 ± 0.22 µg m⁻³) and Mg²⁺ (0.22 ± 0.07 µg m⁻³) (Figure S4a). The mass concentration of SNA accounted for 85.89% of the total water-soluble ions in PM2.5. Comparing with the previous reports (Figure 3), the SNA concentrations were lower than those collected
in the polluted cities in winter, including Beijing (38.90, 22.70 and 22.4 \(\mu g \) m\(^{-3}\), respectively) (Wang et al., 2015a), Xi’an (39.7, 21.43 and 12.50 \(\mu g \) m\(^{-3}\), respectively) (Xu et al., 2016a), Wuhan (29.80, 29.80 and 16.80 \(\mu g \) m\(^{-3}\), respectively) (Zhang et al., 2015) and Chengdu (31.80, 15.5 and 15.5 \(\mu g \) m\(^{-3}\), respectively) (Tao et al., 2014a). However, the concentration of SNA were higher than those collected in marine boundary layer, such as East China sea (29.80, 29.80 and 16.80 \(\mu g \) m\(^{-3}\), respectively) (Nakamura et al., 2005), Northern South China Sea (7.80, 0.24 and 2.1 \(\mu g \) m\(^{-3}\), respectively) (Zhang et al., 2007), South China sea (7.99, 0.08 and 1.083 \(\mu g \) m\(^{-3}\), respectively) (Li et al., 2016), and Tuoji island in Bohai Rim (8.90, 5.80 and 1.40 \(\mu g \) m\(^{-3}\), respectively) (Zhang et al., 2014). The SNA levels in the YRC was close to Shanghai in winter (11.7, 13.33 and 8.11 \(\mu g \) m\(^{-3}\), respectively) (Zhou et al., 2016). The mass ratio of NO\(_4^--/SO_4^{2-}\) was regarded as a marker to distinguish mobile source vs. stationary source (Huang et al., 2013). The ratio of NO\(_4^--/SO_4^{2-}\) in this campaign was also close to Shanghai and lower than those in other cities, indicating that the mobile sources (traffic) contributed mainly to fine particles. Besides, the mass concentration of SO\(_4^{2-}\) definitely exceed the NO\(_4^--\) level in the marine boundary layer (Figure 3), indicating that marine was another important source for SO\(_4^{2-}\) (Calhoun et al., 1991). The average concentration of Ca\(^{2+}\)(2.23 \(\mu g \) m\(^{-3}\)) in this cruise was highest among all locations and cruises as summarized in Figure 3, followed Chengdu (2.10 \(\mu g \) m\(^{-3}\)), Wuhan (1.90 \(\mu g \) m\(^{-3}\)) and Xi’an (1.33 \(\mu g \) m\(^{-3}\)). As shown in Figure 3, Ca\(^{2+}\) also presented the higher concentration in the cities and decreased from inland to coastal of ocean, indicating that Ca\(^{2+}\) was mainly from terrace crustal (Xiao et al., 2017). However, the concentration of K\(^+\) and Mg\(^{2+}\) in YRC were lower than most samples among all location (Figure 3). K\(^+\) may originate from BB, sea salt and crustal dust. Average Ca\(^{2+}\) concentration in this campaign suggested that K\(^+\) may come from crustal dust. Average Cl\(^-\) concentration was also lower than those in most cities (Figure 3). However, Na\(^+\) was higher than the most reported values (Figure 4). Besides, the ratio of Cl\(^-\)/Na\(^+\) among all location (Figure 3) were much higher than 1.17 (ratio of seawater), suggesting that anthropogenic sources, including BB and coal combustion, contributed the excessive Cl\(^-\) in
China cities (Li et al., 2015a; Zhang et al., 2013). The concentration of levoglucosan, a BB tracer, ranged from 0.015-0.18 µg m\(^{-3}\) with a mean value of 0.075 ± 0.047 µg m\(^{-3}\), much higher than the average concentration of 0.0394 µg m\(^{-3}\) in Lin’an (30.3°N, 119.73°E) (a rural site of the YRD regions) (Liang et al., 2017), indicating that BB was also a major contributor to PM\(_{2.5}\).

3.3.2 Distribution of the soluble ions and levoglucosan along the cruise

The concentrations and mass fractions of the major ions and levoglucosan in PM\(_{2.5}\) are shown in Figure 4. The mass concentration of SNA with an average of 38.35 ± 15.17 µg/m\(^3\) increased from coast to inland and exhibited the highest level (#6, 79.06 µg/m\(^3\)) in the Wuhan region (EP4), accounting for nearly 50% of local PM\(_{2.5}\) mass. As mentioned above, SO\(_2\) and NO\(_x\) also present the high concentration in this region. Furthermore, Wuhan and the surrounding regions were controlled by the low-pressure system with low WS and high RH (Figure S2), of which have been verified to cause haze episode (Zhao et al., 2013d; Quan et al., 2011; Wang et al., 2010). Besides, the mass fraction of SNA in PM\(_{2.5}\) also peaked in rural region (EP2 and EP6), which was in accord with low ratio of T/B in these regions, suggesting that aerosol particles in rural region were well aged. Furthermore, the peak Cl\(^-\) concentration and its mass fraction in PM\(_{2.5}\) also observed in Wuhan region. Thus, it’s concluded that Wuhan and the surrounding regions suffered serious pollution with high SNA loading during sampling. In addition, the ratio of NO\(_x\)/SO\(_4^{2-}\) in the Wuhan area was close to the values of cities in Northern China (relatively low) (Figure 3), suggesting that the stationary source (such as: coal fired power station or stove emission) dominated in this area. The highest Cl\(^-\) concentration in this region also supported this result.

Contrary to SNA distribution (Figure 3), the concentration of Ca\(^{2+}\) along this cruise increased from mainland to coastal of East China Sea and the peak Ca\(^{2+}\) mass fraction in PM\(_{2.5}\) was measured in EP7 and EP8, probably due to its local floating dust. The highest concentration of 4.89 µg m\(^{-3}\) was observed on 3 December when the vessel was traveling through Nanjing. In the meanwhile, dust episode was verified by MODIS true-color image on 2 and 3 December (Figure S3), supported by a drastically decrease of RH with the prevailing northern wind (Table...
2). Resembling Ca\(^{2+}\) distribution pattern, the maximal concentrations of Na\(^{+}\) and K\(^{+}\) in PM\(_{2.5}\) were also measured during EP7. In general, it was well known that dust particles with high alkalinity could firstly neutralize SO\(_{4}^{2-}\) and NO\(_{3}^{-}\) in aerosol particles, then atmospheric ammonia was absorbed. The concentrations and mass fractions of SNA in PM\(_{2.5}\) slightly increased at the end of the cruise since carbonate in aerosol could enhance the uptake of acidic gases on particles (Huang et al., 2010). In the meanwhile, the increasing mass ratio of NO\(_{3}^{-}/SO_{4}^{2-}\) in EP7 and EP8 was attributed to two main reasons. The mobile sources (such as: vehicle emission) increased and released huge amount of NO\(_{3}^{-}\) when the vessel was close to the megacity (Huang et al., 2013). Furthermore, NO\(_{2}\) could transform into NO\(_{3}^{-}\) via the heterogeneous process on dust aerosol surface (Nie et al., 2012).

The distribution of levoglucosan is irregular parabolic from inland to coastal of sea. The maximal value of levoglucosan (0.18 \(\mu\)g m\(^{-3}\)) was observed in Anhui rural area (EP6), while the levoglucosan level in YRD region (EP8) was much lower. However, fire points couldn’t be observed apparently in the satellite-detected fire maps (http://firefly.geog.umd.edu/firemap/), due to heavy cloud cover on 27 November and 1 December. During the whole campaign, it was only collected one sample (#12, Figure S5) for BB which was verified by MODIS fire points, due to a cold current blowing heavy clouds away (Figure S3). A slightly higher levoglucosan concentration was observed in night that was attributed to the lower boundary layer at night and BB for heating and cooking in the rural regions. Ion balance gained by the major anions (SO\(_{4}^{2-}\), NO\(_{3}^{-}\), and Cl\(^{-}\)) and cations (Na\(^{+}\), NH\(^{4+}\), K\(^{+}\), Ca\(^{2+}\), Mg\(^{2+}\)) was furthermore calculated in this study. Both cation and anion are in the units of equivalent concentration (\(\mu\) eq m\(^{-3}\)). The linear correlation coefficient of cation vs anion for PM\(_{2.5}\) and PM\(_{1.0}\) were 0.828 and 0.837 (Figure S6a), respectively, implying that the major ions in PM\(_{2.5}\) and PM\(_{1.0}\)could be contributed by same sources. There is a good correlation (R\(^2\) > 0.93) between NH\(^{+}\) (equivalent concentration) and the sum of SO\(_{4}^{2-}\) and NO\(_{3}^{-}\) (equivalent concentration) in PM\(_{2.5}\), which suggested a good quality of data. Additionally, the relationship between NH\(^{+}\) and Ca\(^{2+}\) versus SO\(_{4}^{2-}\) and NO\(_{3}^{-}\) was also investigated. As plotted in Figure S6b,
The slopes of linear regression lines for \([\text{NH}_4^+\text{Ca}^{2+}]\) vs \([\text{SO}_4^{2-}\text{NO}_3^-]\) in PM\(_{2.5}\) and PM\(_{1.0}\) were 1.171 and 1.154, respectively, suggesting that the alkaline substance in aerosol could neutralize \(\text{SO}_4^2\) and \(\text{NO}_3^-\) completely during YRC.

3.4 Elemental concentration, spatial distribution and sources identification

3.4.1 General characterization

A total of 17 elements in the PM\(_{1.0}\) and PM\(_{2.5}\) samples collected during YRC were measured, and their average concentrations are summarized in Table 3. For comparison, the data reported previously in the megacities (in winter) and the cruises are also outlined in Table 4. Ca showed the highest concentration among all elements (Table 3) at all locations (Table 4), and shared 2.16% on average in PM\(_{2.5}\), partly due to a cold front with floating dust in this campaign. The secondary highest concentration among all elements was Fe (Table 3). This concentration (1.64 \(\mu g\) m\(^{-3}\)) in the campaign were higher than those at many urban sites, such as Beijing (1.55 \(\mu g\) m\(^{-3}\)) (Zhao et al., 2013c), Shanghai (0.56 \(\mu g\) m\(^{-3}\)) (Huang et al., 2012b) and Guangzhou (0.16 \(\mu g\) m\(^{-3}\)) (Lai et al., 2016), probably due to numerous steel industries/shipyard distributed on both two banks of the Yangtze River. Other elements decreased from K (865.88 ng m\(^{-3}\)) to Tl (0.32 ng m\(^{-3}\)). Pb and Zn contributed the high levels for heavy metals in PM\(_{2.5}\). In addition to inland cities, such as Beijing (Zhao et al., 2013c), Wuhan (Zhang et al., 2015) and Chengdu (Tao et al., 2014a), average concentration of Pb and Zn along the YRC was much higher than those in the other regions and cruises (Table 4). Both Pb and Zn could originate from coal combustion or mineral industry, which were related to energy structure and industrial layout in MLYP (Zhao et al., 2013c; Huang et al., 2013; Zhang et al., 2015; Tao et al., 2014a; Lai et al., 2016; Li et al., 2016; Zhao et al., 2015).

The enrichment factor (EF) was applied to identify the trace elements from crustal or anthropogenic sources. The formula to evaluate EF was:

\[
\text{EF}_i = \frac{\text{X}_i/\text{X}_R}{(\text{X}'_i/\text{X}'_R)} \text{ crust} \tag{3}
\]

of which EF\(_i\) is the enrichment factor of element \(i\); \(X_i\) and \(X_R\) are the concentrations of element \(i\) and reference element of R in aerosol, respectively; \(X'_i\) and \(X'_R\) are the background content...
of elements in the MLYP soil (Wei et al., 1991). Al was considered to be originated from soil, thus it was selected as the reference element for calculation. Trace elements with $EF < 10$ included: Al, Co, K, Mg, and Na, all of which were regarded from crustal or re-suspension of the local soil. The species with higher $10 < EFs < 100$ were thought to be the mixture of the crustal and anthropogenic sources, including Cr, Cu, Ni and V. The elements with $EF > 100$, including Ca, Zn, Se, Pb, As, Mo, Fe, and Cd, were attributed to be originated from anthropogenic activities.

3.4.2 Source apportionments and regional distribution of the main elements in PM$_{2.5}$

In order to identify the source of contaminated elements and their geographical distribution, PCA was applied to classify the main source of trace elements in PM$_{2.5}$ using the rotate component matrix and PSCF for individual elements was performed to estimate the potential sources.

As shown in Figure 5a, trace elements were classified into four categories (PCA), which could explain 86.73% of the variance. The first component (component 1) could account for 38.48% of the variance, which was considered to be originated from coal burning, including high loadings of Cd, As, Pb, Tl and Se. Particularly, Se was generally considered as a tracer for coal combustion due to production under high temperature environment. It was well known that Se hosted by fine particles after the rapid gas-to-particle conversion could undergo a long-range transport (Nriagu, 1989; Wen and Carignan, 2007). A significant correlation ($R^2 = 0.71$) between SO$_2$ and Se are shown in Figure S4b. Furthermore, As and Pb mainly originated from coal burning after phasing out of leaded gasoline in China since 1997 (Xu et al., 2012), both of which showed the high correlations with Se. Meanwhile, component 1 showed the high concentration in EP4 and EP5 (Figure 5b) when the ship anchored in Wuhan and travelled through Jiujiang. As illustrated in Figure 6a-d, As, Cd, Pb and Se showed the similar source region distributions. The higher PSCF values in Hubei, Hunan and Jiangxi provinces coincided well with the uneven regional distribution of the residential coal consumption (Figure S7) in central China, suggesting coal-related PM pollution was quite serious in this region during the cruise.
The secondary component (component 2) with a variation of 25.45%, contributed by high loading of Al, Mg, Ca, and K, all of which obviously represented the crustal or soil materials and showed the low EF values (EFs < 10, except Ca). The high concentration spike of crustal elements occurred in EP7 (Figure 5b). A sharp decrease of RH (Table 2) indicated that a cold front arrived, accompanying by floating dust. As shown in Figure 6e-h, the YRD region and the Loess Plateau with highest PSCF values were identified as important source regions and pathways for crustal elements of Al, K, Mg and Ca. Meanwhile, the central China also showed the distribution of K and Mg, for which the coal combustion in this region could be primary responsible. Furthermore, Ca showed the high EFs (EFs > 100), suggesting that the crustal material may not derive from natural sources, but from anthropogenic re-suspension of road or construction activities along of the Yangtze River. To further evaluate the impact of anthropogenic Ca, the equation below was applied:

\[
Ca_{\text{anthropogenic}} = Ca_{\text{total}} - Al_{\text{total}} \times \frac{Ca}{Al}_{\text{crust}} \quad (4)
\]

(Ca/Al) \text{crust} is ratio of Ca to Al in crust and its value is 0.5. According to this method, the average Ca \text{anthropogenic} concentration was 2.15 µg m\(^{-3}\) and the peak level reached to 3.42 µg m\(^{-3}\) on December 3. IF all of Ca \text{anthropogenic} in the samples of other cities and cruises (Table 4) were calculated by this method, its level in this cruise was much higher than those in other samples, suggesting that anthropogenic dust was dominated and distributed in the YRD region during the period.

Component 3, accounting for 15.14% of variation, was considered to be the primary of V, Co and Ni. Both V and Ni was often used to be a tracer of heavy oil combustion (Zhao et al., 2013b; Becagli et al., 2017). The high concentrations of V and Ni were observed when the ship was anchored at the Waigaoqiao port of Shanghai (EP8) (Figure 5b), where some field observations have identified that heavy oil combustion exert a significant impact on the local air quality (Zhao et al., 2013b; Fu et al., 2014; Ding et al., 2017; Liu et al., 2017). It was also reported that the combustion of heavy oil emitted smaller particles with the size of < 0.1µm and the transition metals of Ni and V were greatly enriched (Jang et al., 2007). Ni hosted in fine
particles (Figure 6i) had almost same spatial distribution with Cr and the YDR, Jiangsu, east of Anhui, and the Mongolian plateau were identified as the major source regions and pathways. However, the high PSCF values for fine particle V (Figure 6j) were only derived from the YDR and Mongolian plateau, that’s possible reason that V was considered origination from heavy oil combustion while Ni have other sources (Table S1) (Zhao et al., 2013b).

The fourth component (component 4) showed high loadings of Mn, Co, Zn and Fe, all of which could explain 7.33% of the variance. Fe exhibited the high EFs value, indicating that they may originate from anthropogenic activities. Anthropogenic Fe was usually considered to be originated from steel factory and/or shipyard, both of which were widely distributed over the YRC region (Fu et al., 2014). The temporal variations of component 4 peaked nearly in Wuhan and Shanghai (EP4, EP7 and EP8) (Figure 5b) where China Baowu steel industry and numerous shipyards were located in this region (Ivošević et al., 2016). Fe, Co, Mn and Zn in fine particles displayed similar regional distributions (Figure 6l-o). The significantly high PSCF values in the YRD region were attributed to the intensive distribution of steel industries in East of Anhui, Jiangsu and Shanghai and shipyards on the banks of the Yangtze River. However, the high PSCF value of Zn also exhibited high value in Hubei, Henan and Shanxi (Figure 6l), probably due to the influence of coal combustion and nonferrous metal smelting activities in these regions (Li et al., 2015b). Overall, it should be noted that regional anthropogenic sources were dominant origins of trace elements in fine particles collected along this cruise.

3.5 Ship emission

3.5.1 Primary of ship emission

Over the past few decades, China’s rapid economic development leads to huge cargo transports by ship in the Yangtze River channel. However, there is lack of data for ship emission along the Yangtze River channel, especially in the inland area. It was well known that the ratio of V to Ni was used to judge whether ship emission could influence air quality (Isakson et al., 2001). The average ratio of V/Ni over the present cruise is 1.27, which was in good agreement with the previous studies (Pandolfi et al., 2011; Zhang et al., 2014). Although ratio of V/Ni was used to judge whether ship emission could influence air quality, it was still a challenge to distinguish
V from refineries and ship plume. So, high-resolution back-trajectories and high-resolution of the ship position from the AIS data were applied to identify ship plume during this cruise (Figure S8). As plotted in Figure 7, the number of ship from AIS were closely related to the V concentration. From the inland to the coastal of East China Sea, the V concentration hosted by fine particles generally increased and reached the highest level of 0.06 µg m\(^{-3}\) on 4 December when the vessel berthed in the anchorage of the Yangtze River estuary. Meanwhile, air masses in this evening originated from the port and anchorage (Figure S8). Hence, the V in the fine particles could be possibly attributed by the ship engine emission in Shanghai port.

The contribution of primary ship emission to PM\(_{2.5}\) could be calculated by the equation developed by (Agrawal et al. 2009):

\[
P_{MA} = \langle r \rangle \times \frac{V_a}{\langle F_{V,HFO} \rangle} \quad (5)
\]

where \(P_{MA}\) represents the primary PM\(_{2.5}\) concentration estimated (µg m\(^{-3}\)); \(\langle r \rangle\) is average ratio of PM\(_{2.5}\) to normalized V emitted (ppm); \(V_a\) represents the V amount of the samples (µg m\(^{-3}\)) during YRC and is the V content of heavy oil on average from the vessels (ppm). The value of \(\langle r \rangle\) was set as 8205.8 ppm according to Agrawal et al. (2009) report. The value of \(\langle F_{V,HFO} \rangle\) was set as 65.3 ppm, of which represents of the average V content (Zhao et al., 2013b). The average concentration of the primary ship emission was 1.19 µg m\(^{-3}\), ranging from 0.02 to 7.37 µg m\(^{-3}\). The peak level of the estimated primary ship emission was observed in Shanghai harbor.

3.5.2 SO\(_2\), NO\(_3\), and OC emitted from ships

To further explore the contribution of the ship plume to secondary fine particles, a lower limit of the SO\(_2\)/V, NO\(_3\)/V, EC/V and OC/V ratios (equal to the average minus one standard deviation) was applied to estimate the particulate from heavy oil combustion in the Yangtze River channel (Becagli et al., 2017). As presented in Figure S9a-b, the mass ratio of SO\(_2\)/V and NO\(_3\)/V decreased rapidly with increasing V concentration. According to ship traffic numbers, weather condition and the component of heavy diesel oil combustion emissions, the samples
with $V > 15 \text{ ng m}^{-3}$ were mainly considered as the ship emission. Hence, SO_2^-, NO_3^-, EC and OC in the samples with $V > 15 \text{ ng m}^{-3}$ were assumed to be from ship plume.

The limit ratio of SO_2^-/V, NO_3^-/V and OC/V, and the estimation of the ship plume contributions to SO_2^-, NO_3^-, OC and PM$_{2.5}$ are summarized in Table S2 in supplements. The minimum ratio of NO_3^-/V in this campaign was nearly twice larger than the limit ratio for SO_2^-/V, which was contrary to the previous report with higher SO_2^- observed in summer on the island of Lampedusa (35.5°N, 12.6°E) in the central Mediterranean. In general, SO_2^- and NO_3^- in aerosol were formed from gas precursors of SO_2 and NO_X, respectively, both of which were complete different for lift-time and chemical processes in the atmosphere. High T and RH could accelerate the chemical process of SO_2 to SO_2^- (Zhou et al., 2016). However, NO_3^- was in gas-aerosol equilibrium with gaseous HNO$_3$. So, low T and RH were conducive to NO_3^- formation in aerosol (Matthias et al., 2010; Wang et al., 2016). One reason for this discrepancy was probably meteorological and photochemical conditions, which may be attributed to low sulfur conversion rates and particulate NO_3^- dominated in low temperature and moisture in winter in this cruise (Table 2). On the other hand, NO_3^- may have other sources in our samples (Shanghai), whereas Lampedusa was a remote site (Becagli et al., 2017). The average estimated concentration of minimum SO_2^- derived from ship emission was 1.38 μg m$^{-3}$ during YRC, which was similar to the value measured in the Mediterranean (Becagli et al., 2017; Becagli, 2012).

EC and OC were also estimated by the same methods for SO_2^- and NO_3^- for calculation the lower limit for OC/V and EC/V ratio in the ship plume (Figure S9c-d). Besides, the correlation of V with EC ($R^2 = 0.71$) have high value, suggesting that V and EC have same sources (Agrawal et al., 2009). In this cruise, the total OC were estimated from OC measured through a conversion factor of 1.8, due to typically fresh emission and weak light in winter (Becagli et al., 2017). The total average of ship traffic in PM$_{2.5}$ was 8.46 μg m$^{-3}$, nearly occupying 7.73% of total PM$_{2.5}$ during YRC. However, ship plume could reach to 52.28% of total PM$_{2.5}$ when the vessel berthed in that Shanghai harbor. It is noted that the ship engine...
emission decreased from Shanghai port to inland area. One reason for this was correspond to
the density of ship in the Yangtze River channel. On the other hand, fuel oils were completely
different between the ship travelling in inland waterway and the oceangoing vessel. In general,
ship inland waterway run on mainly light diesel which contain low heavy metals (such as: V,
Ni) comparing with marine heavy oil (Table S1). So, it is urgent to establish emission control
area (ECA) in Shanghai ports.

4 Conclusions. In order to better characterize air pollution over the region of MLYP, an
intensive atmospheric observation was conducted during YRC. A combine of ship-suit
measurements of trace gases and aerosol samples for fine particles were used to characterize
the air pollution in this region. The average concentrations of PM$_{1.0}$ and PM$_{2.5}$ were 96.69 ±
22.18 µg m$^{-3}$ and 119.29 ± 33.67 µg m$^{-3}$ during the cruise, respectively. The most abundant
species in PM$_{2.5}$ were SO$_4^{2-}$ with the average concentration of 15.21 ± 6.69 µg/m3, followed by
NO$_3^-$ (13.76 ± 4.99µg/m3), NH$_4^+$ (9.38 ± 4.35µg/m3), Ca$^{2+}$ (2.23 ± 1.24µg/m3), respectively.
Combined with satellite data, back trajectory, principle component analysis (PCA), and
potential source contribution functions (PSCF), chemical composition in PM$_{2.5}$ manifested
greatly geographical difference and diverse anthropogenic emission sources. Wuhan undertook
SNA (including SO$_4^{2-}$, NO$_3^-$ and NH$_4^+$), accounting for nearly 50% of PM$_{2.5}$. The significant
correlation between Se and SO$_4^{2-}$ corroborated that coal combustion may play a key role on the
SNA formation. The concentration of levoglucosan in PM$_{2.5}$ and CO column level from the
satellite data were greatly enhanced in the rural area (Anhui and Jiangxi), indicating that BB
from the both shores of the Yangtze river may make remarkable contribution to rural area.
Furthermore, the crustal elements of Al and Ca presented high levels in the YRD regions and
the relative high enrichment factors (EFs) of Ca (EFs > 100) coupling with the PSCF analysis
suggested the crustal material may derive from re-suspension of dust from road and
construction activity along the banks of the Yangtze river. Ship engine emission displayed a
significant effect on the air quality and could contribute to more than 50% of the total PM$_{2.5}$ in
the Shanghai ports. As far as we know, this is the first comprehensive measurement of air
quality over the MLYP region using a vessel mobile platform. The data shown herein suggested that the differentiated control measures in accordance with local pollution characterizations should be applied to tackle air pollution.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Technology of China (No. 2016YFC0202700, 2014BAC22B00), the National Natural Science Foundation of China (No. 91743202, 21527814) and Marie Skłodowska-Curie Actions (690958-MARSU-RISE-2015).
References:

Hsu, S.-C., Liu, S. C., Kao, S.-J., Jeng, W.-L., Huang, Y.-T., Tseng, C.-M., Tsai, F., Tu, J.-Y., and Yang, Y.: Water-soluble species in the marine aerosol from the northern South China Sea:

Liao, T., Wang, S., Ai, J., Gui, K., Duan, B., Zhao, Q., Zhang, X., Jiang, W., and Sun, Y.:
Heavy pollution episodes, transport pathways and potential sources of PM$_{2.5}$ during the winter of 2013 in Chengdu (China), Sci. Total Environ., 584, 1056-1065, 2017.

Wang, Y. Q., Zhang, X. Y., and Draxler, R. R.: TrajStat: GIS-based software that uses various

Zhang, F., Chen, Y., Tian, C., Wang, X., Huang, G., Fang, Y., and Zong, Z.: Identification and

Captions of Figure and Table

Table 1. The levels of PM$_{2.5}$ and PM$_{1.0}$ sampled during YRC.

Table 2. The pollutant levels and meteorological parameters in eight different episodes.

Table 3. Average concentration of the elements in PM$_{2.5}$ and PM$_{1.0}$ (ng m$^{-3}$) during YRC.

Table 4. Comparisons of trace element concentrations with the reported data (µg m$^{-3}$).

Figure 1. Cruise tracks, source region limits, the sampling sites and land use during YRC.

Figure 2. (a) aerosol optical depth(AOD); (b) the total CO column mixture ratio; (c) the SO$_2$ column concentration; (d) the NO$_2$ column level.

Figure 3. Comparisons major ionic species during YRC with other regions, including: Beijing, Xi’an, Chengdu, Wuhan, Guangzhou, Shanghai, Northern South China Sea, Taiwan Strait, South China Sea, East China Sea and Tuoji Island. The red lines mark the sample routes in different cruises.

Figure 4. Spatial concentration distributions of the soluble ions and levoglucosan in PM$_{2.5}$.

Figure 5. (a) Principle component analysis (PCA) of the typical elements in PM$_{2.5}$; (b) Time series of four typical element sources derived from PCA. All of the units are in µg m$^{-3}$.

Figure 6. Probable sources from PSCF for individual elements in PM$_{2.5}$ during YRC. The criteria are the mean concentration for all.

Figure 7. The primary of ship emission along YRC and number of ship distribution in the Yangtze River channel.
Table 1

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Start data UTC</th>
<th>Day/Night Samples</th>
<th>Ship state</th>
<th>Sampling duration</th>
<th>Average Latitude, °N</th>
<th>Average Longitude, °E</th>
<th>PM$_{2.5}$ (µg m$^{-3}$)</th>
<th>PM$_{1.0}$ (µg m$^{-3}$)</th>
<th>PM${1.0}$/PM${2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>25-Nov-15</td>
<td>Daily</td>
<td>Moving</td>
<td>24 hours</td>
<td>30.95</td>
<td>117.78</td>
<td>63.83</td>
<td>58.3</td>
<td>91.33%</td>
</tr>
<tr>
<td>#2</td>
<td>26-Nov-15</td>
<td>Daily</td>
<td>Moving</td>
<td>24 hours</td>
<td>30.3</td>
<td>116.95</td>
<td>112.7</td>
<td>84.58</td>
<td>75.06%</td>
</tr>
<tr>
<td>#3</td>
<td>27-Nov-15</td>
<td>Daily</td>
<td>Moving</td>
<td>24 hours</td>
<td>29.73</td>
<td>115.86</td>
<td>106.4</td>
<td>90.37</td>
<td>84.96%</td>
</tr>
<tr>
<td>#4</td>
<td>28-Nov-15</td>
<td>Daily</td>
<td>Moving</td>
<td>24 hours</td>
<td>30.37</td>
<td>115.06</td>
<td>81.49</td>
<td>73.69</td>
<td>90.43%</td>
</tr>
<tr>
<td>#5</td>
<td>29-Nov-15</td>
<td>Daytime</td>
<td>Moving</td>
<td>12 hours</td>
<td>30.63</td>
<td>114.53</td>
<td>157.7</td>
<td>136.1</td>
<td>86.32%</td>
</tr>
<tr>
<td>#6</td>
<td>29-Nov-15</td>
<td>Nighttime</td>
<td>Stopping</td>
<td>12 hours</td>
<td>30.69</td>
<td>114.45</td>
<td>161.8</td>
<td>152.2</td>
<td>94.06%</td>
</tr>
<tr>
<td>#7</td>
<td>30-Nov-15</td>
<td>Daytime</td>
<td>Moving</td>
<td>12 hours</td>
<td>30.42</td>
<td>114.92</td>
<td>80.56</td>
<td>65.56</td>
<td>81.38%</td>
</tr>
<tr>
<td>#8</td>
<td>30-Nov-15</td>
<td>Nighttime</td>
<td>Stopping</td>
<td>12 hours</td>
<td>30.09</td>
<td>115.32</td>
<td>106.3</td>
<td>89.29</td>
<td>83.99%</td>
</tr>
<tr>
<td>#9</td>
<td>1-Dec-15</td>
<td>Daytime</td>
<td>Moving</td>
<td>12 hours</td>
<td>29.72</td>
<td>115.97</td>
<td>96.0</td>
<td>81.83</td>
<td>85.24%</td>
</tr>
<tr>
<td>#10</td>
<td>1-Dec-15</td>
<td>Nighttime</td>
<td>Moving</td>
<td>12 hours</td>
<td>30.32</td>
<td>116.89</td>
<td>92.02</td>
<td>82.86</td>
<td>90.04%</td>
</tr>
<tr>
<td>#11</td>
<td>2-Dec-15</td>
<td>Daytime</td>
<td>Moving</td>
<td>12 hours</td>
<td>31.08</td>
<td>117.96</td>
<td>122.8</td>
<td>85.17</td>
<td>69.34%</td>
</tr>
<tr>
<td>#12</td>
<td>2-Dec-15</td>
<td>Nighttime</td>
<td>Moving</td>
<td>12 hours</td>
<td>31.9</td>
<td>118.55</td>
<td>163.2</td>
<td>118.4</td>
<td>72.55%</td>
</tr>
<tr>
<td>#13</td>
<td>3-Dec-15</td>
<td>Daytime</td>
<td>Moving</td>
<td>12 hours</td>
<td>32.27</td>
<td>119.44</td>
<td>152.9</td>
<td>108.7</td>
<td>71.09%</td>
</tr>
<tr>
<td>#14</td>
<td>3-Dec-15</td>
<td>Nighttime</td>
<td>Moving</td>
<td>12 hours</td>
<td>31.95</td>
<td>120.27</td>
<td>133.9</td>
<td>105.6</td>
<td>78.89%</td>
</tr>
<tr>
<td>#15</td>
<td>4-Dec-15</td>
<td>Daytime</td>
<td>Moving</td>
<td>12 hours</td>
<td>31.7</td>
<td>121.18</td>
<td>146.1</td>
<td>111.8</td>
<td>76.57%</td>
</tr>
<tr>
<td>#16</td>
<td>4-Dec-15</td>
<td>Nighttime</td>
<td>Stopping</td>
<td>12 hours</td>
<td>31.38</td>
<td>121.6</td>
<td>131.2</td>
<td>102.7</td>
<td>78.27%</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Periods</th>
<th>Data and time (BST)</th>
<th>Latitude</th>
<th>Longitude</th>
<th>wind speed (m/s)</th>
<th>RH%</th>
<th>NOx (ppb)</th>
<th>SO$_2$ (ppb)</th>
<th>CO (ppb)</th>
<th>PM$_{2.5}$ (SNb)</th>
<th>T/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP1</td>
<td>2015/11/22 12:00 to 2015/11/23 18:00</td>
<td>31.28 to 32.22</td>
<td>121.23 to 119.55</td>
<td>3.01</td>
<td>88.95</td>
<td>65.51</td>
<td>6.32</td>
<td>443.91</td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td>EP2</td>
<td>2015/11/25 12:00 to 2015/11/27 14:00</td>
<td>31.01 to 29.91</td>
<td>117.79 to 116.35</td>
<td>2.86</td>
<td>66.73</td>
<td>57.50</td>
<td>12.45</td>
<td>704.48 (#1,2)</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>EP3</td>
<td>2015/11/27 14:00 to 2015/11/29 00:00</td>
<td>29.84 to 30.50</td>
<td>116.35 to 114.83</td>
<td>2.48</td>
<td>69.72</td>
<td>68.16</td>
<td>16.15</td>
<td>676.20 (#3,4)</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>EP4</td>
<td>2015/11/29 00:00 to 2015/11/30 18:00</td>
<td>30.50 to 30.18</td>
<td>114.83 to 115.25</td>
<td>2.18</td>
<td>83.01</td>
<td>62.65</td>
<td>8.60</td>
<td>1030.25 (#5,7)</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>EP5</td>
<td>2015/11/30 18:00 to 2015/12/01 20:00</td>
<td>30.18 to 30.02</td>
<td>115.25 to 116.66</td>
<td>2.32</td>
<td>79.64</td>
<td>51.92</td>
<td>11.66</td>
<td>989.75 (#8,9)</td>
<td>2.61</td>
<td></td>
</tr>
<tr>
<td>EP6</td>
<td>2015/12/01 20:00 to 2015/12/02 20:00</td>
<td>30.02 to 31.67</td>
<td>116.66 to 118.40</td>
<td>3.84</td>
<td>74.67</td>
<td>31.00</td>
<td>4.09</td>
<td>1139.33 (10,11)</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>EP7</td>
<td>2015/12/02 20:00 to 2015/12/03 20:00</td>
<td>31.67 to 32.32</td>
<td>118.40 to 119.73</td>
<td>5.39</td>
<td>44.91</td>
<td>23.73</td>
<td>7.87</td>
<td>1224.88 (#12,13)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>EP8</td>
<td>2015/12/03 20:00 to 2015/12/05 06:00</td>
<td>32.32 to 31.36</td>
<td>119.73 to 121.61</td>
<td>2.68</td>
<td>38.86</td>
<td>57.55</td>
<td>16.62</td>
<td>1061.46 (#14,16)</td>
<td>1.73</td>
<td></td>
</tr>
</tbody>
</table>

a Beijing standard time (GMT-8); T/B is ratio of toluene to benzene; b sample number in Table 1.
<table>
<thead>
<tr>
<th>Contents</th>
<th>Average</th>
<th>Max</th>
<th>Min</th>
<th>Median</th>
<th>SD^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>629.87</td>
<td>1487.67</td>
<td>135.69</td>
<td>589.13</td>
<td>358.57</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>328.57</td>
<td>699.09</td>
<td>17.26</td>
<td>359.42</td>
<td>213.44</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>863.87</td>
<td>2400.13</td>
<td>21.13</td>
<td>786.17</td>
<td>618.66</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>631.37</td>
<td>1894.40</td>
<td>100.78</td>
<td>473.46</td>
<td>483.74</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>865.88</td>
<td>1723.87</td>
<td>368.51</td>
<td>805.73</td>
<td>367.14</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>771.80</td>
<td>1560.67</td>
<td>326.41</td>
<td>739.86</td>
<td>303.33</td>
</tr>
<tr>
<td>Ca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>2724.35</td>
<td>5657.60</td>
<td>391.54</td>
<td>2381.94</td>
<td>1108.03</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>1525.39</td>
<td>3371.73</td>
<td>108.21</td>
<td>1455.19</td>
<td>1108.03</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>9.71</td>
<td>60.00</td>
<td>0.19</td>
<td>7.33</td>
<td>13.45</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>9.20</td>
<td>55.50</td>
<td>1.18</td>
<td>6.80</td>
<td>12.72</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>22.29</td>
<td>62.67</td>
<td>2.16</td>
<td>16.73</td>
<td>16.51</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>21.67</td>
<td>48.17</td>
<td>2.67</td>
<td>22.74</td>
<td>13.31</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>56.63</td>
<td>152.12</td>
<td>9.08</td>
<td>42.56</td>
<td>43.42</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>45.80</td>
<td>106.33</td>
<td>8.58</td>
<td>31.56</td>
<td>31.75</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>1644.84</td>
<td>5188.18</td>
<td>38.87</td>
<td>860.40</td>
<td>1590.29</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>934.30</td>
<td>2616.83</td>
<td>46.74</td>
<td>516.37</td>
<td>850.12</td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>0.82</td>
<td>2.88</td>
<td>0.00</td>
<td>0.48</td>
<td>0.75</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>0.62</td>
<td>1.67</td>
<td>0.07</td>
<td>0.26</td>
<td>0.53</td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>10.53</td>
<td>73.64</td>
<td>1.83</td>
<td>5.61</td>
<td>16.82</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>8.19</td>
<td>32.29</td>
<td>1.39</td>
<td>4.35</td>
<td>7.89</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>18.79</td>
<td>49.87</td>
<td>4.07</td>
<td>17.66</td>
<td>11.28</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>15.21</td>
<td>37.07</td>
<td>3.70</td>
<td>12.32</td>
<td>7.87</td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>295.08</td>
<td>638.08</td>
<td>125.36</td>
<td>221.83</td>
<td>159.05</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>288.84</td>
<td>485.26</td>
<td>81.91</td>
<td>261.06</td>
<td>156.34</td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>37.33</td>
<td>107.17</td>
<td>0.87</td>
<td>31.50</td>
<td>28.14</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>41.73</td>
<td>111.85</td>
<td>12.46</td>
<td>30.70</td>
<td>32.00</td>
</tr>
<tr>
<td>Sc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>6.08</td>
<td>12.18</td>
<td>2.70</td>
<td>5.78</td>
<td>2.57</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>6.48</td>
<td>11.04</td>
<td>3.07</td>
<td>6.40</td>
<td>2.76</td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>2.72</td>
<td>5.00</td>
<td>1.30</td>
<td>2.50</td>
<td>1.06</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>5.42</td>
<td>39.20</td>
<td>1.30</td>
<td>3.33</td>
<td>9.09</td>
</tr>
<tr>
<td>Tl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>0.32</td>
<td>0.90</td>
<td>0.00</td>
<td>0.29</td>
<td>0.22</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>0.41</td>
<td>0.89</td>
<td>0.14</td>
<td>0.35</td>
<td>0.23</td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>98.37</td>
<td>176.54</td>
<td>53.26</td>
<td>95.68</td>
<td>35.91</td>
</tr>
<tr>
<td>PM_{1.0}</td>
<td>110.45</td>
<td>274.80</td>
<td>53.04</td>
<td>102.84</td>
<td>54.07</td>
</tr>
</tbody>
</table>

^aSD is one standard deviation.
<table>
<thead>
<tr>
<th>Year</th>
<th>Season</th>
<th>Region</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
<th>Value 7</th>
<th>Value 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td></td>
<td>(Zhang et al., 2007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>(Zhao et al., 2015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-14</td>
<td>Winter</td>
<td>(Li et al., 2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012-13</td>
<td>Winter</td>
<td>(Tao et al., 2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-09</td>
<td>Winter</td>
<td>(Zhang et al., 2015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-10</td>
<td>Winter</td>
<td>(Huang et al., 2013)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>(Zhao et al., 2015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td>(Zhang et al., 2007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>(Zhao et al., 2015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-14</td>
<td>Winter</td>
<td>(Li et al., 2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012-13</td>
<td>Winter</td>
<td>(Tao et al., 2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-09</td>
<td>Winter</td>
<td>(Zhang et al., 2015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-10</td>
<td>Winter</td>
<td>(Huang et al., 2013)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4

Winter
Yangtze river channel
Northern South China Sea
East China sea
Taiwan strait
Guangzhou (rural)
Chengdu
Wuhan
Shanghai
Beijing

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.86</td>
<td>0.31</td>
<td>3.28</td>
<td>3.00</td>
<td>0.21</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>2.72</td>
<td>0.82</td>
<td>2.40</td>
<td>2.00</td>
<td>0.11</td>
<td>0.26</td>
<td>2.27</td>
<td>0.72</td>
<td>1.85</td>
</tr>
<tr>
<td>Fe</td>
<td>1.64</td>
<td>0.32</td>
<td>1.37</td>
<td>1.30</td>
<td>0.16</td>
<td>0.61</td>
<td>1.42</td>
<td>0.56</td>
<td>1.55</td>
</tr>
<tr>
<td>Mg</td>
<td>0.63</td>
<td>0.11</td>
<td>0.83</td>
<td>2.40</td>
<td>2.30</td>
<td>0.16</td>
<td>0.61</td>
<td>0.26</td>
<td>0.57</td>
</tr>
<tr>
<td>As</td>
<td>0.04</td>
<td></td>
<td>0.01</td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Cd</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
<td>0.60</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Cu</td>
<td>0.02</td>
<td></td>
<td>0.01</td>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Mn</td>
<td>0.06</td>
<td></td>
<td>0.01</td>
<td>0.70</td>
<td>0.03</td>
<td>0.07</td>
<td>0.13</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>Ni</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
<td>0.90</td>
<td></td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Pb</td>
<td>0.10</td>
<td>0.16</td>
<td>0.02</td>
<td>0.70</td>
<td>0.09</td>
<td>0.20</td>
<td>0.24</td>
<td>0.06</td>
<td>0.15</td>
</tr>
<tr>
<td>V</td>
<td>0.01</td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.30</td>
<td></td>
<td>0.07</td>
<td>0.60</td>
<td>0.27</td>
<td>0.32</td>
<td>0.37</td>
<td>0.13</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Sampling periods; Sampling sites
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.